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Data have been assembled on the enthalpies of solvation of 373 compounds in water and 138 compounds
in 1-octanol. It is shown that an Abraham solvation equation with five descriptors can be used to correlate
the experimental solvation enthalpies to within standard deviations of 3.68 kJ/mol (water) and 2.66 kJ/mol
(1-octanol). The derived correlations provide very accurate mathematical descriptions of the observed
enthalpies of solvation, which in the case of water span a range of 150 kJ/mol. Division of the experimental
values into a training set and a test set shows that there is no bias in predictions and that the predictive
capability of the correlations is better than 4 kJ/mol.

INTRODUCTION

The air-to-water and air-to-octanol partition coefficients,
KW andKOTOH, as well as their temperature dependence, are
used in predicting the fate and transport of volatile organic
compounds (VOCs) in the environment. Of particular interest
are the processes involving the partition of VOCs from the
gas phase into natural water systems and water droplets, and
into systems containing natural organic matter. Measured air-
to-octanol partition coefficient data have been used with
success to describe the partitioning behavior of organic
compounds between the gas phase and soils,1,2 plants,3-7

aerosols,8-11 and human faeces.12 Temperature dependence
of KW andKOTOH is needed to predict the effect of ambient
temperature changes on environmental phase distribution, to
explain the accumulation of VOCs in remote mountainous
regions and cold arctic climates, and to describe the release
of organic contaminants from melting ice and snow. A recent
paper13 addressed the misinterpretations that can result
whenever the temperature dependence is not taken into
account.

In order to improve the quality of experimental data used
in environmental modeling computations, Cole and Mackay14

have developed procedures for evaluating the consistency
of experimental solubility data, air-to-water and air-to-organic
partition coefficients using known thermodynamic relation-
ships. Their “three-solubility” approach allows missing
property data to be estimated. The approach also identifies
inconsistencies in reported values. Knowledge of the tem-
perature dependence ofKW andKOTOH helps in establishing
part of the evaluation criteria.

To date, we have developed linear free energy correlations
for the gas-to-water coefficients:15

and gas-to-octanol partition coefficients:16

based on the Abraham solvation parameter model. Both
correlations pertain to a temperature of 298.15 K. The
independent variables, or descriptors, in eqs 1 and 2 are solute
properties, as we have discussed before several times.17-20

E is the solute excess molar refractivity in units of (dm3

mol-1)/10; S is the solute dipolarity/polarizability;A andB
are the solute overall or summation hydrogen bond acidity
and basicity, andL is the logarithm of the solute gas-
hexadecane partition coefficient at 298.15 K The regression
coefficients and constants (c, e, s, a, b, and l) are obtained
by regression analysis of experimental results for a given
process (i.e., a given partitioning process and so forth). For
partition coefficients involving two condensed phases, the
c, e, s, a, b, and l coefficients represent differences in the
solvent phase properties. Note that, for the gas-to-water
partition, an alternative equation in which the descriptorV
replacesL yields a slightly better correlation.15 V is the
McGowan volume in units of (dm3 mol-1)/100.

In the present study, we are expanding our considerations
to other temperatures and properties by developing Abraham
model correlations for the enthalpies of solvation of gaseous
solutes,∆SolvH°, in both water and 1-octanol. The derived
enthalpic correlations, when combined with eqs 1 and 2,
allow one to estimate the gas-to-water and gas-to-octanol
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log KW ) -1.271+ 0.822E + 2.743S+ 3.904A +
4.814B - 0.213L (1)

log KOTOH ) -0.119- 0.203E + 0.560S+ 3.576A +
0.702B + 0.940L (2)
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partition coefficients at temperatures not too far removed
from 298.15 K.

