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Abstract 

 
 

 
The use of numerical parameters in Complex Network analysis is expanding to new fields of application. At a 

molecular level, we can use them to describe the molecular structure of chemical entities, protein interactions, or 

metabolic networks. However, the applications are not restricted to the world of molecules and can be extended 

to the study of macroscopic nonliving systems, organisms, or even legal or social networks. On the other hand, 

the development of the field of Artificial Intelligence has led to the formulation of computational algorithms 

whose design is based on the structure and functioning of networks of biological neurons. These algorithms, 

called Artificial Neural Networks (ANNs), can be useful for the study of complex networks, since the numerical 

parameters that encode information of the network (for example centralities/node descriptors) can be used as 

inputs for the ANNs. The Wiener index (W) is a graph invariant widely used in chemoinformatics to quantify the 

molecular structure of drugs and to study complex networks. In this work, we explore for the first time the 

possibility of using Markov chains to calculate analogues of node distance numbers/W to describe complex 

networks from the point of view of their nodes. These parameters are called Markov-Wiener node descriptors of 

order kth (Wk). Please, note that these descriptors are not related to Markov-Wiener stochastic processes. Here, 

we calculated the Wk(i) values for a very high number of nodes (>100,000) in more than 100 different complex 

networks using the software MI-NODES. These networks were grouped according to the field of application. 

Molecular networks include the Metabolic Reaction Networks (MRNs) of 40 different organisms. In addition, 

we analyzed other biological and legal and social networks. These include the Interaction Web Database 
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Biological Networks (IWDBNs), with 75 food webs or ecological systems and the Spanish Financial Law 

Network (SFLN). The calculated Wk(i) values were used as inputs for different ANNs in order to discriminate 

correct node connectivity patterns from incorrect random patterns. The MIANN models obtained present good 

values of Sensitivity/Specificity (%): MRNs (78/78), IWDBNs (90/88), and SFLN (86/84). These preliminary 

results are very promising from the point of view of a first exploratory study and suggest that the use of these 

models could be extended to the high-throughput re-evaluation of connectivity in known complex networks 

(collation). 

1 Introduction 

1.1The Classic Wiener Index 

In the last part of the nineteenth century and in the twentieth century the interest for the study of 

the molecular structure led to the formulation of questions about how to encode and quantify the 

information contained in the molecule. As a result of these questions, the concept of molecular 

descriptor was defined as “the final result of a logic and mathematical procedure which transforms 

chemical information encoded within a symbolic representation of a molecule into a useful number or 

the result of some standardized experiment”.(1) In 1947, Wiener published an article entitled 

Structural determination of paraffin boiling points.(2) In this work it is proposed that organic 

compounds, as well as all their physical properties, depend functionally upon the number, kind, and 

structural arrangement of the atoms in the molecule. Therefore, it is possible to find an equation that 

relates the structure of the studied paraffins with their boiling points. This equation, also used by 

Wiener in refs 3−5, can be written in a general form as 

 

 

 

 

where n is the number of atoms, p is the polarity number, defined as the number of pairs of carbon 

atoms which are separated by three carbon bonds, and w is the path number, defined as the sum of the 

distances between any two carbon atoms in the molecule and considered as one of the oldest 

topological indices. This last term was coined by Hosoya in 1971 to refer to the Z index,(-6, 7) and it 

is currently used to define all the numerical quantifiers of molecular topology that are mathematically 

derived from the structural graph of a molecule, usually an H-depleted molecular graph.(8) The path 

number is also called Wiener index or Wiener number (W), and it is calculated as the half sum of all 

the elements dij of the distance matrix (D). As it can be seen, more distant atom pairs make a larger 

contribution to W than adjacent atom pairs: 
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It is interesting to point out that the Wiener index was independently proposed in 1959 by Harary 

in the context of sociometry, with the name total status of a graph(9) as well as in 1975 by Rouvray 

and Crafford.(10) This fact indicates that the Wiener index concept was not well-known in those 

times. However, in the middle of the 1970s many authors began to study the properties and 

applications of molecular descriptors. This led to the development of new topological indices (TIs), 

some of which were based on W. A complete list and a brief explanation of these indices can be 

found in ref 11. Taking into consideration the classification proposed by Balaban for the TIs,(12) W 

(together with Z) belongs to the first of three generations or classes. First-generation TIs are integer 

numbers based on integer local graph-vertex invariants (LOVI) and have a high degeneracy that 

limits their use.  
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According to Diudea and Gutman,(10) the physical and chemical properties of organic 

substances, which can be expected to depend on the area of the molecular surface and/or on the 

branching of the molecular carbon-atom skeleton, are usually well correlated with W. Among them, 

there are the heats of formation, vaporization and atomization, density, boiling point, critical 

pressure, refractive index, surface tension and viscosity of various, acyclic and cyclic, saturated and 

unsaturated as well as aromatic hydrocarbon species, velocity of ultrasound in alkanes and alcohols, 

rate of electroreduction of chlorobenzenes, etc. Correlations between W and melting points were also 

reported, but in this case the results were not completely satisfactory. W was also used to predict the 

behavior of organic substances in gas chromatography, for instance, chromatographic retention times 

(CRT) of monoalkyl- and o-dialkylbenzenes. In this sense, W is very useful in chemoinformatics for 

the search of models that connect the molecular structure with molecular properties. 

1.2Applications of the Wiener Index in Chemoinformatics 

In pharmaceutical design, we can find many applications of the Wiener index. For instance, 

Mandloi et al.(13) investigated the correlation of Wiener (W), Szeged (Sz), and molecular 

connectivity indices (
0
χR, 

1
χR, and 

2
χR) with molecular properties. Log P values of benzoic acid and its 

nuclear-substituted derivatives were used for this purpose. The statistical analyses for univariate and 

multivariate correlations indicated that both W and Sz are closely related to the connectivity indices 

(
m
χR) and that W, Sz, and 

1
χR have similar modeling potentials (

1
χR gives slightly better results than 

both W and Sz). 
0
χR and 

2
χR are poorly correlated with log P. Lukovits established correlations 

between W and cytostatic and antihistaminic activities of certain pharmacologically interesting 

compounds as well as between W and their Estron-binding affinities.(14) He also employed W in the 

study of the n-octanol/water partition coefficient.(15) 

 

Mendiratta and Madan(16) studied the relationship between W and the antiviral activity of a series 

of 118 5-vinylpyrimidine nucleoside analogues. The predicted activity of each compound was 

compared with reported antiviral activity against herpes simplex virus type I. Due to the significant 

correlation between antiviral activity and W, it was possible to predict antiviral activity with an 

accuracy of 83%. 

