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Abstract

End-point free energy calculations using MM-GBSA and MM-PBSA provide a detailed

understanding of molecular recognition in protein-ligand interactions. The binding free energy can

be used to rank-order protein-ligand structures in virtual screening for compound or target

identification. Here, we carry out free energy calculations for a diverse set of 11 proteins bound to

14 small molecules using extensive explicit-solvent MD simulations. The structure of these

complexes was previously solved by crystallography and their binding studied with isothermal

titration calorimetry (ITC) data enabling direct comparison to the MM-GBSA and MM-PBSA

calculations. Four MM-GBSA and three MM-PBSA calculations reproduced the ITC free energy

within 1 kcal•mol−1 highlighting the challenges in reproducing the absolute free energy from end-

point free energy calculations. MM-GBSA exhibited better rank-ordering with a Spearman ρ of

0.68 compared to 0.40 for MM-PBSA with dielectric constant (ε = 1). An increase in ε resulted in

significantly better rank-ordering for MM-PBSA (ρ = 0.91 for ε = 10). But larger ε significantly

reduced the contributions of electrostatics, suggesting that the improvement is due to the non-polar

and entropy components, rather than a better representation of the electrostatics. SVRKB scoring

function applied to MD snapshots resulted in excellent rank-ordering (ρ = 0.81). Calculations of

the configurational entropy using normal mode analysis led to free energies that correlated

significantly better to the ITC free energy than the MD-based quasi-harmonic approach, but the

computed entropies showed no correlation with the ITC entropy. When the adaptation energy is

taken into consideration by running separate simulations for complex, apo and ligand (MM-
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PBSAADAPT), there is less agreement with the ITC data for the individual free energies, but

remarkably good rank-ordering is observed (ρ = 0.89). Interestingly, filtering MD snapshots by

pre-scoring protein-ligand complexes with a machine learning-based approach (SVMSP) resulted

in a significant improvement in the MM-PBSA results (ε = 1) from ρ = 0.40 to ρ = 0.81. Finally,

the non-polar components of MM-GBSA and MM-PBSA, but not the electrostatic components,

showed strong correlation to the ITC free energy; the computed entropies did not correlate with

the ITC entropy.

INTRODUCTION

Molecular Dynamics (MD) simulation-based free energy calculations have been used

extensively to predict the strength of protein-ligand interactions. Accurate rank-ordering of

small molecules bound to protein structures can benefit every step of drug discovery from

hit identification to lead optimization. When applied to a compound docked to the human

proteome, free energy calculations can be used for target discovery.1 Several rigorous

methods such as free energy perturbation and thermodynamic integration have been

developed for accurate free energy calculations.2-8 But these methods cannot easily be used

for virtual screening of large chemical or combinatorial libraries that typically contain

highly diverse compounds.9 End-point methods such as molecular dynamics (MD)-based

MM-GBSA or MM-PBSA10 offer an alternative to rigorous free energy methods.

Structurally diverse molecules can be considered in the calculations. The free energy

consists of several terms that include a potential energy, a polar and non-polar solvation

energy, and an entropy.

The MM-GBSA or MM-PBSA free energy consists of several components that can be

determined independently. There exists more than one approach for each of these

components. For example, the potential energy, which typically includes electrostatic and

van der Waals energies, can be obtained using different force fields.11 The electrostatic

component of the solvation energy can be performed using either Poisson-Boltzmann12 (PB)

or Generalized-Born (GB) models.13 Two approaches are commonly used for the entropy,

namely a normal mode analysis or a quasiharmonic approximation.14, 15 Finally, the

calculations are performed on multiple snapshots collected from MD simulations.16-18 The

selection of different collections of structures is expected to affect the predicted free energy

of binding.19

Here, we apply MM-GBSA and MM-PBSA calculations to determine the free energy of

binding and rank-order a diverse set of protein-ligand complexes. The diversity in the

structures of the ligand and targets distinguishes this work from previous efforts that have

typically been limited to calculations on congeneric series of compounds on the same target

protein. In addition, the use of structures whose binding was characterized with a single

method, namely ITC, is expected to reduce the uncertainties in the comparisons between

predicted and experimental data. We select 14 protein-ligand structures obtained from the

PDBcal database (http://pdbcal.iu.edu) to provide high quality structural and thermodynamic

binding data.20 Extensive explicit-solvent MD simulations were performed and binding to

these proteins was studied using various implementations of MM-GBSA and MM-PBSA.
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We also tested our previously-developed scoring functions for their ability to rank-order

complexes by scoring MD structures. The effect of induced-fit conformational changes on

rank-ordering these complexes was studied by performing separate simulations for ligand,

protein and protein-ligand complexes. Components of the MM-GBSA and MM-PBSA free

energy are compared with the ITC free energy, enthalpy and entropy. To the best of our

knowledge, this is the first comparison of MM-GBSA and MM-PBSA calculations to ITC

data for a diverse set of proteins.

