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Abstract

Data fusion has been shown to work very well when applied to fingerprint-based

similarity searching, yet little is known of its application to Maximum Common

Substructure (MCS)-based similarity searching.

Two similarity search applications of the MCS will be focussed on here. Typically,

the number of bonds in the MCS, as well as the bonds in the two molecules being

compared, are used in a similarity coefficient. The power of this technique can be

extended using data fusion, where the MCS similarities of a set of reference molecules

against one database molecule are fused. This “group fusion” technique forms the

first application of the MCS in this work. The other application is that of the chemical

hyperstructure. The hyperstructure concept is an alternative form of data fusion,

being a hypothetical molecule that is constructed from the overlap of a set of existing

molecules.

This paper compares fingerprint group fusion (extended-connectivity fingerprints),

MCS similarity group fusion, and hyperstructure similarity searching, and describes

their relative merits and complementarity in virtual screening. It is concluded that

∗To whom correspondence should be addressed
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the hyperstructure approach as implemented here is less generally effective than

conventional fingerprint approaches.

Introduction

Similarity-based approaches to virtual screening are very widely used in lead discovery

programmes in the pharmaceutical and agrochemical industries1,2. In its simplest form, a

known bioactive reference structure is matched against each of the structures in a chemical

database to produce a ranking. The top-ranked molecules are those that are structurally

most similar to the reference structure, using some quantitative measure of similarity,

and are thus assumed to have the greatest likelihood of activity. Similarity searching is

normally conducted using 2D fingerprints3. While these have been shown to provide

both an effective and an efficient way of computing molecular similarity they are clearly a

very simple type of structural representation and there has hence been much interest in

alternative similarity measures based on 1D, 2D or 3D information of various kinds4. One

such approach is based on the encoding of molecules in chemical databases as labelled

graphs, so that similarity searching can be implemented using the maximum common

subgraph (MCS), which is often referred to as the maximum common substructure in

chemoinformatics. Algorithms which find the MCS align the graph representing the

reference structure with the graphs representing each of the database structures, finding

the database molecules that have the largest substructure(s) in common with the reference

structure.

If not one but several reference structures are available then the results of searches

for each of the individual structures can be combined using the methods of data fusion5.

These yield consensus rankings that often exhibit a greater degree of clustering of actives at

the top of the ranking than can be obtained using a single reference structure. Data fusion

can also be used to combine the rankings resulting from the use of multiple similarity
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measures; however in this paper we focus on the use of multiple reference structures, an

approach that has been called group fusion5. An alternative way of exploiting multiple

reference structures in fingerprint-based similarity searching is to combine their individual

fingerprints into a single consensus fingerprint6,7. This combines the representations of

the reference structures, rather than the rankings resulting from their use as reference

structures.

A concept parallel to the consensus fingerprint used by Shemetulskis et al. 7 , is that

of the chemical hyperstructure where, rather than fusing fingerprints into one, the actual

chemical graphs themselves are fused into one chemical graph. In graph theory terms, the

hyperstructure is a chemical abstraction of the “supergraph” concept8. The hyperstruc-

ture concept originates from multiple independent sources9–11, though these will not be

reviewed here.

Research on hyperstructures at Sheffield has stemmed from the work of Vladutz, and

Gould 12 , who proposed that hyperstructures be used to increase the efficiency of sub-

structure searching. Brown et al. 13 utilised the maximum common substructure (MCS)

in hyperstructure mapping and construction, both studies utilising genetic algorithms to

find the MCS. Hyperstructures however, were found to be unsatisfactory from a virtual

screening context when used in substructural analysis, being consistently outperformed

by UNITY fingerprints in retrieving active compounds14. The reasons for the poor perfor-

mance were unclear, though one proposed reason was that chemically non-meaningful

artefacts (termed “ghost substructures”) were present in the hyperstructures that resulted

from the mappings of otherwise structurally different features between molecules. How-

ever, the random and non-deterministic nature of the genetic algorithms used may also

have played a part in this.

In this paper we discuss the use of multiple reference structures for graph-based

similarity searching, using both types of fusion: fusing the rankings resulting from searches

that use the individual chemical graphs representing each of the reference structures; and
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fusing the individual chemical graphs into a single consensus graph, viz. a hyperstructure

as discussed further below. Specifically, we report MCS-based similarity searches using

both multiple reference structures and hyperstructures, and compare the results with those

obtained using conventional fingerprint-based group fusion.