 

In the work carried out by Agrawal et al.(17) the antimalarial activity of a series of sulfonamide 

derivatives (2,4-diamino-6-quinazoline sulfonamides) was modeled topologically using W and Sz. It 

was observed that the models based on W gave slightly better results than the models based on Sz. 

Sardana and Madan(18) studied the relationship of the molecular connectivity index (
1
χ), W, and the 

eccentric connectivity index (ξ
c
) with the diuretic activity of 68 sulfamoylbenzoic acid derivatives. 

The models had an 82% accuracy rate in 
1
χ, an 85% accuracy rate in W, and a 90% accuracy rate in 

ξ
c
. In another work, the relationship of W, Zagreb group parameter (M1), and ξ

c
 with the 

anticonvulsant activity of a series of 41 substituted benazamides/benzylamines was investigated.(19) 

The models had an 88% (M1), 94% (ξ
c
), and 97% (W) accuracy rate. 

 

Gupta et al. studied(20) the relationship of ξ
c
 and W with regard to anti-inflammatory activity for 

a data set consisting of 76 pyrazole carboxylic acid hydrazide analogues. A prediction with a 90% 

accuracy rate was obtained using ξ
c
 and an 84% accuracy rate in the case of W. Bajaj et al.(21) 

studied the relationship of the Wiener topochemical index (a modification of W sensitive to the 

presence of heteroatoms and with less degeneracy) and Wiener index with the anti-HIV activity of 62 

phenethylthiazolethiourea compounds. The prediction accuracy rate was 90% in both cases. The 

relationship of anti-HIV activity of 61 acylthiocarbamates with W, 
1
χ, and ξ

c
 was also investigated by 

these authors.(22) 95% (ξ
c
), 97% (

1
χ), and 98% (W) accuracy rates were observed. In another work, 

the relationship of anti-inflammatory activity of 112 N-arylanthranilic acids with W, Zagreb indices 

M1 and M2, and ξ
c
 was studied.(23) The different models had an 82.6% (ξ

c
), 86.8% (W), 88.88% 

(M1), and 90.3% (M2) accuracy rate 

 

In the area of cancer research, the inhibition of CDK2/cyclin A by 42 3-aminopyrazoles was 

studied using W, the atomic molecular connectivity index (χ
A
), and the superadjacency topochemical 

index (∫
Ac

).(24) The different models had an 86% (W), 88% (∫
Ac

), and 89% (χ
A
) accuracy rate. With 

the aim to develop methods to select drug candidates for the treatment of Alzheimer’s disease, Kumar 

and Madan studied(25) the relationship of W, M1, and ξ
c
 with the glycogen synthase kinase-3 beta 

inhibitory activity of 28 thiadiazolidinones. The prediction accuracy rate was 83% (M1), 86% (ξ
c
), 
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and 87% (W). Finally, Lather and Madan studied(26) the relationship between W and multidrug-

resistance-associated protein inhibitory activity of 82 pyrrolopyrimidines and their derivatives. The 

prediction accuracy rate of the model was 88%. As we can see in these examples, the Wiener index 

has a wide range of applications in predictive studies, and, since it is one of the first topological 

indices, it is used in many works in order to compare the performance of new introduced indices. 

1.3Complex Networks and MARCH-INSIDE Models 

Graph and Complex Network theory is expanding its application to different levels of matter 

organization such as molecular, biological, technological, and social networks.(27-29) A network is a 

set of items, usually called nodes, with connections between them, which are called links or 

edges.(30) The nodes can be atoms, molecules, proteins, nucleic acids, drugs, cells, organisms, 

parasites, people, words, laws, computers, or any other part of a real system. The edges or links are 

relationships between the nodes, such as chemical bonds, physical interactions, metabolic pathways, 

pharmacological actions, law recurrence, or social ties.(31-39) 

 

On the other hand, there are many different experimental and/or theoretical methods to assign 

node–node links depending on the type of network we want to construct. Unfortunately, many of 

these methods are expensive in terms of time or resources. In addition, different methods that link 

nodes in the same type of network are not totally accurate and consequently they do not always 

coincide. A possible solution to this problem is the use of node descriptors of known networks as 

inputs of predictive models.(40) The reasons for using re-evaluations of link connectivity in networks 

are the following: 

 

1. The experimental networks can have errors due to experiment conditions, calibrations, human 

errors, etc. 

2. There are networks where the connectivity is just a prediction or it is the result of text data 

mining techniques (all involve possible errors). 

3. The model that can re-evaluate the node connectivity can be used for new nodes as an 

alternative to the expensive and time-consuming experiments. In some cases, such as the interaction 

of all the possible pairs – triples of molecules, it is impossible to be carried out experimentally. 

4. Contradictory information for nodes and links for different networks. 

 

In fact, the use of predictive models in which the inputs are graph parameters is not limited to the 

study of molecules and has been extended to other complex systems.(41, 42) The first and one of the 

most studied TIs is the Wiener index, and it is possible to use Markov Chains (MC) to calculate it 

locally or globally within a graph considering all possible branches at different topological distances. 

The information is quantified in terms of Wk(j) values, which are called Markov-Wiener node 

descriptors of order k
th

 for all j
th

 states (nodes) of an MC associated with the system. This MC is 

expressed by a Markov or Stochastic matrix (Π1) and represented by a graph of the studied system. 

The elements of Π1 are the probabilities 
1
pij with which the i

th
 and j

th
 nodes connect to each other 

(there is a physical or functional tie, link, or relationship) within a graph. By using Chapman-

Kolmogorov equations it is straightforward to realize the way to calculate Wk(j) values for all nodes 

in a graph. We can use these values directly or sum some of them to obtain total or local parameters. 

Our group has introduced the software called MARCH-INSIDE (Markovian Chemicals In Silico 

Design), which has become a very useful tool for predictive studies on drugs, proteins, and more 

complex systems.(43-57) This software can calculate 1D (sequence), 2D (connectivity in the plane), 

and 3D (connectivity in the space) MC parameters, including Wk(j) values, for many molecular 

systems. MARCH-INSIDE is able to characterize small molecules (drugs, metabolites, organic 

compounds), biopolymers (gene sequence, protein sequence or 3D structure, and RNA secondary 

structure) and artificial polymers, but it can perform a limited manage of other complex networks. 