MATERIALS AND METHODS

Scoring Protein Ligand Complexes

We previously reported the Support Vector Machine Target SPecific (SVMSP) model21 for

enriching databases and Support Vector Regression Knowledge-Based (SVRKB) scoring22

for rank-ordering protein-compound complexes based on their binding affinity. Unlike

SVRKB, SVMSP is developed for each individual target protein as described previously.21

SVMSP model was developed by using protein-ligand crystal structures from the sc-PDB

database v2010 for the positive set and randomly selected compounds docked to the target

of interest as the negative set. The positive set was refined by removing crystal structures in

which the ligand contains highly charged moieties such as sulfate or phosphate groups,

resulting in a set of 4,677 structures. The negative set consisted of docking 5,000 randomly

selected compounds from the ChemDiv library to a pocket within the target of interest. The

random selection of these compounds from a large chemical library reduces the likelihood

that active compounds exist in the negative set.

To develop the SVMSP or SVRKB models, we extended on our previous work knowledge-

based descriptors by using 14 distinct protein atom types and 16 ligand atom types (Table

S1).21 This resulted in 224 atom-pairs based potentials. We used 76 pair potentials for the

vectors of SVMSP. A higher SVMSP score corresponds to a higher probability that the

compound is active.

MD Simulations

A set of 14 complexes of small molecules bound to a protein were selected from the PDBcal

database (Table 1).20 The structures of proteins were obtained from RCSB and prepared

using BIOPOLYMER in SYBYL 8.0 (Tripos International, St. Louis, Missouri, USA).

Hydrogen atoms were added. Missing gaps were modeled. Residue orientation and

protonation states were further adjusted using the REDUCE23 program to optimize the

hydrogen bonding network. The ligand structures extracted from crystal structures were

prepared and visually checked in SYBYL. The compound was assigned AM1-BCC24

charges using the antechamber program from the AMBER9 package.25 Water molecules

from crystal structures within 5 Å to any atoms on the protein or compound were retained.

To perform MD simulations, the protein-ligand complexes were immersed in a box of

TIP3P26 water molecules such that no atom on the protein or ligand was within 14 Å from

any side of the box. The solvated box was further neutralized with Na+ or Cl− counterions

using the leap program from the AMBER9 package.
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Simulations were carried out using the pmemd program in AMBER9 with ff03 force field27

in periodic boundary conditions. All bonds involving hydrogen atoms were constrained by

using the SHAKE algorithm,28 and a 2 fs time step was used in simulation. The particle

mesh Ewald (PME) method was used to treat long range electrostatics. Simulations were run

at 298 K under 1 atm in NPT ensemble employing Langevin thermostat and Berendsen

barostat. Water molecules were first energy-minimized and equilibrated by running a short

simulation with the complex fixed using Cartesian restraints. This was followed by a series

of energy minimizations in which the Cartesian restraints were gradually relaxed from 500

kcal·Å−2 to 0 kcal·Å−2, and the system was subsequently gradually heated to 298 K via a 48

ps MD run. By assigning different initial velocities, 6 independent simulations in length of 4

ns were performed for each of the crystal structure. The first 2 ns in each trajectory were

discarded. MD snapshots were saved every 1 ps yielding 4,000 structures per trajectory.

MD-Based Free Energy Calculations

MM-PBSA and MM-GBSA calculations were carried out as described previously.29-31 It

combines internal energy, solvation energy based on electrostatic and nonpolar

contributions, and the entropy. These calculations are carried out on snapshots collected

from an MD simulation. The binding free energy is expressed as:

where ΔGMM-PBSA and ΔGMM-GBSA are binding free energies calculated by MM-PBSA and

MM-GBSA method, ΔEPBTOT and ΔEGBTOT are the combined internal and solvation

energies, T is system temperature. ΔSNM or QHA is entropy determined by normal mode

calculation or quasiharmonic analysis. The internal energy is determined using the Lennard-

Jones and Coulomb potentials in the Amber force-field (ΔEGAS). The solvation energy is

determined using Poisson-Boltzmann or Generalized-Born solvation models (ΔEPBSOL or

ΔEPBSOL):

where ΔEPBSOL and ΔEGBSOL are the solvation free energies calculated with PB or GB

model, and ΔEGAS is the molecular mechanical energies. The molecular mechanical energies

are composed of three components:

where ΔEELE is the non-bonded electrostatic energy, ΔEVDW is non-bonded van der Waals

energy, and ΔEINT is the internal energies composed of bond, angle, and dihedral energies.

