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ABSTRACT 1 

Aldose reductase reduces glucose to sorbitol. It plays a key role in many of the 2 

complications arising from diabetes. Thus, Aldose reductase inhibitors (ARI) have 3 

been identified as promising therapeutic agents for treating such complications of 4 

diabetes, as neuropathy, nephropathy, retinopathy, and cataracts. In this paper, a 5 

virtual screening protocol applied to a library of compounds in house, has been 6 

utilized to discover novel ARIs. IC50’s were determined for 15 hits that inhibited 7 

ALR2 to greater than 50% at 50 µM, and ten of these have an IC50 of 10 µM or less, 8 

corresponding to a rather substantial hit rate of 14% at this level. The specificity of 9 

these compounds relative to their cross-reactivity with human ALR1 was also 10 

assessed by inhibition assays. This resulted in identification of novel inhibitors with 11 

IC50’s comparable to the commercially available drug, epalrestat and greater than an 12 

order of magnitude better selectivity.  13 
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INTRODUCTION 1 

Diabetes patients suffer from long-term complications, such as neuropathy, 2 

nephropathy, retinopathy and cataracts.1, 2 Although the mechanisms of diabetic 3 

complications are not completely understood, many biochemical pathways associated 4 

with hyperglycemia have been identified.3 The sorbitol pathway is one of the most 5 

important pathways implicated in long-term complications.3 Aldose reductase enzyme 6 

(ALR2, EC1.1.1.21, AKR1B1) is a member of the aldo-ketoreductase (AKR) 7 

superfamily, and, together with sorbitol dehydrogenase forms the polyol pathway.4 8 

ALR2 is the rate-limiting enzyme in this pathway. It reduces the aldehyde form of 9 

glucose to sorbitol by using NADPH as a cofactor. Then, sorbitol dehydrogenase 10 

converts the sorbitol to fructose by using NAD+ as a cofactor.5 Under normal 11 

circumstances, the affinity of ALR2 and glucose is low. While, under hyperglycemic 12 

circumstances, highly expressed ALR2 results in twofold to fourfold accelerated 13 

conversion of glucose to sorbitol. However, the rate of sorbitol dehydrogenase 14 

metabolism is not affected, which results in significant sorbitol accumulation under 15 

hyperglycemic circumstances. The sorbitol accumulation leads to osmotic swelling, 16 

changes in membrane permeability, and oxidative stress culminating in tissue injury 17 

associated with late-onset diabetic complications.6 18 

According to recent reports, ALR2 is up-regulated not only under hyperglycemic 19 

conditions, but also in other pathological states including cardiac disorders 20 

(myocardial ischemia and ischemia-reperfusion injury, congestive heart failure, 21 

cardiac hypertrophy, and cardiomyopathy), inflammation, mood disorders, renal 22 
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insufficiency, ovarian abnormalities, and human cancers such as liver, breast, ovarian, 1 

cervical, and rectal cancers.7-9 Those pathological processes have become major 2 

threats to human health in the 21st century. 3 

Because of these observations, aldose reductase has emerged as an attractive 4 

therapeutic target for long-term diabetic complications, cardiac disorders, and 5 

inflammatory diseases. Intense efforts have been directed toward the development of 6 

effective aldose reductase inhibitors,10 however, only a few compounds have reached 7 

clinical trials, such as, alrestatin,11 tolrestat,12 epalrestat,13 zopolrestat,14 zenarestat,15 8 

ponalrestat,16 and lidorestat17
. So far, epalrestat (Kinedak), marketed in Japan and 9 

China, is the only commercially available ARI drug. Aside from epalrestat ALR2 10 

inhibitors have failed in clinical trials because of poor pharmacokinetic properties and 11 

side effects18 and even epalrestat has been withdrawn from the market in other 12 

countries because of its side effects. Thus it is important to develop novel ARIs with 13 

improved efficacy, pharmacodynamics, pharmacokinetic properties and safety profile. 14 

X-ray studies reveal that there are at least three distinct binding pocket 15 

conformations of ALR2, corresponding to three different ligand types.19 These 16 

binding pockets were reported by Sandro and coworkers (PDB codes: 2PDK20, 17 

1US0,21 and 2FZD22,23
). Comparative structural analysis and molecular dynamic (MD) 18 

simulations studies indicate that for ALR2, a single experimental structure is not 19 

sufficient to predict all possible binding modes;19 and a higher virtual screening score 20 

does not necessarily correspond to higher biological activity because of false 21 

negatives from the docking procedure.10, 24 These deficiencies result in lower virtual 22 
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screening hit rates. 1 

Therefore, we exploited a virtual screening protocol, combined with MD 2 

simulations to overcome some of these issues. Starting with three experimental 3 

structures (PDB entries: 2PDK, 1US0 and 2FZD), we use MD simulations to sample 4 

accessible binding site conformers around each. The final binding site conformations 5 

are then derived by averaging the conformers from the three MD simulation results, 6 

respectively. The compound library is then virtually screened against these three 7 

averaged structures, and the docked complexes were optimized by MD simulations to 8 

assess their stability. As MD simulations are extremely computationally demanding 9 

and in general intractable to apply to numerous ligand-protein systems ligands, we 10 

exploited Graphics Processing Unit (GPU) technology, which significantly accelerates 11 

the calculation relative to more conventional central processing units (CPUs).25, 26 The 12 

compounds selected through this virtual screening protocol were tested for ALR2 13 

inhibition in vitro, and highly active ARIs containing new chemotypes were identified. 14 

In addition, the selectivity of compounds demonstrating potent ALR2 inhibition was 15 

assessed by testing for ALR1 inhibition, and their toxicity was also tested by MTT 16 