In principle one could develop a separate gas-to-liquid phase

partition correlation for each temperature to be studied as
was recently done for the partitioning of gaseous solutes into
1-hexadecanol.21 It is unlikely however that one would be
able to find sufficient experimental data to develop meaning-
ful correlations at more than just one or two select temper-
atures. To get around this problem, we have elected to
integrate enthalpies of solvation into our predictive method
and thus have derived correlation equations based on
measured∆SolvH° data for solutes dissolved in both water
and 1-octanol. The enthalpic correlations use the same set
of solute descriptors as do our existing equations for solute
transfer from the gas phase, so no additional information is
required. For informational purposes, we note that Abraham
and co-workers used earlier versions of the basic model to
correlate the enthalpies of transfer of 86 solutes from water
to hexadecane22 and the enthalpies of transfer of 25 aliphatic
and aromatic solutes from aqueous solution to 2,2,4-
trimethylpentane.23 Our study differs from the two earlier
works in that we are correlating enthalpies of transfer from
the gas phase rather than the enthalpies of transfer between
two condensed phases. Moreover, the present study involves
considerably more compounds, and we have included an
assessment of the predictive capability of each derived
correlation by constructing separate training and test data
sets.

There have been but few previous attempts to correlate
∆SolvHW° values and, as far as we are aware, only two to
correlate ∆SolvHOTOH° values. Cabani et al.24 set out a
fragmentation scheme for 197∆SolvHW° values. For the 128
compounds that generated “reliable” parameters, they fitted
the ∆SolvHW° values with a standard deviation of only 1.7
kJ/mol; however, no fewer than 48 structural (fragment)
parameters were used in the calculation. Ku¨hne et al.25

studied a much larger database of 456 compounds and fitted
∆SolvHW° values to give a standard deviation of 7.1 kJ/mol
with 46 structural parameters. Plyasunov and co-workers26-30

have also set out fragmentation schemes for∆SolvHW°, but
these are restricted to specific compounds (for example,
aliphatic esters or aliphatic ethers). As regards the correlation
of ∆SolvHOTOH° values, only Bernazzani et al.31,32 have
reported any scheme, and that for a limited number of
compounds only.

EXPERIMENTAL METHODS

Our search of the chemical literature found compilations
of enthalpy of solvation data for 456 and 89 solutes dissolved
in water22,24 and 1-octanol,31-33 respectively, plus several
papers34-69 that reported experimental partial molar enthalpies

of solution of liquid and crystalline organic compounds. The
latter data were determined by either direct calorimetric
methods or calculated on the basis of the temperature
dependence of measured infinite dilution activity coefficient
data, and the published values were converted to gas-to-water
and/or gas-to-octanol enthalpies of transfer by subtracting
the solute’s standard molar enthalpy of vaporization,70

∆VapH298K°, or standard molar enthalpy of sublimation,71

∆SubH298K°, at 298.15 K.

For purposes of the this study, we have considered enthalpies

of solvation, ∆SolvH°, and what will be called “inner
energies”,∆SolvU, to be equivalent. Goss72 discusses the
difference between the∆SolvH° and ∆SolvU in terms of the
concentration units used in expressing the gas-phase con-
centrations of the Henry’s law constant. At 298 K, the
difference between the quantities amounts to about 2.5 kJ/
mol,72 which is less than the experimental uncertainty
associated with many of the observed values. Given the slight
numerical difference between the two values under normal
environmental conditions, we have combined both sets of
numerical values into a single database, as has been done in
the past by most research groups that have developed
predictive methods for enthalpies of solvation. Most of our
tabulated values are enthalpies of solvation; however, there
may be a few “inner energies” listed in Tables S1 and S2
(Supporting Information) that were mislabeled as enthalpies
in the original data source.

On the basis of an initial assessment of the available
experimental data, we eliminated from consideration all
experimental data that pertained to temperatures outside of
the temperature range of 283-318 K, or values from
published compilations for which we could not find the
original data source. Enthalpies of solvation are temperature-
dependent, and we did not want to introduce large errors in
the database by including experimental data far removed
from 298 K. Also excluded were values based on solubility
measurements where the equilibrium solid phase might be
either a hydrated (or solvated) form of the solid solute or
values that might contain appreciable contributions from
solute dissociation (ionization). For several solutes, there
were multiple, independently determined values. In such
cases, we selected direct calorimetric data over indirect values
based on the temperature dependence of measured solubilities
or infinite dilution activity coefficients. Using the aforemen-
tioned criteria, 373 molar enthalpies of solvation in water
and 138 molar enthalpies of solvation in 1-octanol were
selected for regression analysis. The experimental∆SolvHW°
and ∆SolvHOTOH° values are listed in Tables S1 and S2 of
the Supporting Information, respectively.