The solvation free energies can be calculated using PB or GB model, expressed respectively

by:
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where ΔEPBSUR and ΔEGBSUR are hydrophobic contribution to desolvation energy, ΔEPBCAL

and ΔEGB are reaction field energies.32

All the binding energies are determined by:

where EPL, EP and EL are total energies corresponding to protein-ligand complex (PL),

protein (P) and ligand (L), respectively.

The molecular mechanical gas phase energies were calculated by sander program from

AMBER9 package, including the internal energy, van der Waals and electrostatic

interactions. Dielectric constant for electrostatic interactions was set to 1.0. The polar

contributions of the solvation free energy were calculated with Poisson-Boltzmann (PB)

method using the pbsa program12 and generalized Born (GB) method implemented in

sander. The nonpolar contributions of the desolvation energy were determined with solvent-

accessible surface area (SASA) dependent terms.33 The surface area was calculated by

molsurf program.34 The surface tension used to calculate the non-polar contribution to the

free energy of solvation is 0.0072. In the PB method, reaction field energy was calculated

with dielectric constant for protein and solvent as 1.0 and 80.0 respectively. In the test of the

contribution of dielectric constant, we use various dielectric constant for the solute from 1 to

10, 15 and 20. The default value of the dielectric constant is 1. Solvent probe radius was set

to 1.6 Å, which was optimized by Tan and Luo.35 Atomic radii used were also optimized by

Tan and Luo.35 The calculation based on GB method was performed with the Onufriev's GB

model.36, 37 SASA calculation was switched to ICOSA method, surface area was computed

by recursively approximating a sphere around an atom, starting from an icosahedra. Two

different methods were applied for the calculation of entropies of the protein-ligand

complexes. Quasiharmonic approximation was analyzed using the ptraj program in

AMBER. Normal mode conformational entropies were estimated with the nmode module

from AMBER. Distance-dependent dielectric constant was set to 4. Maximum number of

cycles of minimization was set to 10,000. The convergence criterion for the energy gradient

to stop minimization was 0.0001. Parameters for the MM-PBSA and MM-GBSA free

energy calculation are summarized in Table S2.

For the MM-PBSA or MM-GBSA free energy calculations, a set of 500 structures for each

protein-ligand complex was extracted from trajectories of MD simulations at regular

intervals. For ΔGSVMSP//MMPBSA and ΔGSVMSP//MM-GBSA, all snapshots from MD

simulations were first scored by SVMSP. The top scored 500 structures were selected for

free energy. For ΔGMM-SVRKB, all snapshots were scored by SVRKB first, the mean value

of SVRKB score of all snapshots was used for calculated binding affinity (pKd) of the

complex using:
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where R is the gas constant, T is room temperature (298.15 K).

Correlation Analysis

Three correlation metrics, Pearson's correlation coefficient Rp, Spearman correlation

coefficient ρ, and Kendall tau τ, were used in model parameterization and performance

assessment. All the correlation analysis was done using packages in R (version 1.12.1). The

95% confidence interval was calculated using 5000 replicate bootstrap sampling.

Pearson product-moment correlation coefficient Rp is a measure of linear dependence

between two variables x and y, giving a value between +1 and −1 inclusive. It was given by:

where x̄ and ȳ are the mean value for xi and yi respectively. The Spearman's rank correlation

coefficient ρ assesses how well the association of two variables can be described using a

monotonic function. It was given by

where  and  denote the ranks of xi and yi, n is the total number of x-y pairs. A perfect

Spearman correlation of +1 or −1 occurs when each of the variables is a perfect monotone

function of the other. Kendall tau rank correlation coefficient τ is a measure of the

association between two measured quantities. It was given by

when the values of xi and yi are unique.