(3-(4,5-dimethylthiazol-2-yl)-2-5 diphenyltetrazolium bromide) assays: they showed 17 

considerable selectivity and no evidence of cell toxicity. 18 

 19 

RESULTS AND DISCUSSION 20 

In Silico Screening Against ALR2. Accounting for protein flexibility and induced 21 

fit effects continues to be a challenge in virtual screening efforts.27, 28 This is 22 
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especially true for the human ALR2 binding pocket.19, 29, 30 The significant mutual 1 

induced-fit effects upon binding different ligands to ALR2, provides a challenge for 2 

standard structure-based virtual screening.31-33 Virtual screening can be done via either 3 

docking molecules into a single binding pocket conformation derived from an 4 

experimental structure,10, 34, 35 or docking molecules into multiple binding pocket 5 

conformations derived from multiple experimental structures simultaneously.36 For 6 

example in previous work, using a clustering approach of diverse binding site 7 

volumetric shapes, we chose four representative structures as a compromise between 8 

more extensive sampling and computational tractability.27, 28 Cosconati and coworkers 9 

reported that the multiple binding pocket strategy applied to ALR2 resulted in a 10 

higher virtual screening hit rate.23 Given the significant plasticity of this protein, the 11 

question arises as to whether a more extensive sampling of ALR2 conformational 12 

space could further improve either enrichment or diversity of ligands recovered.19 The 13 

protocol we use here to further account for ligand-receptor flexibility is given in 14 

Figure 1. The virtual screening protocol starts with the three ALR2-ligand complexes 15 

(PDB codes: 2PDK, 1US0, and 2FZD) that represent three types of static binding 16 

modes. MD simulations were applied to these structures for six nanoseconds (ns) to 17 

refine the protein structure especially for regions that may be poorly resolved in the 18 

X-ray. The time averaged structures over the last nanosecond of the trajectories (See 19 

Supporting Information, Figure S1) were then, minimized by steepest descent 20 

(Discovery Studio 2.1, Accelrys Inc., San Diego, CA.) to refine covalent geometry 21 

and remove collisions. These refined structures were then employed for docking in 22 
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the first stage of the virtual screening campaign. 1 

The GSMTL (Guangdong Small Molecule Tangible Library), a small molecule 2 

repository containing more than 7,200 compounds, was selected for screening against 3 

ALR2.37 The compounds in the library were docked against the three refined binding 4 

pocket conformations with FlexX. In order to establish criteria for the virtual 5 

screening hits, we have: (1) docked 927 known ALR2 inhibitors38 into the three 6 

binding pockets to calibrate the relation between activity and FlexX score, generating 7 

an averaged active compound FlexX docking score (ACFDS), and (2) computed 8 

active ALR2 inhibitor protein ligand interaction fingerprints (PLIF) from 76 9 

co-crystal structures in MOE (Molecular Operating Environment39, Figure 2). 10 

The virtual screening hits then have to pass three filters: 11 

(1) The FlexX docking score must be below the ACFDS. 1,238 compound hits 12 

passed this filter. 13 

(2) Hits, which have acceptable scores, are retained only if their PLIFs match the 14 

active ALR2 inhibitor PLIF (at least two hydrogen bonds with Tyr48, His110, 15 

or Trp111, and hydrophobic interaction with the specificity hydrophobic 16 

pocket). 128 compound hits passed this filter. 17 

(3) Each of the 128 hits was subjected to MD simulations. Only hits with RMSD 18 

(root-mean-square deviation) values less than 3 Å from the docked pose were 19 

retained. This is an “internal consistency” check to ensure that the docked 20 

conformation scored is indeed the stable conformation of the system. 71 21 

compounds survived this criterion. These final hits were further tested by 22 
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bioassays. (Note each compound had three binding modes corresponding to 1 

the three ALR2 binding pocket conformations described above (Figure 1); if a 2 

compound passed through the first two filters bound to more than one of the 3 

structures the pose with the highest docking score was selected for this last 4 

MD refinement stage.)  5 

We note that our primary goal is to reduce the number of compounds that 6 

need to be subjected to more expensive experimental screening while 7 

achieving a good “yield” of a reasonable number of hits i.e. remove false 8 

positives. The filters outlined above indubitably remove some true positives as 9 

well, as does the inherent virtual screening algorithm itself, but as long as we 10 

achieve the requisite number and quality (diversity, scaffolds etc.) we have 11 

achieved our goal. This is the basic assumption in any screening campaign. 12 

Any of these filters might be omitted if sufficient hits are not obtained. 13 

Questions naturally arise about the consequences of omitting any of the filters 14 

or adding others and also comparing with other algorithms. Some estimate of 15 

the utility of the procedure may be obtained by comparison with a simple 16 

similarity search. This is given below. A detailed study of the effect of all the 17 

variables/filters in the algorithm as well as comparison with other algorithms 18 

is the subject of further study. Here our goal was primarily to find new ARIs 19 

containing novel chemotypes. 20 

Confirmation of the Hits from Virtual Screening. The 71 final hits were 21 

assayed for ALR2 inhibition as described in methods. The bioassays confirmed that 22 
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9 

 

26 of the compounds showed a minimum of 30% inhibition of ALR2 at 50 µΜ (Table 1 

1). The 26 confirmed ALR2 inhibitors are depicted in Figure 3. IC50’s were 2 

determined for the 15 hits which inhibited ALR2 to greater than 50% at 50 µM. In 3 

order to ensure that the IC50 determinations are reliable, IC50 values of quercetin and 4 

epalrestat (Figure S2) were obtained and verified to reproduce previously reported 5 

values40, 41 (28 µM and 0.28 µM). The most active compounds are 14 and 25; they 6 

demonstrate sub-micromolar IC50 concentrations (0.22 µM and 0.89 µM), values 7 

comparable to the commercially available drug, epalrestat. Other promising 8 

compounds were 1, 18, 22, and 24, which exhibited IC50 values < 10 µM. 9 

Comparison of Results with Simple Ligand Based Searches. We have carried 10 

out both a 2D similarity search as well as a substructure search in order to confirm 11 

that these simpler techniques42, 43 do not recover the novel actives resulting from the 12 

docking protocol discussed above. In the similarity search, a total of 22 ALR2 actives 13 

derived from the DUD (A Directory of Useful Decoys; http://dud.docking.org/), along 14 

with the reference compounds quercetin and epalrestat, shown in Figure S3 were 15 

chosen as the reference structures. The two dimensional structural similarities of the 16 

structures in the Guangdong Small Molecule Tangible Library (GSMTL) database, 17 

with the 24 queries were calculated based on an atom-center fragment approach.42, 43 18 