Materials and Methods

Hardware and Software

The hardware used in this study featured an Intel(R) Core(TM) i7-2600 CPU @ 3.40GHz

processor with 16 GB of DDR3 RAM clocked at 1333 MHz, running Kubuntu 13.10. The

Konstanz Information Miner (KNIME) 2.9.215,16 running Java 1.6 was used for all experi-

mental aspects in this study, and the Chemistry Development Kit 1.5.3 (CDK) was used for

all chemoinformatics functionality unless otherwise noted17. 64-bit R 3.0.118 was used to

calculate all univariate statistics reported, and the hyperstructure construction and search

software was developed in Java, for use with KNIME.

Datasets

Three datasets have been used for the purposes of this study: MDDR; WOMBAT; and

MUV. The MDDR and WOMBAT datasets have been used in much previous work, both

at Sheffield and (in the case of MDDR) elsewhere. The MDDR dataset contains 102540

compounds, and WOMBAT contains 138049 compounds. With MDDR, 11 activity classes

were used as active molecules, yielding 8184 unique active molecules. Molecules not

belonging to the said activity class were treated as inactive. The same processes were also

applied to 14 WOMBAT activity classes, yielding 8767 unique actives. The MUV dataset19

involves compounds from 17 activity classes, with 30 actives in each activity class. MUV

was included as an alternative benchmark, due to its design consideration of distance
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equivalence. The molecules in the MUV activity classes have been selected to be similar to

their chosen decoy molecules, thus avoiding analogue bias which often characterises other

datasets. Full details of these three datasets are provided by Hert et al. 6 , Arif et al. 20 and

Rohrer and Baumann 19 respectively.

For each activity class, 10 maximally diverse compounds were selected as a training

set using the MaxMin algorithm as implemented in the KNIME version of RDKit, with

a randomly assigned seed21. These 10 molecules would be subsequently removed from

the dataset to remove self-similarity bias from the virtual screening statistics. RDKit

standard Morgan fingerprints were used with a maximum radius of 3 (similar to the

ECFP_6 fingerprint found in Pipeline Pilot22, folded into 1024 bits) as the fingerprint

descriptor in this study.

MCS Definition and Methodology

The MCS referred to in this work is the maximum common edge-induced substructure

(MCES), as opposed to the maximum common induced subgraph, which yields smaller

common mappings and is less chemically intuitive23. The MCES can be further abstracted

into the connected (cMCES) and disconnected MCES (dMCES). The cMCES (Figure 1a) is

the single MCES graph, where all the nodes in the subgraph are connected to at least one

other node in the subgraph. The dMCES (Figure 1b) by contrast, sometimes known as the

maximum overlap set (MOS), can contain multiple (separated) subgraphs, representing

all the edges in common between the graphs being matched. In this study, the MCS will

refer to the dMCES at all points, which we are using as it is better suited to comparing

structurally dissimilar graphs (as shown in Figure 1, where bold-facing denotes common

substructures).

The MCES was found using the MaxCommonSubstructure class in JChem 6.1.0, 2014, by

ChemAxon24,25. This algorithm has been claimed by its authors to be the quickest inexact

method for finding the MCES between two molecules, and also incorporates a number of
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Figure 1: MCS types between two molecules differing by a single central atom. 1a is the
connected Maximum Common Substructure, whereas 1b is the disconnected Maximum
Common Substructure

heuristics to adjust the mappings, making the alignments more chemically feasible26.

Hyperstructure Construction and Application

The construction process used here is based on the process described by Brown et al. 27 , an

example being depicted in Figure 2. The process is as follows:

1. Select the largest molecule and remove it from the set of available molecules. This

molecule is now the first hyperstructure.

2. Select the next most similar molecule, based on the number of bonds in common

between the hyperstructure and this molecule.

3. Use the MCS procedure to overlap and then to append this molecule to the hyper-

structure, and remove this molecule from the set. Bonds of different types may

be overlapped, yielding degenerate bond types (depicted by dashed lines in the

hyperstructures).
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Figure 2: The hyperstructure construction process with two molecules, shown in blue and
red - bold bonds indicate those in the MCS between the two molecules. In the resulting
hyperstructure, black bonds and atoms indicate the MCS, while unique bonds and atoms
are coloured based on the original molecules.

