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Abstract
Until recently most scientific and patent documents dealing with chemistry have described molecular
structures either with systematic names or with graphical images of Kekulé structures. The latter
method poses inherent problems in the automated processing that is needed when the number of
documents ranges in the hundreds of thousands or even millions since such graphical representations
cannot be directly interpreted by a computer. To recover this structural information, which is
otherwise all but lost, we have built an optical structure recognition application based on modern
advances in image processing implemented in open source tools — OSRA. OSRA can read
documents in over 90 graphical formats including GIF, JPEG, PNG, TIFF, PDF, and PS,
automatically recognizes and extracts the graphical information representing chemical structures in
such documents, and generates the SMILES or SD representation of the encountered molecular
structure images.

Introduction
Proliferation of computer technologies has brought forward the necessity of new data formats
to exchange information in a machine-readable way within the context of a scientific
publication. Such new formats suitable for representing chemical structural information have
recently appeared — for example InChI, CML etc.1,2 However, the bulk of chemical literature
that existed before these developments does not employ such well-defined and computer-
parsable formats for the representation of molecular information. Some of the most common
ways to describe a chemical structure are chemical nomenclature (IUPAC names) and graphical
descriptions — images of Kekulé structures printed within scientific or patent documents. The
task of later automatic extraction of such structural information has proved to be challenging
enough that even though several software packages have been developed, none has achieved
universal acceptance.3–9 Our approach to recovery of chemical information from published
material is to re-use to the fullest extent possible the existing software created by the open
source community and to invite further development and participation by releasing our work
as free and open source. To our knowledge, OSRA is the first open source program for optical
structure recognition. OSRA has been designed with a wide range of applicability in mind —
it does not rely on the document image being of any particular resolution, color depth or having
any particular font used. To manipulate images OSRA employs the ImageMagick library10
that allows parsing of over 90 different image formats, including the popular TIFF, JPEG, GIF,
PNG as well as Postscript and PDF (through the Ghostscript library11) formats. OSRA is
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implemented as a command-line utility, which users are welcome to download from the group’s
web server.12 To demonstrate the capabilities (and limitations) of OSRA we have also provided
a web interface.13 Participation in the further development of this open-source code project is
highly encouraged. For this purpose we have created a SourceForge project with an SVN
repository.14

Algorithm
The basic work flow is similar to that used by the previous implementations:

1. Grayscale and Binarization

2. Segmentation

3. Anisotropic smoothing and thinning

4. Vectorization and bond/node detection

5. Atomic label and charge recognition

6. Circle bond (for old style aromatic rings) recognition

7. Double and triple bond detection

8. Special bond detection: wedge and dash bonds

9. Bridge bond detection

10. Compilation of the connection table

11. Confidence estimate

Grayscale and Binarization
A color image is first converted to grayscale via the following mechanism: for every pixel a
color vector (R, G, B) is transformed into a gray-level vector (Gr, Gr, Gr) where Gr = min(R,
G, B). This is different from the more common grayscale conversion methods where Gr = (R
+ G + B)/3 in that it allows for a better later binarization for light-colored portions of the image
(such as yellow symbol for sulphur for example). A global threshold is used for binarization.
Local (adaptive) thresholding has been tested but so far found unsatisfactory due to the
appearances of artifacts in the threshold value-changing regions.

The image by default (unless it is a PDF or Postscript document) is processed at three different
scales (resolutions): 72, 150 and 300 dpi. The scale affects the limits on the maximum character
size and overall molecular image size, as well as the choice for thinning and anisotropic
smoothing. In case of a PDF or Postscript document only a resolution of 150 dpi is used.

Segmentation
The rectangular areas containing the images of chemical structures are selected based on the
following criteria:

i. Ratio of the black pixels to the total area of the rectangle is between 0.0 and 0.2

ii. Aspect (height to width ratio) is between 0.2 and 5.0

iii. The rectangle does not intersect with existing structure-containing rectangles

iv. The width and height are above the minimum values (currently 50 pixels) if the
resolution is above 150 dpi
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v. The width and height scaled to a resolution of 300 dpi is below a maximum value of
1000 pixels (if the resolution is above 150 dpi)