Imposing a similarity threshold of 80%, we retrieved 67 hits from GSMTL database. 19 

Among these hits, 51 of them were flavone derivatives arising from similarity with 20 

quercetin, and 16 “non-flavones”. The preponderance of flavones arises presumably 21 

due to their ubiquity in herbs and plants.44 The non-flavanoid hits are shown in Table 22 
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S1 along with the reference compound they arose from.  1 

For a second simple similarity search control we exploited a Markush search.45 2 

Six Markush search queries were prepared as shown in Figure S4. A total of 421 hits 3 

were found. Of these the majority included either a flavone scaffold or benzoic 4 

sulfonic groups, while 67 of the 421 represent other diverse scaffolds.46 5 

The most liberal, first order “atom center fragment”42, 43 cutoff was used in these 6 

similarity studies in order to retrieve the maximum number of compounds, Despite 7 

this none of the actives identified in the docking studies were found by even this 8 

liberal definition of similarity. 9 

Structural Characteristics of the Confirmed Hits. Like epalrestat, most of these 10 

new ALR2 inhibitors contain carboxylic acid moieties. In particular, the two 11 

sub-micromolar compounds, 14 and 25 as well as the four compounds with single 12 

digit IC50 values (1, 18, 22, and 24), all contain the carboxylic acid moiety. The most 13 

favorable docking score for 14 from the three binding pocket conformations was 14 

-31.39 kcal/mol (Table S2). The predicted binding mode of compound 14 was stable 15 

in MD simulations with a time averaged RMSD of ~1 Å over the 6 nanoseconds 16 

trajectory (Figure S5 of Supporting Information). 17 

As seen in Figure 4a, the ligand carboxyl inserts into the anion binding pocket, 18 

H-bonding with Tyr48, His110, and Trp111 side chains and engages in an electrostatic 19 

interaction with the nicotinamide moiety of the NADP+ cofactor. Additional hydrogen 20 

bonds were formed between the acyl oxygen of 14 and Trp111. The naphthalene ring 21 

of compound 14 occupies ALR2’s specificity pocket forming hydrophobic contacts 22 
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with Trp79, Trp111, Phe122, Phe115 and Leu300. Not surprisingly these interactions 1 

are consistent with the PLIFs, which, based on the assays, correlate with the activity 2 

against ALR2. Figure 5a shows the dose-response curve of compound 14 with an IC50 3 

value of 0.22 µM. 4 

Compounds 17 and 18 contain the large fluorene hydrophobic group. This large 5 

hydrophobic group is not well accommodated in the hydrophobic pocket of ALR2 and 6 

extends into the solvent, perhaps accounting for the somewhat lower affinity of 7 

compounds 17 and 18 (15.67 µM and 6.30 µM) relative to compound 14 (0.22 µM). 8 

(Figure S6 of Supporting Information and Figure 4b). 9 

On the other hand, compound 22 has a pyrazine group that is a smaller hydrophobic 10 

group than either the napthyl group in 14 (or the fluorene moiety found in compounds 11 

17 and 18). The pyrazine group is well accommodated in the ALR2 hydrophobic 12 

pocket. However, the pyrazine is too small to make hydrophobic contacts with Trp79, 13 

Trp111, Phe122, Phe115 and Leu300 as compound 14 does. This may account for the 14 

somewhat weaker activity compound 22(3.65 µM, Figure 5c) than 14 (0.22 µM). 15 

Compound 7 demonstrated moderate activity against ALR2 with an IC50 value of 16 

25.05 µM (Table 1). The predicted binding mode of compound 7 is shown in Figure 17 

4d. In this binding mode, compound 7 forms hydrogen bonds with His110 and Trp111 18 

via its ketone oxygen, and another hydrogen bond between its benzofuran-5-hydroxyl 19 

and Trp20. In addition, π-π stacking interactions between the benzene ring of 20 

compound 7 and Trp111 were observed, which may well contribute to the activity.23 21 

One of the reasons for the π-π stacking interactions is the orientation of the three 22 
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hydrogen bonds. MD simulations indicated the RMSD of compound 7 fluctuates 1 

around 1 Å (Figure S5 of Supporting Information). 2 

It has been reported that sulfonic or sulfonamide groups on an ALR2 inhibitor 3 

form hydrogen bonds with Tyr48, His110, or Trp111 in the anion binding pocket.23, 35 4 

This moiety was found in active compounds from the TCM database as well. 5 

Compounds 11 and 12, containing this functional group displayed inhibition of ALR2, 6 

with compound 11, having an IC50 of 11.14 µM. Docking studies demonstrated that 7 

the binding modes of compounds 11 and 12 were similar and indeed reflected the 8 

hydrogen bonds (Figure S6b and 6c of Supporting Information) reported in the 9 

previous studies.23, 35 Interestingly, compound 12 has both carboxyl and sulfonamide 10 

groups, and the sulfonamide is found to bind in the anion pocket in the docked 11 

structure.  12 

Compound 25 is a curcumin derivative, a natural product extracted from Curcuma 13 

longa L. Curcumin has been shown to be effective in delaying streptozotocin 14 

(STZ)-induced diabetic cataracts in rats mainly through its antioxidant properties and 15 

inhibition of ALR2.47 It inhibited human recombinant ALR2 with an IC50 of 10.0 16 

µM.48 Compound 25 demonstrated 11-fold increased inhibition against ALR2 over 17 

that of curcumin itself. The dose-response curve of compound 25, with an IC50 value 18 

of 0.89 µM, is depicted in Figure 5c. It was predicted that the 3, 5-dione of compound 19 

25 binds in the anion binding pocket of ALR2, and forms three hydrogen bonds with 20 