4. Repeat steps 2 and 3 until the set is empty.

The Tanimoto coefficient is the standard similarity coefficient for quantifying chemical

structural similarity, and was used for the MCS and fingerprint scores described in the

next section. However, the asymmetric Tversky coefficient was used for the hyperstructure

similarity calculations. This is more suitable than the Tanimoto coefficient for similarity

searching using hyperstructures, due to the size differences (notably in this work, the

number of bonds), since the hyperstructure will be at least as large as the biggest molecule

used to build the hyperstructure. We also expect substructure similarity to play a large

role in similarity searching, since the hyperstructure collectively represents the scaffolds

present in the input molecules. The Tversky coefficient can be biased towards substructure

similarity. The Tversky coefficient is defined as

STv =
c

β(a − c) + (1 − β)(b − c) + c
β = 0 →

c

b
β = 1 →

c

a
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where c in this case represents the number of edges in the MCS, a is the number of bonds

in the database molecule, and b the number of hyperstructure bonds. Higher values of

β give a near substructure-like search, whereas lower values bias the results towards a

superstructure-like search (as exemplified in Figure 3). One should note that exclusion of

the terms β and (1 − β) yields the Tanimoto coefficient. In internal studies, several values

of β have been tested, and the value of 0.9 emerged as the most generally suitable for

virtual screening recall - a value which has been found to also be beneficial in similarity

searching using fingerprints28,29, and has also shown potential in scaffold hopping with

fingerprints30.

HN
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NHS

HO

CH

3

N

H

CH

3

O

Hyperstructure

Database 

Molecule

a = 7 (1)

b = 25 (2)

c = 6 (3)

STv = 0.259 : β = 0.1 (4)

STv = 0.375 : β = 0.5 (5)

STv = 0.682 : β = 0.9 (6)

Figure 3: An example of how the value of β influences similarity in the Tversky coefficient.
Edges in the MCS are marked in bold

Similarity Search Methodology

The reference sets of active molecules mentioned were subjected to one of three search

methods:

• Hyperstructure construction and searching, using the Tversky coefficient with a β of

0.9 as discussed above.
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• MCS group fusion using the Tanimoto coefficient (with the MAX rule on similarity

scores)

• Morgan fingerprint group fusion using the Tanimoto coefficient (with the MAX rule

on similarity scores)

Data fusion was also implemented on the rankings obtained with fingerprints, MCS and

hyperstructures. Given a set of similarity values (or ranks) S1, S2, ... Sn, the MAX fusion

rule identifies the maximum similarity value S. The SUM fusion rule by contrast is the

summation of S1, S2, ... Sn. SUM fusion of the ranks were used here, as this combination

rule is more appropriate when fusing different similarity measures5. A summary of

method names (including fusion types) are described in the Table 1.

Table 1: Descriptions of the abbreviations of search methods employed here.

Method Description
HS Hyperstructure search applied using Tversky similarity co-

efficient, with a β of 0.9
FP Fingerprint Tanimoto similarity with the MAX fusion rule

applied to the similarity scores
MCS Tanimoto similarity (based on the bonds in the MCS and the

two structures being compared), with the MAX fusion rule
applied to the similarity scores

FP MCS SUM fusion of FP and MCS ranks
FP HS SUM fusion of FP and HS ranks
MCS HS SUM fusion of MCS and HS ranks
FP MCS HS SUM fusion of FP, MCS and HS ranks

Evaluation metrics

Two measures have been used to quantify the effectiveness of screening. The first is the

Enrichment Factor (EF) for the top 1% of ranked compounds (shown as EF1%). EF is a

simple statistic to interpret for determining recall. We appreciate however that the EF does

not account for the relative rank of compounds. Two activity classes in MDDR also have a
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number of actives which exceed 1% of the proportion of the database (renin inhibitors and

Substance P antagonists, having 1130 and 1246 active compounds respectively). We have

therefore chosen to use the Boltzman-Enhanced ROC score (BEDROC) as an alternative

evaluation score. BEDROC scales from 0.0 to 1.0, where a value closer to 1.0 indicates

superior virtual screening performance31.

A small problem with BEDROC is the need to set a tuning factor α, which determines

how many of the top-ranked compounds contribute to the BEDROC score. A higher value

of α means that a smaller percentage of the top-ranked compounds contributes to the

majority of the BEDROC score. A value of 160.9 for α has been chosen in this study as

it corresponds to EF1%, where approximately 80% of the BEDROC score is explained by

the top 1% of compounds in the ranked list (refer to Table 2 of Truchon and Bayly 31). It

should be noted that whilst it has been shown that BEDROC and EF are often strongly

correlated32, BEDROC takes account of the ratio of actives to inactives, where EF does

not. The same study notes that the two measures are uncorrelated when this ratio differs

between activity classes.