Anisotropic smoothing and thinning
After the selection of rectangular areas in the original image containing the chemical structures,
we calculate a “noise factor” for each such area. A noise factor is defined here as a ratio of the
number of linear pixel segments (vertical or horizontal) with a length of 2 pixels to the number
of line segments with a length of 3 pixels. If the image is too noisy, i.e. the noise factor is
between 0.5 and 1.0 — an anisotropic smoothing procedure is performed. Noise removal and
anisotropic scaling are achieved using the GREYCstoration anisotropic smoothing library,15

which implements a method for removal of small variations in pixel intensities while preserving
global image features based on nonlinear multivalued diffusion partial differential equations.
The next step is the application of a thinning function to normalize all lines to be 1 pixel wide.
Image thinning is done rapidly by the subroutine from the article “Efficient Binary Image
Thinning using Neighborhood Maps” by Joseph M. Cychosz.16 Currently anisotropic
smoothing and thinning are only performed for images at a resolution of 300 dpi.

Vectorization and bond/node detection
The vectorization (bitmap to vector graphics conversion) is performed using the Potrace library
by Peter Selinger.17 We then attempt to find the positions of atoms and bonds using the
vectorized form of the image. We examine each interval between the control points of a Bezier
curve (a parametric curve — in this case cubic — commonly used in computer graphics to
model smooth curves; the set of control points is the primary output of the Potrace library).
The control point is flagged as an atom if any of the following conditions is fulfilled:

• This control point is classified as a corner by the Potrace algorithm.

• The vector from this control point to the next represents a change of direction with a
normal component of at least 2 pixels as compared to the vector from the last atom
to this control point.

• The distance from the last atom to the next control point is less than the distance from
the last atom to the current control point.

The bonds are then set as the vectors connecting the found atoms. Note the usage of normal
component measures instead of the angles between two vectors (as is custom in previous
implementations). It is difficult to come up with a general threshold for the angle between two
bonds which would remain valid for a wide range of image drawing styles. Moreover angles
are difficult to measure for smaller vectors in a pixilated environment — that is when the size
of a dot and thickness of a line are finite and non-zero. Measuring normal components instead
allows for much more robust detection of bonds and nodes. Reliability is further improved by
using the fact that the Potrace library generates the control points for both sides of the same
bond, and the skeletization procedure attempts to produce the best recreation of the bond
structure by collapsing of the two sides of the same bond together.

Atomic label and charge recognition
All connected sets of Bezier curves smaller in size than a maximum character height/width, or
two characters aligned horizontally or vertically, are tested using GOCR18 and OCRAD19

(open source OCR tools) for being part of a heteroatom label or an abbreviation. All recognized
characters are saved and the corresponding Bezier curves removed from the list of detected
bonds. Maximum height and width of the recognized characters is saved and used at a later
stage to determine characters that are connected to the rest of the image — for example if a
bond overlaps with an atom label. Small stand-alone bonds are either removed or recognized
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as lower case letters “l”, “i”, “r” etc. such as in the atomic label for chlorine “Cl” if they are
found next to an upper-case character. Similarly the formal charges — the characters ‘−’ and
‘+’ — are identified and assigned to the nearest atomic label.

Circle bond recognition
If a circle of sufficiently large diameter is found inside of a ring the ring is flagged as aromatic.
Additional conditions include the ring atoms being sufficiently close to the circle (not more
than half of average bond length away), and angles between the ring bonds and the vectors to
the center of the circle being less than 90 degrees. The current implementation fails when the
inner circle touches the ring bonds.

Average bond length and double/triple bond detection
The average bond length is estimated in the following way: a sorted list of all bond lengths is
created, the “average” bond length is taken to be the value at the 75th percentile by rank within
this list. Choosing the 75th percentile instead of the more common 50th (the median) allows
to avoid the bias towards smaller bond lengths which is very common during the initial stages
of processing, while also discarding longer than usual bonds which might appear in some
structure depictions. The average bond length is re-evaluated several times throughout the
processing of the image as more structural elements are being identified. Similar mechanisms
are used for measuring the distance within the bond pairs comprising double bonds and average
bond thickness. The double and triple bonds are then identified as bond pairs (triples) which
a) are parallel to each other, b) are within the double bond pair distance of each other, and c)
are within each other’s “shadow” - that is the bonds of the bond pair are not separated too far
along the line parallel to them.