RESULTS

Calculations of Binding Free Energies and Comparison to ITC Data

Free energy calculations were carried out for a set of 14 protein-ligand interactions using

MM-GBSA and MM-PBSA (Fig. 2). The structure of these complexes was previously

solved by crystallography and characterization of the binding was done by ITC. The set

contains 11 unique proteins and 14 structurally different ligands. The ligands include a

cyclic peptide (1), peptidomimetics (2-4), small organic molecules (5-10, and 13),
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carbohydrates (10 and 11), a nucleoside (12) and a fatty acid (14) (Fig. 1). Among the small

organic molecules, four were fragment-like (6-8, and 13) with molecular weight less than

200 Da. Calculations were carried out using the MM-GBSA and MM-PBSA approach on

multiple MD structures collected from 12 ns of simulation. The computed MM-GBSA or

MM-PBSA free energies were compared to experimental binding affinity data ΔGITC (Table

1, Fig. 3A). Among the 14 complexes, the predicted ΔGMM-PBSA were excellent (less than 1

kcal•mol−1) for three of the ligands, namely for (i) 3 binding to HIV-1 protease (PDB code:

1HPX; |ΔΔG| = 0.8); (ii) 8 binding to mouse major urinary protein 1 (PDB code: 1QY1; |

ΔΔG| = 0.4); and (iii) binding of 5 to human leukocyte function-associated antigen-1 (PDB

code: 1RD4; |ΔΔG| = 0.9). The predicted binding affinities for another five ligands were

between 2 and 4 kcal•mol−1, namely for (i) 1 binding to human cyclophilin A (PDB code:

1CWA; |ΔΔG| = 2.2); (ii) 6 binding to porcine odorant-binding protein (PDB code: 1DZK; |

ΔΔG| = 2.2); (iii) 14 binding to human brain fatty acid-binding protein (PDB code: 1FDQ; |

ΔΔG| = 2.7); (iv) 4 binding to HIV-1 protease (PDB code: 1HXW; |ΔΔG| = 3.7); and (v) 11
bound to human galectin-3 (PDB code: 1KJL). The remaining predicted affinities for

compounds 2, 7, 9, 10, and 13 were larger than 4 kcal•mol−1. An overall measure of the

deviation of the MM-PBSA free energy from the ITC free energy is provided by the root-

mean-square of the calculated free energy deviation from experimental energy ΔΔGRMS,

which was 4.4 kcal•mol−1. The median ΔΔG (ΔΔGMED) for MM-PBSA is 3.5. The effect of

the dielectric constant on the MM-PBSA calculations was also investigated (Table 5).

Doubling the dielectric constant from 1 to 2 resulted in significantly worse agreement

between the MM-PBSA and ITC free energy as evidenced by a five-fold increase in

ΔΔGRMS and a 7-fold increase in (ΔΔGMED). This was also observed for calculations

performed with larger dielectric constants (Table 5).

The above calculations are repeated using a GB model for the electrostatic solvation free

energy (MM-GBSA). MM-GBSA free energies were significantly larger than MM-PBSA

free energies. In some cases, MM-GBSA energies exceeded 18 kcal•mol−1. Seven of the

MM-GBSA free energies deviated from the ITC free energies by 5 kcal•mol−1 compared

with only two for MM-PBSA. Overall the MM-GBSA free energy showed greater deviation

from the ITC free energy (ΔΔGRMS = 9.2 kcal•mol−1) compared with MM-PBSA (ΔΔGRMS

= 4.4 kcal•mol−1). The median ΔΔG for MM-GBSA is 5.2 kcal•mol−1. Despite the large

absolute values, MM-GBSA reproduced the free energy of binding remarkably well in four

cases with ΔΔG less than 1 kcal•mol−1: (i) 7 binding to the mouse major urinary protein 1

(PDB code: 1QY1; |ΔΔG| = 0.6); (ii) 10 binding to hen lysozyme C (PDB code: 1LZB; |

ΔΔG| = 0.7); (iii) 13 binding to the bovine pancreatic trypsin (PDB code: 1S0R; |ΔΔG| =

0.3); and finally (iv) 14 bound to human brain fatty acid binding protein (PDB code: 1FDQ;

|ΔΔG| = 0.3).

Typically, MM-GBSA calculations are carried out by running a single simulation for the

complex. Implicit in this approach is that the ligand will only select conformations of the

apo protein that are similar to those that are sampled by the protein in the protein-ligand

complex. However, there are numerous examples of ligand binding that leads to

conformational change of the protein. The free energy of this conformational change, also

known as adaptation energy, contributes to the overall free energy of binding.38 We
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investigate the role of this adaptation energy for 6 of the 14 complexes (Table 2 and Fig. 3B)

for which the crystal structure of the apo was solved independently from the complex

structure. Starting with the structure of complex, apo and ligand, three separate MD

simulations were carried out. The root-mean-square deviation (RMSD) of the free protein

and ligand were determined with respect to the crystal structure of the protein and ligand in

the complex crystal structure (Supporting Information Fig. S1). The protein and ligand

sampled different structures in the free-state compared to the bound state.