Enrichment involves retrieving as many active compounds as possible, but it is often

just as important in a virtual screening context, to find a few structurally dissimilar

compounds rather than a large set of close analogues. A method that identifies multiple

different “cores” or “scaffolds” is said to be proficient at scaffold-hopping. Scaffolds in this

work are represented by Bemis-Murcko frameworks with bond and atom labels removed33,

but with R-groups kept when attached to linker atoms (as is the method for the RDKit

definition of Murcko frameworks in KNIME). Two statistics will be presented in this study

to assess the ability of a method to obtain unique scaffolds. The first is the “First-Found”

scaffold enrichment factor, using the top 1% of the ranked list of molecules (represented

here as EFFF1%). “First-Found” refers to the rank of the top-ranked molecule belonging to

a scaffold, and ignoring all subsequent molecules belonging to the scaffold. Although this

measure of obtaining diversity has been criticised for several statistical flaws34, we use it
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here as we are only interested in whether an active scaffold is identified or not in a ranked

list. We are not interested in how the compound ranks are distributed for the given active

scaffold. This represents a common goal in a virtual screening project if one is seeking new

scaffolds. The other measure is the mean number of active molecules per active scaffold in

the top 1% ranking (represented here as F1%). A lower value for F1% indicates that a search

method retrieves on average less actives per scaffold, and is therefore less biased towards

finding analogues for a small number of scaffolds

To get an idea of whether the search techniques retrieved different sets of molecules, we

calculated a number of physicochemical descriptors. These were calculated for the active

compounds in the top 1% of the ranked database resulting from each similarity search

method. The descriptors used were the counts of the number of rotatable bonds, heavy

atoms, heteroatoms and rings; the length of the largest acyclic chain, and the fragment

complexity. This last descriptor was the CDK implementation of the work described by

Nilakantan et al. 35 :

C = |B2 − A2 + A|+ H/100

where A is the number of non-hydrogen atoms, B is the number of bonds, C is the fragment

complexity and H is the number of heteroatoms.

To assess the overlap between the ranked lists resulting from two different search

methods, we calculated the number of actives common to the top 1% of the two ranked

lists.

Results and Discussion

Figure 4 summarises recall performances for the similarity search methods tested, and

Figure 5 summarises scaffold-retrieval, averaged over the different activity classes in each

dataset. The immediate conclusion from the statistics tables is, on comparing the mean

values of BEDROC and EF1%, that FP is significantly superior to HS, with MCS lying
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(a) MDDR

(b) MUV

(c) WOMBAT

Figure 4: Bar charts showing mean recall statistics for the datasets. Dark-coloured bars
indicate that the method has a mean significantly different from that of FP (p ≤ 0.05),
as determined by a paired 2-tailed Wilcoxon signed-rank test. Error bars represent one
standard deviation above and below the mean.
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(a) MDDR

(b) MUV

(c) WOMBAT

Figure 5: Bar charts showing mean scaffold-retrieving statistics for the datasets. Dark-
coloured bars indicate that the method has a mean significantly different from that of FP (p
≤ 0.05), as determined by a paired 2-tailed Wilcoxon signed-rank test. Error bars represent
one standard deviation above and below the mean.
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between the two. This suggests that fingerprints are better suited to virtual screening,

the p-values for the Wilcoxon signed-rank tests being significant. In all three datasets

the fingerprints significantly (and consistently) outperformed hyperstructures in virtual

screening ability. The observation that fingerprints generally match or outperform MCS-

based methods is consistent with the related work of Raymond and Willett 36 , though

in this work the fingerprints used are of a better standard in terms of virtual screening

recall than those used by Raymond and Willett 36 . A further conclusion from the figures

is, as has been noted by previous studies, that the MUV dataset presents a much harder

challenge for ligand-based virtual screening methods such as those presented here, since

the performance is inferior compared to the other two datasets.

The data fusion techniques show improved BEDROC scores over the results for HS and

MCS, though none of them are superior to FP alone. There exists only one technique which

FP doesn’t consistently outperform, this being FP MCS, though the time requirements (see

next section) to calculate the MCS in this technique makes FP preferable.