This occurs because MARCH-INSIDE can read, transform into Markov matrix, represent as graph, 

and calculate the Wiener index for molecular formats (.mol or SMILE .txt files for drugs, .pdb for 

proteins, or .ct files for RNAs), but it is unable to upload formats of Complex Networks (.mat, .net, 

.dat, .gml, etc.). 
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Consequently, we have reprogrammed the MARCH-INSIDE application, creating new software 

able to manage complex networks. The new program is called MI-NODES (MARCH-INSIDE NOde 

DEScriptors), and it is compatible with other programs like Pajek or CentiBin, since it is able to read 

.mat, .net, and .dat formats. A very interesting feature of MI-NODES is that it can process multiple 

networks and calculate both MC global TIs and/or node descriptors for all these networks. It is also 

able to export them in a single file in network-by-network and/or node vs node output formats. The 

classic TIs can include additional information such as Markov node linkage probability (pij) for any i, 

j nodes of a graph. In previous works, we have introduced other types of Markov TIs (and the 

respective node descriptors): Markov-Shannon Entropy node descriptors,(58) Markov-Randić 

indices,(59) Markov-Rücker indices,(60) Markov-Galvez indices,(61) Markov-Autocorrelation node 

descriptors,(62) and Markov-Harary numbers.(63) In these previous studies, we have used the 

indices, calculated with MI-NODES, in order to compare several types of complex networks from 

different fields such as biology, linguistics, technology, sociology, and law. 

1.4MIANN Models 

The methods used to predict structure–property relationships in complex systems (molecular or 

not) can be classified into two types: methods of type (1), used to quantify the structure of the system 

and methods of type (2), able to link the structure of the system with a property of this system (and 

others). Several methods of type (1) use Quantum Mechanics (in Molecular Sciences) and/or Graph 

theory (in Molecular and Social Sciences as well), whereas the methods of type (2) use Statistical 

and/or Machine Learning (ML) techniques.(64-68) Many computer programs implement type (1) 

and/or type (2) methods with applications in Molecular Sciences and/or a wide range of areas 

depending on the flexibility of the algorithms used. For instance, DRAGON,(69-71) TOPS-

MODE,(72-75) TOMOCOMD,(76, 77) CODESSA,(78, 79) and MOE(80) are classic programs used 

to apply type (1) methods in Molecular Sciences. CentiBin,(81) Pajek,(82) or MI-NODES implement 

type (1) methods with applications in almost all areas of sciences but at the cost of simplification of 

detailed representation of the system. On the other hand, the Linear Discriminant Analysis (LDA) 

implemented in STATISTICA(83) or the ML methods implemented in WEKA(84) are examples of 

type (2) methods with widespread applications. In this context, different researchers/journals have 

edited important monographic issues in order to discuss different computational methods. For 

instance, Bisson has edited a special issue about Computational Chemogenomics in drug design and 

discovery.(85) Speck-Planche and Cordeiro guest-edited a special issue about computer-aided, 

synthesis and assay of anticancer agents.(86) Prado-Prado and García-Mera have also guest-edited a 

special issue about computer-aided drug design and molecular docking for disorders of the central 

nervous system and other diseases.(87) González-Díaz has guest-edited two special issues about 

multitarget models and Complex Networks applied to medicinal chemistry.(88, 89) In all these 

issues, and others of the same journal, several review and research papers in this area(52, 80, 90-123) 

have been published. 

 

In particular, the bioinspired Artificial-Intelligence (AI) algorithms called Artificial Neural 

Networks (ANNs) are among the most powerful type (2) methods. As we mentioned in the previous 

section, MARCH-INSIDE (MI from now on) is a well-known type (1) method mentioned in many 

recent works published by different groups.(39, 52, 124-130) We can combine MI with different 

Machine Learning algorithms. In particular, we can combine MI with ANNs in order to seek 

predictive models. The name of this strategy is MIANN (MI and ANN models). In a recent paper, we 

have reviewed the MIANN strategy including theoretical basis, implementation in Web servers, and 

examples of applications in molecular sciences.(131) We have also developed new MIANN models 

for drug-target interactions, several physicochemical properties of surfactants, and large reaction 

networks in organic synthesis. 

 

In the present work we introduce for the first time a new type of Wiener-like indices called 

Wiener-Markov node descriptors. This algorithm of type (1) is implemented in MI-NODES. Then, 

we use for the first time the MIANN strategy to study complex biomolecular, ecological, and social 

and legal systems using the Wiener-Markov node descriptors as input. In order to illustrate the use of 

the new method we have carried out three studies. In each study, we report for the first time a new 

model useful to re-evaluate the connectivity quality of different types of networks. Although very 

different systems were studied, the same workflow was used in all the experiments (see Figure 1). 
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Figure 1. MIANN workflow example: blue/red nodes are training/validation cases 

(dark/light in gray scale). 

The idea is to search for a MIANN model that uses the Wk(j) values calculated for the nodes of a 

complex network as inputs of ANNs to decide which nodes are correctly linked. This class of model 

will allow us to computationally re-evaluate all the links of nodes in any complex network so that we 

do not have to rely upon experimentation to confirm the existence or not of a link between all pairs of 

links. By using this model, we should experimentally confirm only those connections predicted by 

the model with low link score and/or simply remove them from the network depending on the 

cost/benefit ratio. This work is proposing three studies: each study is proposing a prediction model 

based on several networks of the same network type. In the first study, we processed the full set of 

metabolic reactions of different organisms (bacteria, yeast, nematode, and plants). The node 

descriptors from 40 networks represented the model data set. In the second study, we used different 

biological and ecological networks, including predator–prey, parasite-host, plant-seed disperser, 



anemone-clown fish species, and others. In the last study, we illustrate the application of the method 

to a complex network that takes into account all the historical record (1940–2004) of the Spanish 

Financial Law system (legal and social network). With the advent of the age of complex system 

sciences, this work can be considered as a basis for a relatively little studied but very important field: 

the assessment of the connectivity quality in new complex networks. 