Dashed and wedge bonds
Dashed bonds are identified as three or more “blobs” (of any shape as long as they are small
enough) positioned within the average bond length from start to finish where a straight line
can be drawn through the geometric centers of the “blobs”. Wedge bonds are recognized by
constructing a linear regression of thickness versus position within the bond (least squares
estimate) and testing for a significant thickness increase or decrease along the bond.

Bridge bonds
Bridge bonds are disambiguated based on the following simple rules: If an atom is connected
to four pairwise collinear single bonds (none of which is a terminal bond) and this atom node
removal does not result in:

• Difference in the number of fragments

• Difference in the number of rotatable bonds

• Decrease in the number of 5- and 6-member rings by 2

the atom is removed and the intersection is presumed to be a bridge bond intersection. This
simple rule, while not 100% foolproof, ensures that such disambiguation does not result in a
molecule splitting into two or more fragments, the ends of the molecule flying apart, or the
node being a connection atom between two rings (a spiro ring system).

Compilation of the connection table
OSRA currently is capable of using two different molecular backends - OpenBabel and RDKit.
Chosen molecular backend is selected at the time of the compilation. A molecular object is
constructed based on the connectivity information along with the stereo- and aromaticity flags.
Fragments based on superatoms are added at this stage as well. The following superatom labels
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are recognized: MeO, MeS, MeN, CF, CF3, F3CN, CN, nBu, EtO, OiBu, iPr, tBu, COOH, Ac,
AcO, NO2, NO, SO3H, BzO, N(OH)CH3, THPO. SMILES or SD format output is generated
based on the resulting molecular object.

Confidence estimate
By default OSRA attempts processing at three different resolutions (scales), therefore it may
have up to three different perspective outputs. To automatically decide on the best variant we
employ the following “confidence function”:

The function was generated by performing linear regression analysis on the Tanimoto similarity
between the real structures and the approximations generated by OSRA at various resolution
levels using various simple molecular properties - element counts (Nc - number of carbon
atoms, NN -number of nitrogen atoms, and so on), ring counts (Nrings - total number of rings,
Naromatic - number of aromatic rings, Nrings5 - number of 5-member rings, and Nrings6 - number
of 6-member rings), and the number of fragments (Nf ragments) as regressors. A correlation of
0.89 was achieved with about 40 structures used and over 100 corresponding approximations.
While it is meaningless to compare the value of this confidence function for different structures
it proved to be a simple and effective way to choose the most appropriate version between
several variants of the same structure. The reason for that is easy to see — a scale with the
most heteroatoms recognized is more likely to be the correct one of the three, the same goes
for the counts of 5- and 6-member rings, and the reverse is true for the number of fragments
and nodes (which are taken to be carbon atoms).

Discussion
We present the first open source optical structure recognition application. The source code can
be downloaded from the group’s website, a compiled version for Microsoft Windows is also
available. The web-based interface allows for interactive testing and visualization as well as
further lookup of the recognized structures in the Chemical Structure Lookup Service20 and
conversion to various other molecular structure formats such as MOL, PDB, etc.

One of the most common questions asked about the optical structure recognition problem in
general and OSRA in particular is how good the recognition rates are. To address this question
one has to define a measure of the accuracy of recognition. There have been several such
definitions proposed in the past. For example, a structure is considered recognized if it takes
less than 30 seconds for a human expert to correct it;5 or, a recognized structure has no more
than one error,8 etc. The former seems subjective by today’s standards, but even the latter
leaves a lot of room open for interpretation — such as, if a double bond is missing, is this
counted as one error or two? And what if a double bond is mis-categorized as a single bond?
And this does not even begin to address the question of applicability domain — do we consider
only high quality black-and-white images, or are we attempting to parse noisy or color images
at a lower resolution as well? We therefore propose a different method for measuring the
accuracy of a recognition engine — one that we think is more objective and usable in practical
applications. One of the natural applications of a chemical structure recognition engine would
be, for example, to attempt to look up the recognized structures from a document in a database
of available chemicals. Therefore a natural accuracy measure would be a similarity index
between the output of the program and the actual structure. On our website we output a
Tanimoto similarity index based on CACTVS21 fingerprints between the structure as corrected
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by the user (presumably yielding the correct structure) and the structure that OSRA had
produced. While no well-known fingerprint proved to be an ideal choice for this project since
all of them tend to punish easily correctable errors severely and assign structures with large
discrepancies good mutual similarity indices, it is a quantitative measure that’s easily
implemented and understood. A better suited fingerprint would be one which produces results
that are more intuitive — i.e. closer to the accuracy measurements proposed in the past but
more automated and rigorous, which however goes beyond the scope of this study.