Molecular descriptors for all of the compounds considered
in the present study are also tabulated in Tables S1 and S2.
The numerical values in Tables S1 and S2 came from our
solute descriptor database, which now contains values for
more than 3500 different organic and organometallic com-
pounds. The descriptors were obtained exactly as described

log KW(atT) - log KW(at 298.15 K))
-∆SolvHW°

R
(1/T - 1/298.15) (3)

log KOTOH(atT) - log KOTOH(at 298.15K) )
-∆SolvHOTOH°

R
(1/T - 1/298.15) (4)

liquid solutes:∆SolvH° ) ∆SolnH° - ∆VapH298K° (5)

crystalline solutes:∆SolvH° ) ∆SolnH° - ∆SubH298K°
(6)
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before, using various types of experimental data, including
water-to-solvent partitions, gas-to-solvent partitions, solubili-
ties, and chromatographic data.18 Solute descriptors used in
the present study are all based on experimental data. There
is also commercial software73 and several published estima-
tion schemes74-77 available for calculating the numerical
values of solute descriptors from molecular structural
information if one is unable to find the necessary partition,
solubility, and/or chromatographic data.

RESULTS AND DISCUSSION

Enthalpies of Solvation in Water. Our literature search
found enthalpies of solvation for 372 compounds dissolved
in water at 298 K. Initial analysis of the experimental data
given in Table S1 indicated 4-chlorophenol,N-methylpyr-
rolidine, tetrachloroethylene, and 1-octylamine to be outliers.
In the case of octylamine, we believe that the experimental
value should be considerably more exothermic. Enthalpies
of solvation for the alkylaminessmethylamine (∆SolvHW° )
-45.3 kJ/mol), ethylamine (∆SolvHW° ) -53.7 kJ/mol),
1-propylamine (∆SolvHW° ) -56.0 kJ/mol), 1-butylamine
(∆SolvHW° ) -59.0 kJ/mol), 1-pentylamine (∆SolvHW° )
-62.1 kJ/mol), and 1-hexylamine (∆SolvHW° ) -65.9 kJ/
mol)sbecome more exothermic with increasing alkyl chain
length.22 The experimental value for 1-octylamine,∆SolvHW°
) -52.3 kJ/mol,25 does not follow the observed trend.
Similarly, the measured value for 4-chlorophenol of∆SolvHW°
) -35.9 kJ/mol is far out of line with the value for
3-chlorophenol of∆SolvHW° ) -50.3 kJ/mol. The four

outliers were removed from the data set, and the final
regression analysis was performed to yield

One additional compound, erythritol, was used in developing

eq 8. Erythritol’s enthalpy of solvation is∆SolvHW° ) -114
kJ/mol, and there are very few compounds in our database
having large negative enthalpies of solvation. We could not
include erythritol in the eq 7 regression analyses because its
L descriptor is not known. Here and elsewhere,N corre-
sponds to the number of solutes,R denotes the correlation
coefficient, SD is the standard deviation, andF corresponds
to the Fisher F statistic. All regression analyses were
performed using SPSS statistical software.78 Both eqs 7 and
8 are statistically very good, with standard deviations of 3.7
and 4.0 kJ/mol for a data set that covers a range of 150 kJ/
mol (see Figures 1 and 2 where plots of the calculated values
of ∆SolvHW° on eqs 7 and 8 against the observed values are
shown). It is interesting that the rare gases, inorganic gases,

Figure 1. Plot of the calculated values of∆SolvHW°on eq 7 against the observed values.

∆SolvHW° (kJ/mol)) - 13.310(0.457)+
9.910(0.814)E + 2.836(0.807)S- 32.010(1.102)A -

41.816(0.781)B - 6.354(0.200)L

(with N ) 368, SD) 3.68,R2 ) 0.964,Radj
2 )

0.964,F ) 1950.5) (7)

∆SolvHW° (kJ/mol)) - 6.952(0.651)+
1.415(0.770)E - 2.859(0.855)S- 34.086(1.225)A -

42.686(0.850)B - 22.720(0.800)V

(with N ) 369, SD) 4.04,R2 ) 0.959,Radj
2 )

0.958,F ) 1688.2) (8)
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and polyaromatic hydrocarbons all fit eqs 7 and 8, and yet
they do not fit the corresponding equations in the gas-to-
water partition coefficient.15 Equation 7 is slightly the better
equation statistically, but eq 8 might be useful in cases where
the L descriptor is not known. Note that, because the
McGowan volume,V, is calculated from the individual
atomic sizes and numbers of bonds in the molecule,79 it is
always known.