The snapshots from the three separate simulations of complex, apo and ligand are used to

carry out MM-PBSA free energy calculations (ΔGPB-ADAPT) (Table 2). These are compared

with the standard MM-PBSA free energies (ΔGMM-PBSA) (Table 2, Fig. 3B). Overall, the

root-mean-square deviation of ΔGPB-ADAPT from the ITC free energies is ΔΔGRMS = 12.4

kcal•mol−1 with a median ΔΔG of 7.6 kcal•mol−1 (Table 3). Hence, ΔGPB-ADAPT resulted in

overall greater deviation from the experimental free energy than both MM-GBSA

(ΔGMM-GBSA) and MM-PBSA (ΔGMM-PBSA). Only one out of the 6 complexes, namely 5 in

complex with human leukocyte function-associated antigen-1 (PDB code: 1RD4; |ΔΔG| =

2.6), showed reasonable agreement with experiment (<3 kcal•mol−1). The remaining five

exhibited binding free energies that were substantially different from the ITC data.

A question of interest is whether scoring functions can generate reliable binding affinities

when carried out on multiple structures sampled from MD simulations instead of crystal

structures. To address this question, we applied our recently-developed scoring function,

SVRKB,22 to snapshots from MD simulations. The empirical scoring function is trained on

three-dimensional protein-ligand crystal structures and experimentally-measured binding

affinity data. SVRKB is used to score MD snapshots of the 14 complexes considered for

MM-GBSA and MM-PBSA calculations (Table 1 and 2). We refer to this approach as MM-

SVRKB to emphasize the use of multiple MD structures in the scoring. MM-SVRKB

(ΔΔGRMS= 2.1 kcal•mol−1) showed better agreement with the experimental free energies

than MM-PBSA (ΔΔGRMS = 4.4 kcal•mol−1). In fact, |ΔΔGMM-SVRKB| was less than 2

kcal•mol−1 for 10 of the targets, compared with three for the MM-PBSA calculations. None

of the predicted MM-SVRKB binding affinities were greater than 5 kcal·mol−1 than the

experimentally-measured affinity.

Finally, we compared calculations performed using harmonic versus quasiharmonic

approaches for the entropy of binding. Two approaches were considered, namely normal

mode analysis, or the use of a quasiharmonic approach where the entropies are determined

by a covariance analysis of the fluctuations obtained from the MD simulations. The MM-

PBSA free energies obtained with the normal mode analysis resulted in a ΔΔGRMS= 4.4

kcal•mol−1 when compared with the ITC free energy, and a median of 3.5 kcal•mol−1 for

ΔΔG (Fig. 3C). On the other hand, the MM-PBSA free energies for the quasiharmonic

approach led to a ΔΔGRMS of 10.1 kcal•mol−1 and a median value of 6.1 kcal•mol−1.

Rank Ordering Protein Ligand Complexes

Performance to rank-order complexes was evaluated using three correlation metrics, namely

the Pearson's correlation coefficient (Rp), Spearman's rho (ρ), and Kendall's tau (τ).

Pearson's coefficient is the more traditional metric used to measure the correlation between
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observed and predicted affinities. Spearman's rho is a non-parametric measure of the

correlation between the ranked lists of the experimental binding affinities and the scores. It

ranges between −1 and 1. A negative value corresponds to anti-correlation while a positive

value suggests correlation between the variables. Kendall's tau (τ) was also considered to

assess rank-ordered correlation as suggested by Jain and Nicholls.39 τ has the advantage of

being more robust and can be more easily interpreted. It corresponds to the probability of

having the same trend between two rank-ordered lists.

It is interesting that despite the better performance of MM-PBSA in predicting the absolute

free energy, the opposite is observed for rank-ordering. All three correlation coefficients

metrics were significantly higher for MM-GBSA (Rp = 0.75; ρ = 0.68; τ = 0.52) compared

with MM-PBSA (Rp = 0.37; ρ = 0.40; τ = 0.25) (Table 3, Fig. 4A). At higher dielectric

constants, the correlations for MM-PBSA significantly improves (Table 5). A mere doubling

of the dielectric onstant from 1 to 2 led to a similar increase in the correlation factors (Rp =

0.77; ρ = 0.81; τ = 0.65). Further increase of the dielectric beyond two results in smaller

increases in performance, as illustrated by the correlations at a dielectric constant of 20 (Rp