To compare the recognition rates with the only other commercially available optical structure
recognition program today — CLiDE — we used the so-called “small test set” kindly provided
by Simbiosys Inc. We selected 11 files from this set. Of the remaining 3 one file does not
contain a structure image, one is poorly segmented by both OSRA and CLiDE, and the last
file contains larger molecules which neither OSRA nor the authors are prepared to handle at
the moment. Of the resulting output set one structure was deemed to be a false positive and
removed from both OSRA and CLiDE output.

Here “perfect” means the number of structures identical to the human-curated version
according to InChI; the average Tanimoto similarity is between the human-curated set and the
computer-processed set; “T>85%” — the number of structure pairs with Tanimoto similarity
above 85% etc. The last column is the number of structures which have identical “uuuuu”
identifier — an identifier developed at the NCI CADD group which is indifferent to the
stereochemistry, tautomerism, charge, isotope information, and takes into account only the
largest fragment.20 The differences with the previously reported results22 are due to the fact
that the most recent version of OSRA now supports SD format output and the comparison can
now be made made using SD files for both CLiDE and OSRA. We used OSRA version 1.1.0
with OpenBabel backend, SD file format output.

To verify the results on a larger and more diverse set we performed the same analysis on our
internal test set. This set is comprised of 66 images of various resolutions and color depths
(black-and-white, gray level and color) and contains a wide variety of drawing styles. With
this set OSRA had 7 false positives and missed 3 structures due to the imperfect segmentation.
Total number of valid recognized structures in the 66 images and documents is 215.

The results appear to be consistent and very competitive. While the fraction of perfectly
recognized structures is not yet very high one has to remember that a molecular structure image
contain much more information than for example a single character in a text subjected to an
OCR procedure and the space of known chemicals (tens of millions) is much greater than the
space of characters in any alphabet, so the direct comparison to regular OCR is not valid in
this case. Still, the fact that a large portion of the structures has been recognized at a Tanimoto
similarity level of 85% or above gives hope that the automatic recognition might be useful for
example for locating a structure within a large database of known chemicals. The main sources
of errors come from the imperfect segmentation, OCR mistakes, and noise in the scanned
image. By releasing OSRA as an open source program we hope to attract interested parties to
participate in the further development of what we hope will be a useful addition to the set of
publicly available chemoinformatics tools.

Acknowledgments
Funding Disclaimer: This project has been funded in whole or in part with federal funds from the National Cancer
Institute, National Institutes of Health, under contract N01-CO-12400. The content of this publication does not
necessarily reflect the views or policies of the Department of Health and Human Services, nor does mention of trade
names, commercial products, or organizations imply endorsement by the U.S. Government. This Research was
supported in part by the Intramural Research Program of the NIH, National Cancer Institute, Center for Cancer
Research.

Filippov and Nicklaus Page 6

J Chem Inf Model. Author manuscript; available in PMC 2010 August 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



References
1. Heller S, Stein S, Tchekhovskoi D. InChI: Open access/open source and the IUPAC international

chemical identifier. Abstr Pap Am Chem Soc 2005;230:1025–1026.
2. Murray-Rust P, Rzepa H. Chemical markup, XML, and the Worldwide Web. 1. Basic principles. J

Chem Inf Comput Sci 1999;39:928–942.
3. Contreras M, Allendes C, Alvarez L, Rozas R. Computational Perception and Recognition of Digitized

Molecular Structures. J Chem Inf Comput Sci 1990;30:302–307.
4. Casey, R.; Boyer, S.; Healey, P.; Miller, A.; Oudot, B.; Zilles, K. Optical Recognition of Chemical

Graphics. Proceedings of the International Conference on Document Analysis and Recognition; 1993.
p. 627-632.

5. McDaniel J, Balmuth J. Kekule - OCR optical chemical (structure) recognition. J Chem Inf Comput
Sci 1992;32:373–378.

6. Ibison P, Jacquot M, Kam F, Neville A, Simpson R, Tonnelier C, Venczel T, Johnson A. Chemical
Literature Data Extraction - The CLiDE Project. J Chem Inf Comput Sci 1993;33:338–344.