2 Materials and Methods 

2.1Markov-Wiener Node Descriptors 

The classic Markov matrix (
1
Π) for each network is constructed as follows: first, we download 

from the Internet the connectivity matrix L or the data about the links between the nodes to assemble 

L (n × n matrix, where n is the number of vertices). Next, the Markov matrix Π is built. It contains 

the vertices probability (pij) based on L. The probability matrix is raised to the power k, resulting 

(
1
Π)

k
. The resulting matrices 

k
Π are the k

th
 natural powers of 

1
Π and contain the transition 

probabilities 
k
pij. These are the probabilities to reach the j

th
 node moving from the i

th
 node throughout 

a walk of length k (for each k). The generalization of the classic W to general Markov-Wiener indices 

of order k
th

 is straightforward to carry out by multiplying the values of dij (distances obtained from 

the distance matrix D) by these probabilities 
k
pij. Therefore, we can obtain k values of the new 

Markov-Wiener indices Wk(G) for a graph G, instead of only one Wiener index value obtained with 

the classic formulation. In addition, we can run the sum only over all the j
th

 nodes linked to one 

specific node i (the number of these nodes is symbolized here as j →i and it is equal to δi, the degree 

of i). In this simple case we can obtain a total of k values of new Markov-Wiener node descriptors, 

Wk(i), for the node i
th

: 
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2.2Data sets Used 

2.2.1Metabolic Reaction Networks (MRNs) 

 

The data were downloaded directly from Barabasi’s group Web site 

(http://www.nd.edu/∼networks/resources.htm) as gzipped ASCII files. In these files each number 

represents a substrate in the metabolic network. Data-format is as follows: From → To (directed 

link). The information studied was previously obtained by Jeong et al. from the ‘intermediate 

metabolism and bioenergetics’ portions of the WIT database and used in order to try to understand 

the large-scale organization of metabolic networks.(132) According to the authors, the biochemical 

reactions described within the WIT database are composed of substrates and enzymes connected by 

directed links. For each reaction, educts and products were considered as nodes connected to the 

temporary educt–educt complexes and associated enzymes. Bidirectional reactions were considered 

separately. For a given organism with N substrates, E enzymes, and R intermediate complexes the 

full stoichiometric interactions were compiled into an (N+E+R) X (N+E+R) matrix, generated 

separately for each of the different organisms. Table 1 shows a summary of the properties of the 

MRNs studied. The names, abbreviations, and links for all the networks studied are as follows: 

Aquifex aeolicus = Aae; Actinobacillus actinomycetemcomitans = Aac; Archaeoglobus fulgidus = 

Afu; Aeropyrum pernix = Ape; Arabidopsis thaliana = Ath; Borrelia burgdorferi = Bbu; Bacillus 

subtilis = Bsu; Clostridium acetobutylicum = Cac; Caenorhabditis elegans = Cel; Campylobacter 

http://www.nd.edu/%E2%88%BCnetworks/resources.htm
javascript:void(0);
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jejuni = Cje; Chlorobium tepidum = Cte; Chlamydia pneumoniae = Cpn; Chlamydia trachomatis = 

Ctr; Synechocystis sp. = Csp; Deinococcus radiodurans = Dra; Escherichia coli = Eco; Enterococcus 

faecalis = Efa; Emericella nidulans = Eni; Haemophilus influenza = Hin; Helicobacter pylori = 

Hpy; Mycobacterium bovis = Mbo; Mycoplasma genitalium = Mge; Methanococcus jannaschii = 

Mja; Mycobacterium leprae = Mle; Mycoplasma pneumonia = Mpn; Mycobacterium tuberculosis = 

Mtu; Neisseria gonorrheae = Ngo; Neisseria meningitidis = Nme; Oryza sativa = Osa; 

Pseudomonas aeruginosa = Pae; Pyrococcus furiosus = Pfu; Porphyromonas gingivalis = Pgi; 

Pyrococcus horikoshii = Pho; Streptococcus pneumonia = Spn; Rhodobacter capsulatus = Rca; 

Rickettsia prowazekii = Rpr; Saccharomyces cerevisiae = Sce; Streptococcus pyogenes = Spy; 

Methanobacterium thermoautotrophicum = Mth; Thermotoga marítima = Tma; Treponema pallidum 

= Tpa; Salmonella typhi = Sty; Yersinia pestis = Ype. 

  



Table 1. Average Values Wk(i)org.avg of Metabolic Networks of 43 Organisms vs Classic Parametersa 

organism N Lin Lout R E gin gout D W1 W2 W3 W4 W5 

              