There have been but few previous attempts to correlate
∆SolvHW° values. Cabani et al.24 set out a fragmentation
scheme for 197∆SolvHW° values. For the 128 compounds
that generated “reliable” parameters, they fitted the∆SolvHW°
values with a standard deviation of only 1.7 kJ/mol; however,
no fewer than 48 structural (fragment) parameters were used
in the calculation. Ku¨hne et al.25 studied a much larger
database of 456 compounds and fitted∆SolvHW° values to
give a standard deviation of 7.1 kJ/mol using 46 structural
parameters. In comparison, our method uses only five
independent variables to fit 368 data points to within 3.7
kJ/mol on eq 7. As an informational note, Ku¨hne et al. did
not provide literature references for the 456 gas-to-water
enthalpies of transfer used in their study. In building our
database, we included values from the Ku¨hne et al. study
only if we were able to find the original literature reference
so that we could verify that the experimental values pertained
to temperatures at or near 298 K and were based on measured
enthalpy of vaporization data, rather than estimated∆VapH298K°
values. The authors did mention that they had taken steps to
validate their database; however, in the written text, the
authors stated that the maximum value of∆SolvHW° is 108
kJ/mol and that a temperature range of between 0 and 100
°C is covered. Enthalpies of solvation are temperature-
dependent, and for our intended applications, we prefer the
values to pertain to temperatures at or near 298 K. Moreover,

the large enthalpy of vaporization database of Chickos and
Acree70 does not have∆VapH298K° values for some of the
liquid compounds from the Ku¨hne et al. study. Before
including such compounds in our database, we wanted to
see how the∆VapH298K° values were obtained. Plyasunov and
co-workers have also set out fragmentation schemes for
∆SolvHW°, but these are restricted to specific compounds (for
example, aliphatic esters or aliphatic ethers). Maikut and co-
workers80 correlated the enthalpy of solvation of 37 organic
compounds in water with a six-parameter equation. The
compounds studied by the authors covered a much smaller
range of experimental values,∆SolvHW° ) 24.7-91.2 kJ/
mol, and the resulting root-mean-square (RMS) deviation
of RMS ) 4.48 kJ/mol was larger than that found for either
eqs 7 or 8. The authors did exclude three solutes (cyclohex-
anone, dimethoxyethane, and diethyl ether) from their
original data set of 40 compounds to get to a squared
correlation coefficient ofR2 ) 0.91.

Goss72 recently proposed an indirect method for estimating
the enthalpies of solvation of organic compounds on the basis
of the Abraham solvation model. The author used the
experimental gas-to-water partition coefficients at 298 K
reported by Abraham et al.,15 along with the enthalpies of
solvation compiled by Ku¨hne et al., to calculate the gas-to-
water partition coefficients at several temperatures between
273 and 318 K. A separate logKW correlation was derived
for each temperature studied. The derived logKW correlations
were then used to generate predicted logKW values at each
temperature, which were then plotted versus 1/T. Enthalpies
of solvation were back-calculated from the slopes of the
resulting log KW versus 1/T curves for each of the 217
compounds studied. No statistical information was given in
the paper comparing the back-calculated and observed
∆SolvHW° values; however, the graphical comparison that the

Figure 2. Plot of the calculated values of∆HSolv,W° on eq 8 against the observed values.
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author presented showed deviations as large as 10-15 kJ/
mol for many of the 217 compounds. Equation 7 provides a
more accurate prediction of∆SolvHW° than the indirect
method of Goss. For most of the 368 compounds that we
studied, the predicted and observed values differed by less
than 5 kJ/mol. Neither Cabani et al. nor Schu¨ürmann et al.
nor Maikut and co-workers nor Goss assessed the predictive
capability of their method by use of training sets and test
sets.