Tyr48, His110, and Trp111 (Figure 4e). An additional hydrogen bond was formed 21 

between the ether and carboxyl groups of compound 25 and Val 299. Also, π-π 22 
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stacking interactions between one of the phenyl rings in compound 25 and Trp111 is 1 

observed. Like compound 7, the binding mode of compound 25 to ALR2 was similar 2 

to that of the ligand IDD594 in the 1US0 structure. 3 

Both the flexibility of ALR2 and the ability of the ligands to induce 4 

conformational deformations to accommodate binding are reflected in the binding 5 

modes of these new ALR2 inhibitors. As shown in Figure S9 of Supporting 6 

Information, ligand induced-fit results in side-chain and even backbone changes in 7 

Cys298, Ala299, Leu300, and Phe122. 8 

Selectivity Studies Against ALR1. Many ALR2 inhibitors were potent in both in 9 

vitro and in vivo studies, even in animal studies, but still failed in clinical trials due to 10 

side effects or poor efficacy. The side effects may be due in part to the failures of 11 

selective inhibition of ALR2 with respect to ALR1 (aldehyde reductase, EC 1.1.1.2)49
. 12 

The sequence similarity of ALR1 and ALR2 is close to 65%.50 To assess the 13 

selectivity of the 26 confirmed ALR2 inhibitors given in Figure 3, the 15 most potent 14 

compounds were tested for their ability to inhibit human recombinant ALR1 as well 15 

(Table 2). The assays confirmed that 8 of the compounds showed a maximum 16 

inhibition of ALR1 of less than ~ 25% at 50 µM, with five of these less than 10% 17 

(Table 2). Compound 14, the most active compound, only exhibits inhibition of ALR1 18 

by 24% at 50 µM, which is somewhat better than epalrestat’s selectivity (90% 19 

inhibition of ALR1 at 50 µM). 20 

IC50’s were determined for the 7 hits which inhibited ALR2 to greater than 40% at 21 

50 µM. The only compound among these ALR2 inhibitors which didn’t show 22 
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selectivity was compound 7, IC50 values are 31.33 µM for ALR1 (Figure S8) and 1 

25.05 µM for ALR2. As revealed by the IC50, compound 25, the second most active 2 

compound (IC50=0.89 µM), exhibited 100-fold selectivity for ALR2 with respect to 3 

ALR1 (IC50=94.65 µM, Table 2). The similar potency and superior selectivity of these 4 

compounds when compared to the drug epalresta suggest that these new ALR2 5 

inhibitors presented here are worthy of further development. 6 

Structure Activity Relationship (SAR) for Compound 14 and Analogues. 7 

Compound 14, a β-amino-phenylpropanoic derivative, demonstrates excellent potency 8 

and selectivity for ALR2. Actually, compounds 14, 22, 23, and 24 share the same 9 

β-amino-phenylpropanoic scaffold with consistent efficacy against ALR2. The latter 10 

three compounds show even greater selectivity for ALR2 than 14, based on the 11 

percent inhibition at 50 µM data. 12 

To further explore the SAR of β-amino-phenylpropanoic derivatives for ALR2 13 

inhibition, 10 additional analogues were selected by a substructure search of the 14 

GSMTL database in house. The ALR2 inhibition activities were evaluated as listed in 15 

Table 3. 16 

The β-amino-phenylpropanoic scaffold has three substituent positions, R1-3. 17 

Substituents at R1 include: naphthalene (14); 1,2,3,4-tetrahydronaphthalene (15, 29), 18 

pyrazine (22-24); pyridine (35, 36); and phenyl groups. The activities of these groups 19 

are in the following order:  20 

Naphthalene > pyrazine > pyridine > phenyl >1,2,3,4-tetrahydronaphthalene.  21 

This indicates that a large aromatic hydrophobic group at R1 is important for 22 
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inhibition, and that the size and orientation of R1 plays a key role. Docking studies 1 

showed that R1 resides in the hydrophobic specificity pocket consisting of Trp79, 2 

Trp111, Phe122, Phe115 and Leu300. Smaller hydrophobic groups for R1 show lower 3 

activity due to inadequate hydrophobic interactions in the binding pocket. Compound 4 

15 has a large hydrophobic group for R1, however, the aliphatic portion of the 5 

tetrahydronaphthalene group cannot be accommodated as well in the pocket, which 6 

also results in the loss of a hydrogen bond between the acyl oxygen of compound 15 7 

with Trp111of ALR2 accounting for its reduced affinity (Figure 6a and 6b). Similar 8 

considerations apply to compound 29 (Table 3). 9 

The R2 group on the benzene ring in the β-amino-phenylpropanoic derivatives is 10 

surrounded by hydrophobic residues, Trp20, Val47 and Tyr48 (Figure 6a). It was 11 

expected that an additional hydrophobic group at R2 would further favor activity. This 12 

was investigated by assessing the activities of compounds 27, 28, 30 and 33 (Table 3). 13 

These compounds share the same scaffold, and the only variation is at R2 (27, F; 28, 14 

Cl; 30, CH3; 33, H). The trend here is not so clear. Compounds 27, 28, and 30 are 15 

more active than compound 33, which has hydrogen at R2, consistent with the 16 

hypothesis, however compounds 27 and 28 are essentially equally active contrary to 17 

what might be expected. The SAR of R3 is unclear due to insufficient data. The 18 

general SAR for β-amino-phenylpropanoic scaffold is summarized in Figure 6c. 19 

In Vitro Cytotoxicity Assay. A necessity of any drug compound is that it has 20 

negligible toxicity. As a preliminary assessment of toxicity we carried out cell 21 

viability assays for the 15 hits which inhibited ALR2 to greater than 50% at 50 µM. 22 
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The viability of human embryonic kidney cell lines 293 (HEK 293) with these 1 

compounds was evaluated. The results are given in Table 4. With the exception of 2 

compounds 11 and 13 the remaining compounds showed negligible cytotoxicity, 3 

similar to that of epalrestat. The most active compounds 14 and 25 exhibited only 4 

10.46% and 13.85% inhibition at 12.5 µM, respectively. The similar potency, lack of 5 

toxicity, and superior selectivity of these compounds when compared to the drug 6 