Aae 419 1278 1249 401 285 2.1 2.2 3.3 0.87 1.08 1.26 1.44 1.57 

Aac 395 1202 1166 380 271 2.1 2.2 3.2 0.88 1.07 1.24 1.43 1.56 

Afu 496 1527 1484 486 299 2.2 2.2 3.5 0.85 1.09 1.29 1.48 1.61 

Ape 204 588 575 178 135 2.2 2.2 3.2 0.95 1.11 1.25 1.46 1.6 

Ath 302 804 789 250 185 2.1 2.3 3.5 0.89 1.12 1.3 1.48 1.62 

Bbu 187 442 438 140 106 2.3 2.4 3 0.8 0.99 1.18 1.37 1.49 

Bsu 785 2794 2741 916 516 2.2 2.1 3.3 0.8 1.09 1.3 1.52 1.65 

Cac 494 1624 1578 511 344 2.1 2.2 3.3 0.83 1.08 1.28 1.46 1.59 

Cel 462 1446 1418 450 295 2.1 2.2 3.3 0.9 1.12 1.32 1.51 1.65 

Cje 380 1142 1115 359 254 2.1 2.3 3.2 0.88 1.09 1.27 1.45 1.58 

Cte 389 1097 1062 333 231 2.1 2.2 3.3 0.88 1.1 1.3 1.51 1.63 

Cpn 194 401 391 134 84 2.2 2.3 3.4 0.99 1.14 1.27 1.47 1.62 

Ctr 215 479 462 158 94 2.2 2.4 3.5 0.9 1.06 1.22 1.38 1.5 

Csp 546 1782 1746 570 370 2 2.2 3.3 0.88 1.13 1.33 1.56 1.68 

Dra 815 2870 2811 965 557 2.2 2.1 3.3 0.89 1.12 1.31 1.52 1.65 

Eco 778 2904 2859 968 570 2.2 2.1 3.2 0.79 1.03 1.24 1.44 1.57 

Efa 386 1244 1218 382 281 2.1 2.2 3.1 0.81 1.04 1.24 1.42 1.55 

Eni 383 1095 1081 339 254 2.1 2.2 3.3 0.89 1.11 1.31 1.5 1.65 

Hin 526 1773 1746 597 361 2.1 2.3 3.2 0.77 1.05 1.26 1.48 1.59 

Hpy 375 1181 1144 375 246 2 2.3 3.3 0.89 1.11 1.3 1.5 1.62 

Mbo 429 1247 1221 391 282 2.2 2.2 3.2 0.87 1.09 1.27 1.46 1.6 

Mge 209 535 525 196 85 2.4 2.2 3.5 0.96 1.14 1.26 1.38 1.48 

Mja 424 1317 1272 415 264 2.2 2.3 3.5 0.88 1.11 1.29 1.47 1.6 

Mle 422 1271 1244 402 282 2.2 2.2 3.2 0.83 1.06 1.25 1.44 1.58 

Mpn 178 470 466 154 88 2.3 2.2 3.2 0.91 1.11 1.29 1.46 1.59 

Mtu 587 1862 1823 589 358 2 2.2 3.3 0.88 1.12 1.32 1.55 1.67 

Ngo 406 1298 1270 413 285 2.1 2.2 3.2 0.85 1.06 1.24 1.42 1.56 

Nme 381 1212 1181 380 271 2.2 2.2 3.2 0.86 1.08 1.27 1.45 1.59 

Osa 292 763 751 238 178 2.1 2.3 3.5 0.93 1.19 1.39 1.57 1.71 

Pae 734 2453 2398 799 490 2.1 2.2 3.3 0.87 1.1 1.29 1.52 1.65 

Pfu 316 901 867 283 191 2 2.3 3.4 0.93 1.14 1.33 1.5 1.65 

Pgi 424 1192 1156 374 254 2.2 2.2 3.3 0.85 1.06 1.24 1.41 1.54 

Pho 323 914 882 288 196 2 2.2 3.4 0.92 1.12 1.31 1.49 1.63 

Spn 416 1331 1298 412 288 2.1 2.2 3.2 0.86 1.08 1.25 1.44 1.57 

Rca 670 2174 2122 711 427 2.1 2.2 3.4 0.92 1.12 1.27 1.5 1.63 

Rpr 214 510 504 155 100 2.3 2.3 3.4 0.91 1.11 1.27 1.44 1.57 

Sce 561 1934 1889 596 402 2 2.2 3.3 0.88 1.11 1.31 1.54 1.68 

Spy 403 1300 1277 404 280 2.1 2.2 3.1 0.89 1.08 1.24 1.44 1.57 

Mth 430 1374 1331 428 280 2.2 2.2 3.4 0.89 1.13 1.33 1.52 1.65 

Tma 338 1004 976 302 223 2.1 2.2 3.2 0.88 1.09 1.28 1.47 1.6 

Tpa 207 562 555 175 124 2.2 2.3 3.1 0.86 1.03 1.21 1.42 1.55 

Sty 819 3008 2951 1007 577 2.2 2.2 3.2 0.82 1.06 1.26 1.46 1.59 

Ype 568 1754 1715 580 386 2.1 2.2 3.3 0.86 1.08 1.26 1.45 1.59 

              

 
a Note: N = number of substrate, L = number of links, R = number of individual reactions or temporary substrate-enzyme 

complexes, E = number of enzymes, gin and gout = the exponents, D = diameter of the metabolic network. 
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2.2.2Interaction Web Database Biological Networks (IWDBNs) 

 

The IWDB (http://www.nceas.ucsb.edu/interactionweb/resources.html) contains data sets on 

species interactions from several communities in different parts of the world. In a recent review, we 

have discussed and listed many biological networks including those contained in the IWDB.(63) Data 

include many types of ecological interactions: plant-pollinator, plant-frugivore, plant-herbivore, 

plant-ant mutualism, and predator–prey interactions. Most webs are ″bipartite networks″, which 

consist of two groups that are assumed to interact with species in the other group but not with species 

within their own group (e.g., plants and insect herbivores). Almost all data sets or webs (ecological 

network) are presented with an ″interaction matrix″ format (type 1 matrices), in which columns 

represent one group (e.g., plants) and rows represent the other group (e.g., pollinators). The 

exceptions to this format are predator–prey (food) webs, which are ″one-mode″ webs, represented by 

a symmetric matrix with all species listed in both columns and rows (type 2 matrices). In a previous 

work, we downloaded and transformed all matrices into .net format, which list all pairs (arcs or 

edges) of species (nodes) into a text file.(133) Later, we uploaded all .net files of all ecological 

networks to calculate numerical parameters using the MI-NODES software. This tool processes all 

the .net files as matrices (see the next sections). Table 2 shows a summary of all the available data 

sets with reference to their sources. 

Table 2. Summary of Almost All Data Sets Included in the IWDB 

data seta habitat type location data typeb #OAc #OBc 

 

Anemone – Fish Networks 

1 coral reefs Indo-Pacific binary 10 26 

Host – Parasite Networks 

2 freshwater lake Canada pii 7 29 

3 freshwater lake Canada pii 10 40 

4 freshwater lake Canada prevalence 31 144 

5 river Canada pii 14 51 

6 river Canada pii 17 53 

7 freshwater lake Canada prevalence 33 97 

8 freshwater reservoir Canada pii 6 25 

45 salt marsh USA binary     

Plant – Ant Networks 

9 rainforest Australia no. visits 51 41 

10 rainforest Peru no. visits 8 18 

11 tropical forest Costa Rica no. visits 6 4 

12 Amazon rainforest Brazil no. visits 16 25 

Planta – Herbivore Networks 

13 arid grasslands USA binary 54 24 

52 22 

14 whole country Finland binary 5 64 

Britain 6 88 

Plant – Pollinator Networks 

15 Andean scrub Chile binary 87 98 

43 62 

41 28 

16 boreal forest Canada I. caught 12 102 

17 caatingab Brazil no. visits 13 13 

18 montane forest and grassland USA binary 96 276 

19 high-altitude desert Canary Islands binary 11 38 

20 Alpine subarctic community Sweden no. visits 23 118 

21 Arctic community Canada binary 29 86 

22 heathland habitat heavily invaded by introduced plants Mauritius Island rates 135 74 