= 0.90; ρ = 0.91; τ = 0.76). But inspection of the components of the free energy (Table 6)

reveals that this increase in performance is not due to more accurate representation of the

electrostatic component of the free energy. Instead, it is attributed to the significantly

smaller contributions of the electrostatic energy at higher dielectric constants. An increase in

the dielectric constant reduced ΔEELE and ΔEPB by a factor of 1/ε and 1/ε 2, respectively,

where ε is the dielectric constant. As a results, the lower contributions from the electrostatic

component results in a free energy component that is dominated by the non-polar and

entropy terms. SVRKB applied to MD structures (MM SVRKB) showed better performance

than MM-GBSA (Rp = 0.77; ρ = 0.81; τ = 0.65) (Fig. 4C, Fig. 6A). Interestingly, free

energies that included the adaptation energy (ΔGPB-ADAPT) exhibited dramatic improvement

over MM-PBSA (Rp = 0.95; ρ = 0.89; τ = 0.73) (Table 3, Set 2, Fig.4B). ΔGPB-ADAPT

correlations are also better than MM-SVRKB (Rp = 0.74; ρ = 0.89; τ = 0.73).

MM-GBSA and MM-PBSA calculations are performed on multiple structures collected

from MD simulations. Typically, snapshots are selected at regular intervals. We wondered

how MD snapshots can be pre-scored to improve the MM-PBSA or MM-SVRKB results.

We had previously developed a scoring approach (SVMSP) to distinguish between native

and non native binding modes.21 Scoring of MD snapshots with SVMSP is expected to

enrich these structures for native-like complexes. SVMSP was used to score all snapshots

from MD simulations for each of the 14 targets considered in this work. A total of 500

complexes with the top SVMSP scores were selected for MM-GBSA calculations. The

combined SVMSP//MM-GBSA scoring did not improve the predictive abilities of MM-

GBSA suggesting that the GB method is less sensitive to the structure used in the calculation

(Table 3, Fig. 6B). However, a dramatic boost in performance is observed for SVMSP//MM-

PBSA (Table 3, Fig. 6B). In fact, an increase of 0.39, 0.41, and 0.38 is seen for Rp, ρ and τ,

respectively. In Set 2, SVMSP//MMPBSA's prediction of the binding affinity trend is as

good as MM-PBSAADAPT. Components of the MM-PBSA or MM-GBSA calculations are

insightful as they provide insight into the free energy of binding (Table 6). But an important

question is whether these components correlate with the experimentally-determined
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thermodynamic parameters provided by ITC. Each component of the MM-GBSA and MM-

PBSA calculations is plotted against the ITC free energy. It was interesting, but not

completely surprising38, 40 that the non-polar components of the binding affinity correlated

with the ITC free energy (Table 4 and Fig. 5). The correlation coefficients were Rp = 0.89, ρ

= 0.90, τ = 0.76 and Rp = 0.88, ρ = 0.89, τ = 0.74 for the van der Waals energy (ΔEVDW)

and the non-polar component of the solvation free energy (ΔENP), respectively. There was

no correlation between the electrostatic components of the free energy (ΔEELE) and the ITC

free energy. There was also no correlation between the reaction field energy calculated by

PB (ΔEPB) and the ITC free energy. This is consistent with previous results that showed that

the non-polar component of the free energy was a significantly better predictor of the

stability of protein-protein complexes than the electrostatic component.38, 40 Finally, there

was no correlation between molecular weight of ligand and binding affinity (Rp = −0.51, ρ =

−0.65, τ = −0.51).

The entropy component of the MM-GBSA and MM-PBSA calculations follows a similar

trend to the true entropy of binding. The availability of ITC data for each of our systems

provides an opportunity to compare computed versus experimental entropy. For MM-PBSA

and MM-GBSA, the entropy is typically determined using either normal modes or a

quasiharmonic analysis. Fig. 3C shows that these two approaches result in different free

energies with overall better agreement for the free energy from the normal mode analysis.

The correlations MM-PBSA free energies using normal mode was Rp = 0.37, ρ = 0.40, τ =

0.25, compared with Rp = −0.20, ρ = −0.30, τ = −0.25 for the quasiharmonic analysis. The

normal mode and quasiharmonic entropies are compared to the experimental entropy. A plot

of TΔSITC versus TΔSNM or TΔSQHA shows that computed and experimental entropies are

anti-correlated with correlation coefficients of (Rp = −0.63; ρ = −0.55; τ = −0.43) and (Rp =

−0.47; ρ = −0.45; τ = −0.30), respectively (Fig. 5E and 5F). No change is observed when the

entropy change of ligand only (TΔSNM
Lig), or receptor only (TΔSNM

Apo) are compared to

the ITC entropy (Table 4).