FP interestingly outperforms all the other techniques in terms of EFFF1% as for BEDROC,

implying that fingerprint group fusion is good for scaffold hopping. Effective scaffold

hopping has been observed with single reference structures37,38, thus it is unsurprising that

group fusion of fingerprints also yields a favourable scaffold hopping potential. Although

HS generally retrieves a lower number of unique active scaffolds, it can be seen that HS

almost always obtains a significantly lower F1% than the FP and MCS methods. From

this, it can be inferred that the top-ranked active molecules retrieved by hyperstructures

have less analogues per scaffold than those retrieved with fingerprints (in relation to the

number of actives retrieved). MCS by comparison has no significant difference in scaffold

retrieval compared to fingerprints, and also has an inferior virtual screening performance

to fingerprints. The data fusion techniques, from their BEDROC and EF1% values, show

compromises in diversity retrieval. Of note, FP HS and MCS HS for all three datasets have

significantly lower F1% values than FP.
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Table 2: Time statistics on the constructed hyperstructures for each class in the MDDR
dataset. HSC is the hyperstructure construction time. FPS, HSS and MCSS are times for
fingerprint, hyperstructure and MCS searching respectively. All times in this table are in
milliseconds.

targetID FPS HSC HSS MCSS

6233 1.5 · 104 1.5 · 103 9.1 · 105 1.8 · 106

6235 5.9 · 104 1.0 · 103 1.4 · 106 2.3 · 106

6245 1.4 · 104 6.3 · 102 1.1 · 106 2.0 · 106

7701 1.5 · 104 9.0 · 102 1.5 · 106 2.1 · 106

31420 3.4 · 104 1.6 · 103 2.4 · 106 4.9 · 106

31432 1.9 · 104 1.6 · 103 2.1 · 106 3.4 · 106

37110 1.7 · 104 1.0 · 103 1.9 · 106 2.9 · 106

42731 4.4 · 104 2.3 · 103 3.2 · 106 4.0 · 106

71523 2.4 · 104 2.3 · 103 3.0 · 106 4.0 · 106

78331 2.0 · 104 1.1 · 103 1.3 · 106 2.2 · 106

78374 2.1 · 104 1.0 · 103 2.0 · 106 2.6 · 106

Table 2 shows the performance times of the hyperstructure and MCS searches. The

typical search time requirement for hyperstructures has a mean of 82.6 times greater than

than fingerprint searches, but the hyperstructure searches are consistently faster than MCS.

The fraction of time required for hyperstructure searches compared to MCS is between

0.49 and 0.8 with a mean of 0.638, depending on the dataset and activity class.

Table 3: Mean values of physicochemical properties of the actives of the top 1% ranked lists
for given methods. Values with the prefix “p_” reflect the p-values from paired 2-tailed
Wilcoxon signed rank tests, tested against FP.

Method Complexity Largest Chain Rotatable Bonds Heavy Atoms Heteroatoms Rings

FP 3570 15.022 11.511 32.253 7.714 3.874
MCS 3146 13.188 10.554 29.995 6.793 3.655
HS 3969 16.469 12.486 33.913 7.632 3.873
p_MCS 0.002 0.005 0.054 0.005 0.005 0.175
p_HS 0.010 0.042 0.083 0.032 1.000 0.765

The physicochemical properties shown in Table 3 highlight some statistically significant

differences in the molecules between hyperstructure, MCS and fingerprint searches. Of

immediate note is that hyperstructures retrieve significantly larger (more atoms) active

molecules than fingerprints. In addition to being larger, the molecules are more complex
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Table 4: Complementarity of search methods. Each cell gives the proportion of identified
active compounds in common with the two methods, divided by the number of actives
identified by the method in the column.

Method MCS FP HS

MCS 1.000 0.312 0.352
FP 0.609 1.000 0.583
HS 0.293 0.248 1.000

(a) Renin-Angiotensin inhibitors

Method MCS FP HS

MCS 1.000 0.329 0.105
FP 0.392 1.000 0.105
HS 0.016 0.013 1.000

(b) Cyclooxygenase Inhibitors

Method MCS FP HS

MCS 1.000 ± 0.000 0.445 ± 0.122 0.153 ± 0.085
FP 0.268 ± 0.074 1.000 ± 0.000 0.123 ± 0.074
HS 0.230 ± 0.087 0.317 ± 0.163 1.000 ± 0.000

(c) Mean values across all classes ± one standard deviation.

and possess larger acyclic chains, but have no significant difference in heteroatom and

ring count. This implies that the molecules are less “feature-rich” and more chain-rich. By

contrast, the MCS-retrieved active molecules are smaller and less chain-rich, though also

possessing significantly less heteroatoms.