In order to assess the predictive ability of eq 7, we divided
the 368 data points into a training set and a test set by
allowing the SPSS software77 to randomly select half of the
experimental data points. The selected data points became
the training set, and the compounds that were left served as
the test set. Analysis of the experimental data in the training
set gave

with N ) 184, SD) 3.58,R2 )0.967,Radj
2 )0.966, andF

) 1029.4. There is very little difference in the equation
coefficients for the full data set and training data set
correlations. The training set was then used to predict
∆SolvHW° values for the 184 compounds in the test set. For
the predicted and experimental values, we find that SD)
3.83, average absolute error (AAE)) 3.19, and average error
(AE) ) -0.16. There is therefore very little bias in the
predictions using eq 7 with AE equal to-0.16 kJ/mol. The
test and training set analyses were performed three times. A
more detailed description of the analyses is provided in
Tables S4-S6 in the Supporting Information. This seems
to be the first time that any predictive assessment of an
equation for∆SolvHW° has been made.

Enthalpies of Solvation in Octanol. In Table S2 (Sup-
porting Information) are collected values of the enthalpies
of solvation in octanol for 138 compounds.22,31-33,42,49-52,62-65

Application of the general eqs 1 and 2 leads to eqs 10
and 11.

Although both eqs 10 and 11 are statistically reasonable, eq

10 is appreciably better than eq 11, and it is eq 10 that we
would recommend for any predictions of values of∆SolvHO-

TOH°. Equation 10 is also better than the corresponding
equation for∆SolvHW°, with SD) 2.66 kJ/mol as compared
to 3.68 kJ/mol; eq 10 covers a range of 97 kJ/mol, which
not quite as large as the range covered by eq 7, 150 kJ/mol.

As for all the equations of the type of eq 1 that we have
used to correlate gas-to-solvent partition coefficients, eq 10
covers the rare gases and other inorganic gases as well as
polyaromatic hydrocarbons, the polychlorobiphenyls, and the
polychloronaphthalenes, so it is a very general equation
indeed. Fortunately, we have descriptors for all the poly-
chlorobiphenyls81 and all the polychloronaphthalenes,82 and
so it is then trivial to predict∆SolvHOTOH ° for these important
environmental pollutants.

In order to assess the predictive capability of eq 10, we
chose a training set, as before; application of eq 1 resulted
in eq 12:

Within the given SD values, the coefficients of eq 12 are
the same as those in eq 10, indicating that the training set
covers a similar chemical space to that of the total set. When
the training equation was used to predict values of∆SolvHO-

TOH° for the remaining 69 compounds in the test set, we found
for the predictions that AE) 0.08, AAE) 2.07, SD) 2.79,
and RMSE) 2.77 kJ/mol. There is almost no bias in the
predictions, and these statistics confirm that the full equation
can be used to predict further values of∆SolvHOTOH° to within
a SD of about 2.8 kJ/mol. Minitab software was used for all
of the 1-octanol regressions.

We are aware of one group method and an earlier
application of the Abraham model for estimating enthalpies
of solvation in 1-octanol. Bernazzani et al.31 predicted the
∆SolvHOTOH° values of 89 compounds in 1-octanol to within
a standard deviation of 1.37 kJ/mol using 21 structural
fragment values deduced by a multiple least-squares regres-
sion analysis of the entire data set. The authors’ second
method, in which the CH2 group value was preassigned an
average of the increments of the enthalpies of solvation in
homologous series of alkanes, ethers, 1-alkanols, ketones,
and chloroalkanes, gave a slightly larger standard deviation
of 2.96 kJ/mol. Our method of eq 10 is quite comparable
and predicts the enthalpies of solvation compounds in
1-octanol to within a standard deviation of 2.66 kJ/mol using
just five independent variables. Bernazzani et al.32 described
the ∆SolvHOTOH° of 29 compounds in 1-octanol using the
Abraham equation and molecular descriptors. The authors
obtained a standard deviation of 0.25 kJ/mol for their
correlation equation for the 29 compounds that spanned an
approximate range of 40 kJ/mol.

Supporting Information Available: Enthalpy of solva-
tion data for compounds in water and in 1-octanol, numerical
values of the solute descriptors for the compounds studied, and
training and test set analyses for water. This material is
available free of charge via the Internet at http://pubs.acs.org.
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