7. Zimmermann M, Thi L, Hofmann M. Combating illiteracy in chemistry: Towards computer-based
chemical structure reconstruction. ERCIM News 2005;60:40–41.

8. Zimmermann, M. Large Scale Evaluation of Chemical Structure Recognition. Proceedings of the 4th.
Text Mining Symposium in Life Sciences; 2006.

9. Michigan Alliance for Cheminformatic Exploration. [(accessed September 26, 2008)].
http://www-personal.umich.edu/~grosania/MACE071806_ROSANIA.ppt

10. ImageMagick: Convert, Edit, and Compose Images. [(accessed September 26, 2008)].
http://www.imagemagick.org/script/index.php

11. Ghostscript, Ghostview and GSView. [(accessed September 26, 2008)].
http://pages.cs.wisc.edu/~ghost/

12. OSRA: Optical Structure Recognition. [(accessed September 26, 2008)].
http://cactus.nci.nih.gov/osra

13. OSRA: Optical Structure Recognition. [(accessed September 26, 2008)].
http://cactus.nci.nih.gov/cgi-bin/osra/index.cgi

14. SourceForgenet: osra. [(accessed September 26, 2008)]. http://sourceforge.net/projects/osra/
15. GREYCstoration. [(accessed September 26, 2008)].

http://www.greyc.ensicaen.fr/~dtschump/greycstoration/
16. Cychosz, JM. Graphics gems IV. Academic Press Professional, Inc; San Diego, CA, USA: 1994.

Efficient binary image thinning using neighborhood maps; p. 465-473.
17. Peter Selinger: Potrace. [(accessed September 26, 2008)]. http://potrace.sourceforge.net/
18. Optical Character Recognition (GOCR). [(accessed September 26, 2008)].

http://sourceforge.net/projects/jocr/
19. Ocrad - GNU Project - Free Software Foundation (FSF). [(accessed September 26, 2008)].

http://www.gnu.org/software/ocrad/ocrad.html
20. Sitzmann M, Filippov IV, Nicklaus MC. Internet resources integrating many small-molecule

databases. SAR QSAR Environ Res 2008;19:1–9. [PubMed: 18311630]
21. Xemistry Chemoinformatics. [(accessed September 26, 2008)]. http://www.xemistry.com/
22. Filippov, IV.; Nicklaus, MC. Optical structure recognition application. Proceedings of the 236th ACS

National Meeting; 2008.

Filippov and Nicklaus Page 7

J Chem Inf Model. Author manuscript; available in PMC 2010 August 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://www-personal.umich.edu/~grosania/MACE071806_ROSANIA.ppt
http://www.imagemagick.org/script/index.php
http://pages.cs.wisc.edu/~ghost/
http://cactus.nci.nih.gov/osra
http://cactus.nci.nih.gov/cgi-bin/osra/index.cgi
http://sourceforge.net/projects/osra/
http://www.greyc.ensicaen.fr/~dtschump/greycstoration/
http://potrace.sourceforge.net/
http://sourceforge.net/projects/jocr/
http://www.gnu.org/software/ocrad/ocrad.html
http://www.xemistry.com/


N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Filippov and Nicklaus Page 8

Ta
bl

e 
1

R
ec

og
ni

tio
n 

ra
te

 c
om

pa
ris

on
 b

et
w

ee
n 

O
SR

A
 a

nd
 C

Li
D

E,
 4

2 
st

ru
ct

ur
es

 to
ta

l

Pe
rf

ec
t b

y 
In

C
hI

A
ve

ra
ge

 T
an

im
ot

o
T

>8
5%

T
>9

0%
T

>9
5%

uu
uu

u

O
SR

A
26

95
39

37
33

28

C
Li

D
E

11
87

26
20

17
12

J Chem Inf Model. Author manuscript; available in PMC 2010 August 1.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Filippov and Nicklaus Page 9

Ta
bl

e 
2

R
ec

og
ni

tio
n 

ra
te

 o
n 

th
e 

in
te

rn
al

 te
st

 se
t, 

21
5 

st
ru

ct
ur

es

Pe
rf

ec
t b

y 
In

C
hI

A
ve

ra
ge

 T
an

im
ot

o
T

>8
5%

T
>9

0%
T

>9
5%

uu
uu

u

O
SR

A
10

7
93

18
2

16
7

14
7

12
2

J Chem Inf Model. Author manuscript; available in PMC 2010 August 1.