heathland habitat with plants removed 100 64 

http://www.nceas.ucsb.edu/interactionweb/resources.html
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Table 2. Summary of Almost All Data Sets Included in the IWDB 

data seta habitat type location data typeb #OAc #OBc 

23 beech forest Japan I. caught 93 679 

24 high Arctic Canada no. visits 32 115 

25 montane forest Australia I. caught 42 91 

26 multiple communities Galapagos Islands binary 106 54 

27 xeric scrub Argentina binary 21 45 

  woody riverine vegetation and xeric scrub     23 72 

28 meadow United Kingdom F. of visits 25 79 

29 Arctic community Canada I. caught 11 18 

30 deciduous forest USA no. visits 13 44 

31 coastal forest Mauritius Island no. visits 14 13 

rocky cliff and open herb community Azores Islands 10 12 

32 upland grassland South Africa I. caught 9 56 

33 palm swamp community Venezuela binary 33 53 

34 agricultural area USA binary 456 1429 

35 caatinga Brazil binary 51 25 

36 maple-oak woodland USA no. visits 7 32 

37 peat bog Canada I. caught 13 34 

38 evergreen montane forest Argentina no. visits 10 29 

9 33 

9 27 

10 29 

8 35 

8 26 

7 24 

8 27 

Plant – Seed Disperser Networks 

39 forest Papua New Guinea no. visits 31 9 

40 semideciduous tropical forest Panama F. removed 13 11 

41 primary montane tropical rainforest Kenya no. visits 19 71 

secondary montante tropical rainforest 14 57 

canopy 15 71 

midstory 8 34 

understory 10 33 

42 neotropical forest Trinidad no. visits 65 14 

43 - - no. visits 22 20 

44 temperate woodland United Kingdom no. visits 12 14 

Predator – Prey Food Webs 

45 salt marsh USA binary 128 

46 pine forest New Zealand binary 85 

pasture grassland 87 

  95 

  109 

tussock grassland 107 

broadleaf forest 78 

78 

pine forest USA 78 

  105 

  71 

  58 

     

 
a Data set name: 1 = Ollerton et al. (2007); 2 = Aishihik Lake; 3 = Cold Lake; 4 = Lake of the Woods; 5 = McGregor River; 6 

= Parsnip River; 7 = Lake Huron; 8 = Smallwood Reservoir; 9 = Blüthgen et al. (2004); 10 = Davidson et al. (1989); 11 = 

Davidson and Fisher (1991); 12 = Fonseca and Ganade (1996); 13 = Joern (1979); 14 = Leather (1991); 15 = Arroyo et al. 
(1982); 16 = Barrett and Helenurm (1987); 17 = Bezerra et al. (2009); 18 = Clements and Long (1923); 19 = Dupont et al. 
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(2003); 20 = Elberling and Olesen (1999); 21 = Hocking (1968); 22 = Kaiser-Bunbury et al. (2009); 23 = Kato et al. (1990); 24 
= Kevan (1970); 25 = Inouye and Pyke (1988); 26 = McMullen (1993); 27 = Medan et al. (2002); 28 = Memmott (1999); 29 = 

Mosquin and Martin (1967); 30 = Motten (1982); 31 = Olesen et al. (2002); 32 = Ollerton et al. (2003); 33 = Ramírez and Brito 

(1992); 34 = Robertson (1929); 35 = Santos et al. (2010); 36 = Schemske et al. (1978); 37 = Small (1976); 38 = Vázquez and 
Simberloff (2002); 39 = Beehler (1983); 40 = Poulin et al. (1999); 41 = Schleuning et al. (2010); 42 = Snow and Snow (1971); 

43 = Snow and Snow (1988); 44 = Sorensen (1981); 45 = Lafferty et al. (2006); 46 = Thompson and Townsend (multiple 

sources). 
b Data type: pii = prevalence and intensity of infection; I. Caught = individuals caught; F. of visits = frequency of visits; F. 

removed = fruits removed. 
c Number of organisms (species) with first function (#OA = number of anemone, plant, or predator species) or second function 
(#OB = number of fish, parasite, herbivore, pollinator, prey, or seed disperser species). 

2.2.3Spanish Financial Law Network (SFLN) 

 

The studied network is built establishing connections between two laws or legal regulations 

(nodes) if the time-lag is less than 1 for the same type of laws. Consequently, law-law links represent 

the corecurrence of different regulations in the Spanish Financial System over time, which depend in 

turn on social and economical conditions. The Spanish financial law recurrence network associated 

with the matrix L with elements Lij was reported in previous works.(134) 

2.3MI-NODES Software for the Calculation of Markov-Wiener Node Descriptors 

MI-NODES (MARCH-INSIDE NOde DEScriptors) is a GUI Python/wxPython application used 

for the calculation of node descriptors/topological indices of nodes, subnetworks, or full networks. 

Actually, it should be considered as the generalization of the MARCH-INSIDE software adapted to 

manage any kind of complex networks (this program was originally designed to study drugs, 

proteins, and nucleic acid structures). MI-NODES calculates new types of node descriptors 
k
Cc(j) 

based on Markov normalized node probabilities without a prior removal of each node to perform 

calculations. It also calculates Markov generalizations of different topological indices 
k
TIc(G) of class 

c and power k for the graph G. The tool is both Pajek and CentiBin compatible, since it is able to read 

networks in the following formats: .net, .dat, and .mat. 