Epalresta suggest that the new ALR2 inhibitors presented here are worthy of further 7 

development. 8 

The Pharmacokinetic Properties of the Active Compounds. ADME/T properties, 9 

including the absorption, solubility, BBB, hepatotoxicitye, CYP 2D6, alogP, and PSA 10 

of the 26 ALR2 inhibitors, have been evaluated in silico through Discovery Studio 2.1 11 

(Accelrys, Inc., San Diego, CA). Compared with Epalrestat (the only marketed ALR2 12 

inhibitor), the ADME/T properties of most of our compounds are in the required 13 

druggability ranges, especially for compound 14 (β-amino-phenylpropanoic scaffold). 14 

The detailed results and comparisons can be found in Table S5 (Supporting 15 

Information). 16 

CONCLUSIONS 17 

New selective human aldose reductase 2 (ALR2) inhibitors have been discovered 18 

by a protocol of virtual screening in multiple binding pocket conformations followed 19 

by binding assays as well as selectivity and toxicity assessments. Several of the 20 

resulting potent ALR2 inhibitors contain a β-amino-phenylpropanoic scaffold. 21 

Biological tests demonstrated that two of the ALR2 inhibitors demonstrate 22 
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sub-micromolar IC50 values (0.22 µM and 0.89 µM), which are comparable to the 1 

commercially available drug, epalrestat, while showing superior selectivity to 2 

epalrestat relative to inhibition of ALR1. SAR studies on the 3 

β-amino-phenylpropanoic compound 14 and its analogs provide insight for further 4 

optimization of these leads. 5 

These results also tend to validate the in silico methods used. While conventional 6 

structure-based virtual screening often starts with single conformation, we have 7 

exploited a conformational sampling process via MD simulations. The conformation 8 

sampling process produces multiple consensus binding pockets, which represent the 9 

dynamic conformation changes of a binding pocket interacting with a different ligand. 10 

A series of three filters were then used on the hits to optimize the yields. Our 11 

screening protocol applied to this system resulted in more active hits and a success 12 

rate of 14% based on compounds retrieved with IC50’s of 10 µM or less. Recently, 13 

many tools and protocols have been developed in our labs for lead identification;51-54 14 

we will combine these tools and protocols to improve the quality of ALR2 inhibitors. 15 

EXPERIMENTAL SECTION 16 

Receptor Preparation. Three ALR2 protein-ligand complexes (PDB entries: 17 

2PDK, 1US0, and 2FZD) were placed in a TIP3P octahedral water box such that the 18 

box boundary is at least 10 Å from any protein atom, and MD simulations were 19 

performed for 6 nanoseconds. The water molecules in the crystal data were kept. 20 

Three average structures were calculated from the equilibrated stage of the MD 21 

trajectories (from 5-6 nanoseconds) of 2PDK, 1US0 and 2FZD. The three averaged 22 
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structures were then optimized with the steepest descent method for 200 steps using 1 

Discovery Studio 2.1.55 2 

The FlexX module in Sybyl 7.356 was used to dock our compound library against 3 

the three consensus structures. The active sites were defined as all residues within 6.5 4 

Å radius of the reference molecule in each optimized structure and cofactors were 5 

retained during the docking process. Other FlexX parameters were set to default 6 

values. 7 

Compound Library Preparation. The structures from the GSMTL database 8 

(~7,249 compounds) were docked against the three consensus structures. All 9 

inorganic atoms in the structures were removed prior to the virtual screening using the 10 

MOE package (Molecular Operating Environment).39
 The remaining moieties were 11 

preprocessed (eg, adding hydrogen atoms; setting ionization states to be appropriate 12 

for a pH range of 6.5 to 8.5; and generating stereo isomers and valid single 3D 13 

conformers) by means of the Ligand Preparation module of Discovery Studio 2.1. 14 

The structures of the training compounds and their inhibition data (IC50< 50 µM) 15 

were downloaded from the Binding DB database,38 and were preprocessed as 16 

described above. 17 

Establishment of the Selection Criteria. 927 compounds, which had IC50’s lower 18 

than 50 µM, were selected from the Binding DB database. The compounds were 19 

individually docked against the three consensus structures with FlexX. This results in 20 

three FlexX scores for each compound: Fscore1 (derived from 2PDK), Fscore2 21 

(derived from 1US0), and Fscrore3 (derived from 2FZD). Thus three sets of 927 22 
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FlexX scores were obtained for the 927 compounds docked to each of the three 1 

protein structures. One of the selection criteria was obtained by averaging each set of 2 

docking scores for a given structure, i.e. FSi = <Fscorei>927; i=1-3. Then criterion 1 3 

was invoked. 4 

Criterion 1. Each of the hit compound’s three FlexX scores (generated from 5 

docking into 2PDK, 1US0, and 2FZD respectively) should be more favorable than the 6 

corresponding average scores obtained for training set for each system. 7 

The second selection criterion was obtained by insisting that certain key 8 

protein-ligand interactions were satisfied in the docked structure. The key ligand 9 

binding residues were identified by means of MOE. Protein ligand interaction 10 

fingerprints (PLIF) were calculated from 76 ALR2 structures selected from the PDB. 11 

This corresponded to all ligand ALR2 structures excluding those containing mutations 12 

in the active site. From this analysis it was concluded that: 13 

Criterion 2. A hit compound’s docked conformation should have hydrogen bonds 14 

to at least two of the three key residues (i.e., Tyr48, His110, and Trp111) and 15 

hydrophobic interaction with the specificity hydrophobic pocket (Trp79, Trp111, 16 

Phe122, Phe115 and Leu300). 17 

Finally the third criterion simply insures that the dynamic trajectory hasn’t taken 18 

the ligand-protein to another conformational state or pose of the ligand. 19 

Criterion 3: The RMSD of the ligand, from its docked pose, resulting from the 20 

MD simulation should be less than 3 Å. 21 

A final virtual screening hit must satisfy all three criteria. 22 

Page 19 of 41

ACS Paragon Plus Environment

Journal of Chemical Information and Modeling

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



20 

 