In the MDDR dataset, the Renin-Angiotensin class is the most intrinsically similar class,

whereas cyclooxygenase inhibitors are the most diverse. This is on the basis of the mean

pairwise similarities between all pairs of active molecules for said activity classes using

Unity 2D fingerprints and the Tanimoto coefficient6. Table 4 shows a strong lack of overlap

in the retrieved actives of the techniques presented, both for the two activity classes as

well as with the mean values. Of note is that FP and MCS have a greater overlap with each

other than with the hyperstructure searches. These observations are more pronounced

with the cyclooxygenase inhibitors than with renin, though even with the former there is

still little overlap.

One of the potential attractions of the HS approach is that it may provide a way of

identifying novel scaffolds. The top five ranked actives involved in the MDDR COX

inhibitors search are shown in Figure 6b, with the reference structures from which the
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Figure 6: Compounds involved in the MDDR COX inhibitors search. 6a shows the
molecules used to construct the hyperstructure (numbered arbitrarily). 6b shows the top
five-ranked active compounds retrieved by the hyperstructure, with their ranks displayed.
6c shows the top five-ranked active compounds retrieved by FP, with their ranks displayed.
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Table 5: Similarities of molecules in Figure 6. The similarity reported uses the Tanimoto
coefficient with the MAX fusion rule to the reference molecules, the reference molecule
beinq quoted. The fingerprint used is as with the FP method.

Molecule Similarity Ref

56 0.260 r7
346 0.228 r2
353 0.570 r1
484 0.685 r9
485 0.126 r2

(a) Retrieved actives with HS
(Figure 6b)

Molecule Similarity Ref

2 0.769 r9
3 0.756 r9
4 0.732 r9
5 0.732 r9
6 0.718 r9

(b) Retrieved actives with FP
(Figure 6c)

hyperstructure was constructed being in Figure 6a. Comparisons of these two will reveal

that the search has identified three scaffolds not present in the reference structures (actives

56, 346 and 485). Of note, the top five compounds retrieved by FP (Figure 6c) all share

the same scaffold (with r9) and generally differ from each other by just one atom. The

similarities are also evident from Table 5, where the FP similarities for the FP-retrieved

actives are much higher than those retrieved by HS. This ability to prioritise analogues

over non-analogues is a major reason for why the fingerprint-MAX rule outperforms HS

(and it is unsurprising this works so well given that 10 molecules with different scaffolds

are used as the reference set).

Conclusions

The results of this investigation showed that both hyperstructures and MCS fusion, at least

for the datasets used, are inferior to a conventional fingerprinting method for performing

virtual screening in terms of enrichment, and scaffold retrieval. MCS group fusion is

significantly slower than hyperstructure-based similarity searching, albeit with a slight

gain in virtual screening performance. Although hyperstructures retrieve fewer scaffolds

than fingerprints, they retrieve a better spread of compounds across scaffolds compared to

all the other techniques tested, implying that they are less likely to find analogues than
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MCS and fingerprint group fusion techniques. MCS and, in particular, hyperstructure

searches, have low overlaps with fingerprints in the active compounds retrieved. The

physicochemical properties of the actives retrieved often differ between the three tech-

niques as well: compared to fingerprints, hyperstructures tend to retrieve larger molecules

with greater chains and fewer heteroatoms, whereas the opposite is observed with MCS

searches. Data fusion of the techniques used in this study generally yields compromises

in virtual screening performance. All fusion techniques here outperformed MCS and

hyperstructure-based searches alone, but failed to outperform fingerprint searching.

The results above demonstrate clearly that fingerprints out-perform hyperstructure

searches in terms of numbers of retrieved actives. One obvious reason for this behaviour

is fingerprints’ ability to identify large numbers of close analogues to an entire refer-

ence structure, something that is much more difficult for a hyperstructure that has been

constructed from multiple individual molecules, especially when these are structurally

disparate (as is the case here). It should also be noted that the baseline of comparison is a

type of fingerprint that is known to be extremely effective for virtual screening. Finally,

the MCS algorithm used in this work is inexact, and also generates only a single MCS,

even if several different (and potentially more chemically feasible) ones are possible. These

factors influence the performance of the hyperstructure concept, both in hyperstructure

construction and similarity searching. It would thus be worth investigating potential

performance changes using alternative MCS algorithms.
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