2.4MIANN Models 

Let Sj be the output variable of a model used to score the quality of the connectivity pattern Lij 

between the node i
th

 and all the remnant (n −1) nodes in the network. In this sense, Sj is a real valued 

variable that scores the quality of the connectivity pattern or links (all direct and indirect connections) 

established between the node j
th

 and the other nodes. The higher is the value of Sj the closer to the 

correct pattern are the links set for j
th

 in the network as a whole, according to the model. On the other 

hand, Lj is the input dependent variable. Lj = 1 when a node is correctly linked to the rest of the nodes 

in the network, and Lj = 0 when a node has a random connectivity model. We can use ANNs to 

search for a nonlinear and/or linear equation with coefficients ak, 
g
bk, and c0. In the particular case of 

a linear equation, obtained by means of a Linear Neural Network (LNN),(135) the general formula 

can be written as 

 

 

𝑆𝑗 = ∑ 𝑎𝑘 ∙ 𝑊𝑘(𝑗) + ∑ ∑ 𝑏𝑔𝑘 ∙ [𝑊𝑘(𝑗) − 𝑊𝑘(𝑗)𝑔.𝑎𝑣𝑔] + 𝑐0

5

𝑘=0

𝑔=𝑁𝑔

𝑔=0

5

𝑘=0

 

 

  

= ∑ 𝑎𝑘 ∙ 𝑊𝑘(𝑗) + ∑ ∑ 𝑏𝑔𝑘 ∙ ∆𝑊𝑘(𝑗)𝑔 + 𝑐0

5

𝑘=0

𝑔=𝑁𝑔

𝑔=0

5

𝑘=0

 

(5) 

 

 

In this equation we can see the coefficients (ak) of the Wiener-Markov node descriptors used as 

input Wk(j) and/or the coefficients (
g
bk) of different deviation terms constructed with these variables. 

The deviation terms have the general form ΔWk(j)g = [Wk(j) – Wk(j)g.avg], where Wk(j)g.avg is the 

average value (avg) of Wk(j) for a subset or group (g) of nodes of the same graph G (g ∈ G) that obey 
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a given condition. This type of deviation terms resembles the moving average terms used in time 

series models like in Box–Jenkins’ ARIMA models.(136) However, in the present work g may be not 

only a time frame or season (laws approved in the same year) but also a biological boundary 

(metabolic reactions in the same organism) or spatial condition (interactions in the same eco-system); 

see the Results section. 

 

The linear equation of the MIANN model obtained by means of LNN for MRNs is 

 

𝑆𝑗 = ∑ 𝑎𝑘 ∙ 𝑊𝑘(𝑗) + ∑ 𝑏𝑔𝑘 ∙ [𝑊𝑘(𝑗)𝑂𝑟𝑔.𝑎𝑣𝑔] + 𝑐0

5

𝑘=0

5

𝑘=0

 
 

  

= ∑ 𝑎𝑘 ∙ 𝑊𝑘(𝑗) + ∑ ∑ 𝑏𝑔𝑘 ∙ ∆𝑊𝑘(𝑗)𝑂𝑟𝑔 + 𝑐0

5

𝑘=0

𝑔=𝑁𝑔

𝑔=0

5

𝐾=0

 

(6) 

 

 

The LNN model for the particular case of IWDBNs has the following formula: 

 

 

𝑆𝑗 = ∑ 𝑎𝑘 ∙ 𝑊𝑘(𝑗) + ∑ 𝑏𝑔𝑘 ∙ [[𝑊𝑘(𝑗)] − 𝑊𝑘(𝑗)𝑊𝑒𝑏.𝑎𝑣𝑔] + 𝑐0

5

𝑘=0

5

𝐾=0

 
 

  

= ∑ 𝑎𝑘 ∙ 𝑊𝑘(𝑗) + ∑ 𝑏𝑔𝑘 ∙ ∆𝑊𝑘(𝑗)𝑊𝑒𝑏 + 𝑐0

5

𝑘=0

5

𝑘=0

 
(7) 

 

 

Finally, the LNN model for the particular case of SFLN has the following formula: 

 

 

 

 

where Wk(j), Wk(j)Year.avg, and Wk(j)Law.avg are the Wiener-Markov node descriptor parameters of a 

given j-th Law and the average of these parameters for the given year (Year.avg) or for the same type 

of Financial Law (Law.avg). These parameters quantify information about the Legal regulations 

(Laws) of a given type introduced in the Spanish legal system at a given year with respect to the 

previous or successive k
th

 laws approved. 

 

In all cases, we used different statistical parameters to evaluate the statistical significance and 

validate the goodness-of-fit of ANN models: n = number of cases, Specificity, and Sensitivity of both 

training and external validation series.(137) 

  

𝑆𝑗 = ∑ 𝑎𝑘 ∙ 𝑊𝑘(𝑗) + ∑  1𝑏𝑘 ∙ [𝑊𝑘(𝑗) − 𝑊𝑘(𝑗)𝑌𝑒𝑎𝑟.𝑎𝑣𝑔]

5

𝐾=0

5

𝐾=𝑜

 

 

  

+ ∑  2𝑏𝑘 ∙ [𝑊𝑘(𝑗) − 𝑊𝑘(𝑗)𝐿𝑎𝑤.𝑎𝑣𝑔] + 𝑐0

5

𝑘=0

 

 

  

= ∑ 𝑎𝑘 ∙ 𝑊𝑘(𝑗) + ∑  1𝑏𝑔𝑘 ∙ ∆𝑊𝑘(𝑗)𝑌𝑒𝑎𝑟

5 

𝐾=0

5

𝑘=0

 

 

  

+ ∑  2𝑏𝑔𝑘 ∙ ∆𝑊𝑘(𝑗)𝐿𝑎𝑤 + 𝑐0

5

𝑘=0

 

(8) 
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3 Results and Discussion 

3.1MIANN-Wiener Models of MRNs 

The study of metabolic networks is very important in biology because many applications are 

directly built on the use of cellular metabolism.(138, 139) Biotechnologists modify the cells and use 

them as cellular factories to produce antibiotics, industrial enzymes, antibodies, etc. In biomedicine, 

it is possible to cure metabolic diseases through a better understanding of the metabolic mechanisms 

and to control infections by making use of the metabolic differences between human beings and 

pathogens.(140) For example, the network topology-based approach has been used to uncover shared 

mechanisms in the study of disease comorbidity.(141) We carried out a Principal Component 

Analysis (PCA) of this data set (see Figure 2). We were able to explain 80% of all variance with only 

two principal components (pc). The first pc1, with an eigenvalue = 6.25, explains 48.1% of the 

variance, and the second component pc2, with an eigenvalue = 4.11, explains 31.6% of the variance. 

A third component pc3 was able to explain only 8.7% of the variance; consequently we discarded it. 

The results of this PCA are important to show that the new Wk(j) indices codify useful structural 

information that is not trivially correlated with the information codified by other parameters. The 

PCA demonstrates that, in the case MRNs, the new Markov-Wiener indices codify different 

information compared with the classic ones. 