Virtual Screening. The FlexX docking program (Sybyl 7.3) was employed for the 1 

virtual screening. As a consistency check three native ligands were docked back into 2 

their host crystal structures to confirm the performance of FlexX for the human ALR2 3 

system. The RMSD between the docking pose of native ligand and the experimental 4 

pose in the consensus structure complex was less than 1 Å. 5 

The 927 training compounds derived from the Binding DB database were docked 6 

to the three consensus structures, respectively. Only the best pose per ligand, as 7 

described above, was recorded for each docking run. 8 

Structures from the GSMTL database were then virtually screened against the 9 

three consensus structures simultaneously with the FlexX docking program. For each 10 

compound, the program recorded 20 structural poses per run. These poses were 11 

analyzed by a clustering algorithm, and the structure from the largest cluster with the 12 

best FlexX score was selected. If the docking score was more favorable than the 13 

average docking score of known hits to that structure, ie FSi ≤ <Fscorei>927) as 14 

defined above, the corresponding compound was then assessed by the two final 15 

criteria.  16 

MD Simulations. MD simulations were performed using the PMEMD module in 17 

AMBER 1157 accelerated by running on a GPU system, the NVIDIA CUDA processor. 18 

The three initial co-crystal structures (2PDK, 1US0 and 2FZD) were solvated in a 19 

10Å octahedral box with TIP3P water. Periodic boundary conditions were applied. 20 

The AMBER ff99SB force field58 was exploited for the protein, and the general 21 

AMBER force field (GAFF)59 was applied to the three structures. The cofactor 22 
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parameters were obtained from the literature.60 The partial charges of three substrates 1 

were computed using the HF/6-31 G* basis set from GAUSSIAN03,61 and refined by 2 

RESP calculation using the antechamber module of the AMBER 11 package. Sodium 3 

ions were added in order to neutralize the systems. To remove possible steric stresses, 4 

the systems were minimized for 1,000 steps with the steepest descent method, 5 

followed by application of conjugate gradients for another 1,000 steps. Each of the 6 

three systems was linearly heated from 0 to 300K using a Langevin thermostat, with a 7 

collision frequency of 5.0 ps−1, and harmonic restraints of 4 kcal/mol/Å2 on the 8 

backbone atoms over 20 ps and then equilibrated for 50 ps at 300 K using the NVT 9 

ensemble. Finally, dynamics simulations of 6 ns were carried out for the production 10 

step in an NPT ensemble at 1atm and 300 K. The coordinates of the system were 11 

saved at every picosecond. 12 

The temperature was kept at 300 K by means of a weak coupling algorithm.62 13 

Covalent bonds involving hydrogen were constrained using the SHAKE algorithm.63 14 

The Particle-Mesh-Ewald method64 was applied to treat the long range electrostatic 15 

interactions with a 10 Å non-bonded cutoff. The three average structures were 16 

calculated from the equilibrated stage of the MD trajectories (from 5 ns to 6 ns), and 17 

subsequent optimized with steepest descents for 200 steps. The three minimized 18 

average structures were then used for the virtual screening campaign. 128 structural 19 

complexes, which satisfied the first two filters, were submitted for MD simulations as 20 

described. The RMSD between the docked pose and averaged MD simulated pose for 21 

a hit candidate was checked to make sure the ligand pose had not undergone a 22 
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conformational transition in the MD (criterion 3) to reduce the chances of false 1 

positives from the docking procedure. 2 

Chemistry. All compounds tested for ALR2 inhibitions were taken from the 3 

GSMTL in our laboratory. Purity of the compounds was assessed by HPLC equipped 4 

with a ZORBAX SB-C18 column (250 mm×4.6 mm, 5 µm particle size) and a 5 

UV/VIS detector setting of λ = 254 nm. The compounds were eluted with the two 6 

solvent systems (CH3OH as the organic phase in method I and CH3CN as the organic 7 

phase in method II) at a flow rate of 0.5 mL/min. HPLC analysis of the compounds 8 

assayed confirmed the purity at ≥ 95% (Table S3). Sources information and 1H NMR, 9 

MS data were listed in Table S4. 10 

Expression and Purification of Recombinant Human ALR2. Recombinant 11 

human ALR2 was expressed and purified as described by Nishimura et al.65 The 12 

human ALR2 gene was cloned into pET15b vector (Novagen) and expressed in 13 

Escherichia coli strain BL21 (+) (Novagen). The hexahistidine tagged protein was 14 

induced by IPTG (Isopropyl β-D-1-thiogalactopyranoside) during a 20 h period at 15 

25 °C and purified using a Ni-affinity column (Qiagen). 16 

Expression and Purification of Recombinant Human ALR1. Expression and 17 

purification of recombinant human ALR1 was carried out following the methods 18 

described by Bohren et al.66, 67 The recombinant human ALR1 expression plasmid in 19 

pReceiver-B01 was expressed in E. coli using a T7-based expression system and 20 

purified using a Ni-affinity column. 21 

In Vitro Recombinant Human ALR2 Inhibition Assay. A spectrophotometric 22 
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assay68 was employed for in vitro inhibitory tests via the detection of absorbance 1 

decreases from the oxidation of NADPH to NADP+ catalyzed by the ALR2 enzyme. 2 

The absorbance at 340 nm was monitored at 30℃ with an ultraviolet 3 

spectrophotometer reader. The assay was performed using a 1 mL reaction curette 4 

with sodium phosphate buffer (0.1 M), NADPH cofactor (0.15 mM), Li2SO4 (0.4 M), 5 

human ALR2 (0.486 µM), and D-glyceraldehyde substrate (10 mM). 6 

The predicted hits and reference compounds (quercetin and epalrestat) were 7 

dissolved in dimethyl sulfoxide (DMSO). The final concentration of DMSO was not 8 

more than 1%. The inhibitory activities of tested compounds were assayed by adding 9 

them to the reaction cuvettes at 50 µM. Those compounds found to be active were 10 

tested at additional concentration ranging from 0.1 to 10 µM. The IC50 value for each 11 