The performance of MM-GBSA and MM-PBSA is compared to GBSA and PBSA, which

correspond to calculations performed on a single crystal structure for each of the complexes

in Table 1. Correlation coefficients reveal that both GBSA and PBSA perform poorly in

rank-ordering complexes when a single crystal structure is used (Fig. 6C). For GBSA all

three correlation factors were smaller than 0.5 (Rp = 0.44; ρ = 0.47; τ = 0.27), and for PBSA,

predicted and experimental data were anti-correlated (Rp = −0.51; ρ = −0.57; τ = −0.45).

SVRKB, on the other hand, performed well consistent with our previous study 22 (Rp =

0.83; ρ = 0.82; τ = 0.69).

DISCUSSION

MM-GBSA and MM-PBSA calculations are applied to a diverse set of 14 ligands bound to

11 different proteins. A unique aspect of this work is that (i) a diverse set of proteins and

ligands are used in contrast to most studies that compare ligands bound to the same protein;

(ii) all complexes were previously solved by x-ray crystallography and binding was

characterized by ITC. The ligands included small organic compounds, cyclic and linear

peptides, fragment like small molecules, and carbohydrates. Most free energy calculations
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did not accurately reproduce the ITC free energy. But there were several cases that were in

excellent agreement with ITC: Three complexes for MM-PBSA calculations, and four for

MM-GBSA. Overall, MM-PBSA resulted in less deviation from the experimental data than

MM-GBSA. But the opposite was observed for rank-ordering. MM-GBSA correlated

significantly better with the ITC free energy (Rp = 0.75; ρ = 0.68; τ = 0.52) when compared

to MM-PBSA (Rp = 0.37; ρ = 0.40; τ = 0.25). The non-polar terms (ΔGVDW and ΔGNP)

showed strong correlation with the experimental free energy (Rp = 0.89; ρ = 0.90; τ = 0.76

and Rp = 0.88; ρ = 0.89; τ = 0.74 for ΔGVDW and ΔGNP, respectively). An increase in the

dielectric constant for the MM-PBSA calculations worsened agreement of the computed and

experimental free energies. However, rank-ordering appeared to significantly improve upon

increase of the dielectric constant. But close inspection of the components of the free energy

reveals that this increase is attributed to the lower contribution of electrostatics as a results

of an increase of the dielectric constant. The Coulomb and electrostatic terms are inversely

proportional to the dielectric constant and to the square of the dielectric constant,

respectively. Less contribution from electrostatics leads to a free energy that is dominated by

the non-polar and entropy components resulting to better performance. There was no

correlation between the electrostatic components of the MM-GBSA and MM-PBSA free

energy and the ITC free energy.

Two models for the entropy were considered, normal mode and quasiharmonic. Normal

mode analysis assumes that each structure is at a potential energy minimum. Quasiharmonic

analysis is based on a covariance analysis of the atomic fluctuation. Our data showed that

the free energies using normal mode analysis correlated significantly better than free

energies using quasiharmonic analysis. A possible explanation is that the simulations used in

this study may not have been sufficiently long to ensure convergence of quasiharmonic

analysis. Neither the normal mode entropy nor the quasiharmonic entropies correlated with

the ITC entropy. This is likely due to the fact that the ITC entropy includes both solvation

and configurational entropy,41 while the computed entropy only includes the configurational

entropy. The solvation entropies may be indirectly captured by the other terms of the MM-

GBSA or MM-PBSA free energy.

Small-molecule binding often induces conformational change to the target protein. This

adaptation energy is often ignored in MM-GBSA or MM-PBSA calculations as a single

simulation is carried out starting with the complex structure. The structure of the apo protein

is extracted from the complex. We studied the effect of this adaptation energy by running a

separate simulation for ligand, apo and complex structures. We did this for 6 of the 14

complexes whose apo structure was solved independently by x-ray crystallography. Overall,

this resulted in poorer agreement with the ITC data when comparing the absolute values of

the free energies. However, the adaptation energy resulted in a significant boost in rank-

ordering. The ΔGPB-ADAPT resulted in a Pearson (Spearman) correlation of 0.95 (0.89)

compared with 0.89 (0.83) for ΔGMM-GBSA and 0.42 (0.14) for ΔGMM-PBSA. The

ΔGPB-ADAPT showed the best rank-ordering among all methods that were tested in this

work.