 
 

 
Figure 2. PCA of Wk(j) values vs some classic parameters of MRNs of 43 organisms. 

Jeong et al.(132) showed that, despite significant variation in their individual constituents and 

pathways, metabolic networks have the same topological scaling properties and show striking 

similarities to the inherent organization of complex nonbiological systems. In any case, many 

pathways are not totally confirmed experimentally but have been computationally deduced using 

protein or gene alignment techniques. The idea follows more or less the following scheme: similar 

proteome → similar enzymes → similar metabolome. On the other hand, the experimental 

determination of the full metabolome including each metabolite and metabolite biotransformation 

pathways is not always an easy task. All these aspects determine the necessity of alignment-free 

techniques to assess network connectivity quality in existing models of metabolic pathway networks. 

Here we developed different MIANN models based on Wk values to predict correct connectivity 

patterns of nodes in MRNs of 43 organisms belonging to different domains of the tree of life. 
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As seen in Table 3, the best MIANN model found presents very good values of Accuracy, 

Sensitivity, and Specificity for the recognition of links both in training and external validation series 

(see details in the Supporting Information SM1). The models were obtained using as input 15 

descriptors: 5 Markov-Wiener node descriptors Wk(j), 5 averages Wk(j)g.avg, and 5 deviations – 

ΔWk(j)g. The results obtained using the computer program STATISTICA show that the Multilayer 

Perceptron (MLP)(142) method fails to generate good prediction models, since it presents values of 

Specificity and Sensivity close to 50%. On the other hand, the LNN based on 15 descriptors (LNN 

15:15–1:1) is able to classify correctly 78.1% of the cases, with a sensitivity of 77.9% and a 

specificity of 77.6%. The LNN is equivalent to a LDA equation, the simplest type of classification 

model. 

Table 3. MIANN Models of Metabolic Reaction Networks (MRNs)a 

 

 
 

 
a Pr. = Parameter, Sp = Specificity, Sn = Sensitivity. Columns: Observed classifications; 

Rows: Predicted classifications; MLP = Multilayer Perceptron; LNN = Linear Neural 

Network. 

3.2MIANN-Wiener Models of IWDBNs 

We tested different MIANN models with linear (LNN) and nonlinear (ANN) forms. The results 

are presented in Table 4, and the details can be found in the Supporting Information SM2. In the case 

of the IWDBNs, the best classification model is obtained with the MLP classifier based on 13 input 

descriptors and 13 neurons in the hidden layer (MLP 13:13–13–1:1). This model can classify 91.1% 

of the nodes with a sensitivity of 90.5% and specificity of 88.8%. Unlike the case of the MRNs, the 

LNN is not able to classify the IWDBN’s nodes with accuracy (<67%). Thus, it can be observed that, 

compared with the MRNs, the IWDBNs contain more complex information for the classification of 

the connectivity between nodes. The IWDBNs need complex classifiers such as MLPs in comparison 

with the MRNs that can be processed using the simpler LNNs. 
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Table 4. MIANN Models of the IWDB Complex Networksa 
 

 
a Pr. = Parameter, Sp = Specificity, Sn = Sensitivity. Columns: Observed classifications; 
Rows: Predicted classifications; MLP = Multilayer Perceptron; LNN = Linear Neural 

Network 

3.3MIANN-Wiener Models of SFLN 

The use of network analysis methods in social sciences began in 1930 and today are widely 

used.(143) However, the application of these methods in legal studies is still at the beginning.(144-

146) The network tools can illustrate the interrelation between different laws and help to understand 

their consequences on the society. We have used the list of the financial laws to construct the studied 

network. The best models found are presented in Table 5. We tested different MIANN models with 

linear (LNN) and nonlinear (ANN) forms. These MIANN models behave like time series embedded 

within a complex network. This is due to the fact it predicts the recurrence of the Spanish law system 

to a financial regulation of class c when the social and economical conditions change at time ti+1 

when a known class of regulation has been used in the past at time ti. The best model correctly 

reconstructed the network of the historical record for the Spanish financial system with high 

Accuracy, Specificity, and Sensitivity (see Table 5). Detailed results for each case (including codes, 

classification, probability, and node descriptors values) are given in the Supporting Information SM3. 

In the case of the SFLN, there is no clear difference of Accuracy, Specificity, and Sensitivity between 

the two models studied (LNN and MLP). In this situation we can apply the Occam’s razor and choose 

the LNN model, which is the simplest. However, to be more certain of this choice, we decided to 

carry out a ROC curve analysis. The AUROC values (Area Under Receiver Operating Characteristic) 

and the ROC curves for three different MIANN models (MLP, LNN, and RBF-or Radial Basis 

Function-) are presented in Figure 3. We show separately the values for training and validation series. 

The values obtained confirm that the LNN model based on 14 descriptors is the best found in this 

case, with a correct classification of 86.2%, sensitivity of 87.4%, and specificity of 87.9%. The best 

RBF classifier, which is based on only one descriptor, is not able to classify the SFLN’s nodes. 
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Figure 3. ROC curve analysis of the SFLN. 

Table 5. MIANN Time Series Model of Spanish Financial Law Network (SFLN)a 
 

 
 

a Pr. = Parameter, Sp = Specificity, Sn = Sensitivity. Columns: Observed classifications; 
Rows: Predicted classifications; MLP = Multilayer Perceptron; LNN = Linear Neural 

Network. 

4 Conclusions 

This work introduces a new type of node descriptors, the Markov-Wiener node descriptors of 

order k
th
 (Wk), higher-order analogues of the classic Wiener index, a graph invariant widely used in 

chemoinformatics. The new node descriptors are used to search for classification models able to 

discriminate the correct node connectivity patterns from the incorrect random patterns. The classifiers 

are obtained by using Artificial Intelligence algorithms called Artificial Neural Networks (ANNs). 

This mixture of Markov node descriptors and ANNs is presented as the MIANN method. The 

classifiers, based on LNN and MLP, showed good values of Sensitivity/Specificity (%) for the 

studied networks: MRNs (78/78), IWDBNs (90/88), and SFLN (86/84). 

 

The use of the new Markov-Wiener node descriptors demonstrates that it is possible to carry out a 

theoretical re-evaluation of the connectivity in known complex networks (collation) as a fast 

alternative to the high-cost experimental re-evaluation of all the links of the studied network. 
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