compound was determined as the compound concentration that inhibited human 12 

ALR2 activity by 50%. The IC50 values was curve-fitted as described by Alexiou et 13 

al.69 Compounds were tested at a minimum of five concentrations and all experiments 14 

were performed in triplicate. To exclude any possible nonspecific/promiscuous 15 

inhibition of ALR2, we deepened our hit validation, repeating all the assays in the 16 

presence of 0.01% Triton X-100, as suggested by Shoichet.63 None of the observed 17 

inhibitory activities was affected by the addition of the nonionic detergent, confirming 18 

the activity. 19 

In Vitro Recombinant Human ALR1 Inhibition Assay. To study the selectivity 20 

of ALR2 inhibitors, an inhibition study of ALR1 was carried out by monitoring the 21 

oxidation of NADPH at 340 nm as a function of time using glyceraldehyde as 22 
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substrate. The assay mixture contained 0.1 M sodium phosphate buffer of pH 6.2, 10 1 

mM DL-glyceraldehyde, 0.1 mM NADPH. The confirmed ALR2 inhibitors were 2 

added to the ALR1 assay mixture and tested at 37℃. The IC50 values of compounds 3 

having > 40% inhibition at 50 µM were determined as previously described.69 4 

Compounds were tested at a minimum of five concentrations and the experiments 5 

were performed in triplicate. 6 

In Vitro Cell Viability Assay. Cell proliferation was measured in an MTT assay 7 

protocol (Table 4). Five thousand HEK 293 (human embryonic kidney 293) cells were 8 

inserted in a 96-well plate in 100 µL of indicated medium in the presence of 9 

compounds at the indicated concentration. After incubation for 48 hours, the cells 10 

were further incubated with 20 µL of 2.5 mg/mL MTT for 4 hours at 37 ℃ in a 11 

humidified incubator with 5% CO2. Then the formazan dye was dissolved in 100 µL 12 

of DMSO, and the absorbance was measured at 570 nm by using PowerWaveTMXS 13 

microplate spectrophotometer (BioTek). The inhibition rate (%) was calculated as: 14 

 15 

Inhibition (%)=[1-(A570, compd)/(A570, control)]×100% 16 

 17 

ASSOCIATED CONTENT 18 

Supporting Information: HPLC, MS, and 1H NMR data, MD simulation results, 19 

docking results, and dose response results, and additional predicted binding modes of 20 

hits 11, 12 and 17 are resented in the supplementary material. This material is 21 

available free of charge via the Internet at http://pubs.acs.org. 22 
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Figure 1. A flowchart of the protocol of virtual screening multiple binding pocket 3 

conformations supported by molecular dynamic simulations. 4 
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Figure 2. The protein ligand interaction fingerprints (PLIF) derived from 76 available 3 

co-crystal structures of ALR2 and inhibitors. 4 
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Figure 3. Structures of hits from the virtual screening scheme. 3 

 4 

 5 
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 1 

 2 

Figure 4. Binding modes for compounds 14 (a), 18 (b), 22 (c), 7 (d), and 25 (e). 3 

Hydrogen bonds are depicted by red dotted lines. The induced-fit effect can be seen in 4 

(f), where one can see PHE-122, ALA-299 and LEU-300 undergoing significant 5 

displacements to accommodate the bound ligand. The bound structures of compounds 6 

7 and 14 are derived by averaging the MD simulated structures from 1US0 and 2FZD, 7 

respectively.  8 

 9 

 10 
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 1 

Figure 5. ALR2 inhibition dose-response curves for compound 14 (a), 18 (b), and 25 2 

(c). Values are generated using at least five concentrations of the inhibitors (µM), with 3 

triplicate determinations at each concentration. Percent inhibition is plotted on the 4 

ordinate, against the log of the concentration on the abcissa. 5 
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 2 

Figure 6. (a) Superimposition of the binding modes of compounds 14 (green), 15 3 

(magenta), 22 (light blue), and 27 (orange). (b) Binding mode for compound 15. (c) A 4 

summary of the SAR of β-amino-phenylpropanoic acid derivates. 5 

 6 
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Table 1. Virtual screening hits and their in vitro assay results for ALR2 inhibitions.  1 

Compd. Source % of ALR2 inhibition at 50µM
 a  IC50(µM) b 

1 SYSU-00124 76.17±6.2 10.00±0.48 

2 SYSU-00123 35.57±3.7 ND 

3 SYSU-00295 44.87±2.9 ND 

4 SYSU-01227 53.74±7.6 37.79±0.12 

5 SYSU-00298 68.80±6.1 31.8±3.38 

6 SYSU-00300 40.52±3.1 ND 

7 SYSU-00486 88.50±1.8 25.05±3.43 

8 SYSU-01606 31.30±5.2 ND 

9 SYSU-01809 36.40±3.4 ND 

10 SYSU-21694S 80.70±1.9 10.2±1.83 

11 SYSU-20957S 68.62±2.2 11.14±0.54 

12 SYSU-20665S 46.60±4.1 ND 

13 SYSU-10135N 56.76±4.9 26.55±3.29 

14 SYSU-22363S 94.91±2.4 0.22±0.03 

15 SYSU-22410S 34.36±6.8 ND 

16 SYSU-21294S 32.65±3.7 ND 

17 SYSU-21741S 72.30±4.3 15.67±2.76 

18 SYSU-22315S 81.67±1.2 6.30±0.72 

19 SYSU-20433S 83.61±1.6 10.03±2.33 

20 SYSU-22133S 30.08±5.3 ND 

21 SYSU-22424S 44.65±3.4 ND 

22 SYSU-22433S 83.25±2.7 3.65±0.26 

23 SYSU-22439S 70.58±4.5 20.20±1.74 

24 SYSU-22449S 86.72±4.1 4.3±1.20 

25 SYSU-00241 94.30±1.8 0.89±0.11 

26 SYSU-20215S 45.60±2.9 ND 

Quercetinc  74.10±2.2 19.24±1.04 

Epalrestatc   92.36±4.3 0.24±0.01 

a % Inhibition values are the mean ± SD of triplicate measurements at 50µM. bIC50 2 

values for ALR2 shown are the mean ± SD of triplicate measurements. cUsed as 3 

positive control compounds. ND: not determined. 4 

 5 

 6 
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 2 

Table 2. Selectivity assays of the 15 compounds for ALR2 and ALR1. 3 

Compd. 
 % ALR2 inhibition  

at 50uM a 

IC50
b 

(µM, ALR2) 