Typically snapshots for MM-GBSA or MM-PBSA calculations are selected at regular

intervals in an MD simulation. We wondered whether different approaches for selecting
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structures will influence the free energy of binding. We used a recently-developed machine

learning-based scoring approach (SVMSP) to pre-score all the snapshots in a trajectory.

SVMSP is trained from crystallography and docked protein-decoy structures to classify

protein-ligand complexes.21 It is therefore expected that the method will enrich MD

snapshots for native-like structures. Rank-ordering of snapshots (Table 3) had little

influence on the MM-GBSA free energies (Table 3). However, rank-ordering with MM-

PBSA calculations improved significantly from Rp = 0.37, ρ = 0.40, τ = 0.25 for snapshots

selected at regular intervals to Rp = 0.76, ρ = 0.81, τ = 0.63 for SVMSP-selected snapshots.

These results indicate that the Poisson-Boltzmann calculations are more sensitive to the

quality of the structure than MM-GBSA.

In sum, MM-GBSA and MM-PBSA methods come short in reliably reproducing the free

energy of binding. However, these methods can perform remarkably well for rank-ordering

diverse set of compounds. MM-GBSA can perform well by merely using snapshots from an

MD simulation of the complex, while MM-PBSA is significantly more sensitive to the

structures used. Filtering MD structures with scoring functions to enrich for native-like

complexes results in excellent rank-ordering by MM-PBSA. In addition, running separate

simulations of the receptor also improves the rank-ordering abilities of MM-PBSA. While

previous studies have found that rank-ordering performance for MM-PBSA improves with

increasing dielectric constant, we found that this is mainly due to the smaller contributions

of electrostatics as a result of increasing the dielectric constant (at ε = 5, for example, the

Coulomb energy is reduced by a factor of 1/5 and the PB solvation energy by 1/25). It was

remarkable that the non-polar components correlated very well with the free energy. The

combination of non-polar and entropy also correlated very well with the free energy, which

is why overall correlation improved at higher dielectric constants for MM-PBSA. Finally,

the MM-PBSA entropy does not correlation with the ITC entropy.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Chemical structure of bound ligands in protein-ligand complexes.
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Figure 2. Stereoview of three-dimensional structures for apo proteins and protein-ligand
complexes
The protein structure in complex is illustrated as a cartoon representation in cyan. The apo

protein structure (if available) is illustrated as a cartoon representation in blue. Atoms within

5.5 Å of the ligands in complex is considered as pocket atoms and illustrated in a surface

representation in orange. The ligand is illustrated as sticks representation in the color-coded

by atom types (yellow, red, and blue for carbon, oxygen and nitrogen). All illustrations were

generated by PyMOL (The PyMOL Molecular Graphics System, Version 1.5.0.4

Schrödinger, LLC).
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Figure 3. Calculated free energy deviation from experimental energy in ΔGITC-ΔGCalc of
selected protein-ligand complexes with different methods
(A) ΔGMM-GBSA, ΔGMM-PBSA, and ΔGMM-SVRKB for complexes in Set 1; (B) ΔGMM-PBSA

and ΔGPB-ADAPT for complexes in Set 2; and (C) ΔGMM-PBSA with normal mode calculated

entropy and ΔGMM-PBSA with quasiharmonic analysis estimated entropy for complexes in

Set 1.
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Figure 4. Regression plots between experimental free energy (ΔGITC) and different calculated
free energy of selected protein-ligand complexes
(A) ΔGMM-GBSA, ΔGMM-PBSA (dielc = 1) and ΔGMM-PBSA (dielc = 2) for complexes in Set

1; (B) ΔGMM-PBSA and ΔGPB-ADAPT for complexes in Set 2; and (C) ΔGMM-SVRKB for

complexes in Set 1.
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Figure 5. Regression plots between experimental free energy (ΔGITC) and different component
of calculated free energy
(A) ΔEVDW; (B) ΔENP; (C) ΔEELE; (D) ΔEPB; (E) TΔSNM; and (F) TΔSQHA.
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Figure 6. Performance on Pearson's correlation coefficient Rp, Spearman's ρ and Kendall's τ
correlation coefficients
(A) ΔGMM-GBSA, ΔGMM-PBSA (dielc = 1), ΔGMM-PBSA (dielc = 2), and ΔGMM-SVRKB for

multiple MD structures; (B) ΔGMM-GBSA, ΔGSVMSP//MM-GBSA, ΔGMM-PBSA and

ΔGSVMSP//MM-PBSA for multiple MD structures; and (C) ΔGGBSA, ΔGPBSA, and ΔGSVRKB

for single crystal structure.
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