% ALR1inhibition at 

50µM a 

IC50
b 

(µM, ALR1) 

Selectivityc 

(ALR1/ALR2) 

1 76.17±6.2 10.00±0.59 55.98±2.4 37.93±1.25 3.79  

4 53.74±7.6 37.79±0.12 23.61±1.5 ND - 

5 68.80±6.1 31.80±3.38 8.55±1.3 ND - 

7 88.50±1.8 25.05±3.43 57.83±2.4 31.33±0.99 1.25 

10 80.70±1.9 10.20±1.83 63.20±5.7 32.82±3.58 3.22  

11 68.62±2.2 11.14±0.54 41.13±2.3 107.72±27.66 9.67  

13 56.76±4.9 26.55±3.29 7.50±2.2 ND - 

14 94.91±2.4 0.22±0.03 24.20±1.9 ND - 

17 72.30±4.3 15.67±2.76 18.14±5.2 ND - 

18 81.67±1.2 6.30±0.72 82.11±0.8 34.68±1.20 5.50  

19 83.61±1.6 10.03±2.33 40.87±5.9 ND - 

22 83.25±2.7 3.65±0.26 5.96±2.5 ND - 

23 70.58±4.5 20.20±1.74 2.62±0.6 ND - 

24 86.72±4.1 4.30±1.20 2.41±0.5 ND - 

25 94.30±1.8 0.89±0.13 41.01±4.3 94.65±15.54 106.35  

Epalrestatd 92.36±4.3 0.24±0.01 90.48±3.9 2.14±0.13 8.82  

 4 

a % Inhibition values are the mean ± SD of triplicate measurements at 50µM. bIC50 5 

values shown are the mean ± SD of triplicate measurements. cthe ratio of ALR1 IC50 6 

and ALR2 IC50.  
fUsed as positive control. ND: not determined.  7 

8 
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Table 3. SAR of acyl-β-phenylalanine and analogues. 1 

R1 N
H

OH

R2

R3

O O

 2 

 3 

Compd. Source R1 R2 R3 
% of ALR2 

inhibition at 50µM a 
IC50 (µM) b 

14 SYSU-22363S 

 

 
 

F H 94.91±2.4 0.22±0.03 

15 SYSU-22410S 

 

OCH3 H 34.36±3.8 ND 

22 SYSU-22433S 

 

H Cl 83.25±2.7 3.65±0.26 

23 SYSU-22439S 

 

H OCH3 70.58±4.5 20.20±1.74 

24 SYSU-22449S 

 

H H 86.72±4.1 4.3±1.20 

27 SYSU-22364S 

 

F H 49.49±2.3 ND 

28 SYSU-22367S 

 

 
 

Cl H 49.51±4.3 ND 

29 SYSU-22370S 

 

F H 20.56±2.8 ND 

30 SYSU-22421S 

 

CH3 H 45.22±5.2 ND 

31 SYSU-22436S 

 

H CH3 38.28±1.2 ND 

N

N
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32 SYSU-22454S 

 

H H 39.85±2.4 ND 

33 SYSU-22413S 

 

H OCH3 45.5±3.2 ND 

34 SYSU-22418S 

 

H Cl 16.21±1.2 ND 

35 SYSU-22368S 
 

OCH3 H 43.08±5.5 ND 

36 SYSU-22437 

 

H OCH3 48.94±4.7 ND 

a Inhibition at 50µM is expressed as the mean ± SD of triplicate measurements. b IC50 1 

values are the mean ± SD of triplicate measurements. ND: not determined. 2 

3 
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 1 

 2 

Table 4. Cell toxicity of selective ALR2 inhibitors in vitro 3 

 4 

Compound 
% HEK293 Inhibition at a 

12.5µM 25µM 50µM 100µM 

1 16.88±3.7 30.03±3.1 32.92±4.2 34.41±4.3 

4 13.63±2.1 14.13±2.7 14.24±3.4 21.12±3.3 

5 18.84±2.3 19.97±4.1 21.12±1.8 40.79±3.6 

7 15.24±3.5 18.00±2.1 20.24±2.6 22.41±2.9 

10 7.39±3.5 11.29±3.3 19.00±4.1 26.29±4.7 

11 33.08±3.7 36.58±4.8 50.54±4.3 68.81±4.2 

13 7.00±1.2 12.37±2.3 21.00±3.1 52.61±4.3 

14 10.46±2.0 14.67±2.4 16.50±3.2 21.05±3.4 

17 18.24±2.7 22.00±3.6 25.14±3.8 29.41±2.1 

18 14.06±2.0 21.20±1.9 26.69±2.8 30.51±4.0 

19 16.76±1.7 24.17±2.4 27.17±3.6 34.63±3.8 

22 24.50±2.4 35.03±3.1 39.01±3.9 43.49±4.1 

23 15.83±2.1 20.81±2.9 22.61±3.1 41.92±3.4 

24 11.35±2.0 17.73±3.1 19.47±2.3 35.87±2.4 

25 13.85±1.8 14.69±2.2 19.91±2.7 23.33±1.9 

epalrestatb 10.32±2.2 12.03±2.9 13.73±3.5 18.28±4.1 

aHEK293 inhibition is expressed as the mean ± SD of triplicate measurements 5 

bUsed as positive control 6 

7 

Page 40 of 41

ACS Paragon Plus Environment

Journal of Chemical Information and Modeling

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



41 

 

 1 

Table of Contents Graphic 2 

 3 

MD
simulations

Library

IC50=0.22 µM

Docking against multiple 
binding pocket conformations

MD
simulations

 

 4 

 5 

Page 41 of 41

ACS Paragon Plus Environment

Journal of Chemical Information and Modeling

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60




