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Abstract
Elimination of cytotoxic compounds in the early and later stages of drug discovery can help reduce
the costs of research and development. Through the application of principal components analysis
(PCA), we were able to data mine and prove that ∼89% of the total log GI50 variance is due to the
non-specific cytotoxic nature of substances. Furthermore, PCA led to the identification of groups of
structurally unrelated substances showing very specific toxicity profiles, such as a set of 45
substances toxic only to the Leukemia_SR cancer cell line. In an effort to predict non-specific
cytotoxicity based on the mean log GI50, we created a decision tree using MACCS keys that can
correctly classify over 83% of the substances as cytotoxic/non-cytotoxic in silico, based on the cutoff
of mean log GI50 = −5.0. Finally, we have established a linear model using least squares in which 9
of the 59 available NCI60 cancer cell lines can be used to predict the mean log GI50. The model has
R2=0.99 and root mean square deviation between the observed and calculated mean log GI50 (RMSE)
= 0.09. Our predictive models can be applied to flag generally cytotoxic molecules in virtual and real
chemical libraries, thus saving time and effort.

Introduction
With the advent of high throughput screening (HTS), mountains of biological screening data
have been produced and continue to accumulate. In fact, as of 2002, ∼14% of research and
development in the pharmaceutical industry is spent on biological screening.1 In 2003
approximately one-third of the capital lost on all drug failures, $8 billion, was due to the
inability to accurately predict toxicity during the early stages of drug development.2 As it
relates to the investigation of cytotoxicity and growth inhibition studies, numerous quantitative
endpoints have been used including: protein analysis, enzyme release, exclusion or inclusion
of dyes or radioactive markers, and metabolic alterations such as oxygen consumption, and
ATP levels. As pharmacokinetics and toxicity (ADMET) are now a consideration in the early
stages of drug development, many recent efforts have been made by both academia and industry
to address the prediction of specific and general cytotoxicity. Methods commonly utilized to
assign a cytotoxicity score or to classify substances as being cytotoxic/non-cytotoxic include
neural networks, proteomic profiling, QSPR and QSAR.3,4,5,6,7 With a plethora of data
sources available, it is possible to merge information from multiple HTS libraries in order to
obtain a highly diverse set of drug-like molecules which can be used to model both
physiochemical and biological properties. Applying in silico screens to filter out molecules
likely to fail ADMET, especially toxicity, is fiscally necessary considering that it can take over
a decade and close to one billion dollars to release a new and federally approved drug.8
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PubChem, the database component of the National Institutes of Health (NIH) Molecular
Libraries Initiative (MLI), serves as a public repository of chemical and biological activity data
generated by the Molecular Libraries Screening Center Network and other screening centers.
9,10,11 PubChem is a user/depositor system, which accepts annotated chemical structures and
related biological activity data. PubChem is broken down into three main database components:
Compound, Substance and BioAssay. PubChem Compound contains over 18 million unique
chemical structures with their respective calculated physiochemical properties. PubChem
Substance contains over 28 million records with structural data, descriptions of chemical
samples from multiple sources, and links to 3D protein structures as well as PubMed citations.
Finally, biological screening results for over 800 assays are stored in PubChem BioAssay,
including the NCI60 human tumor cancer cell line HTS.12

When procuring data from multiple sources, quality and reliability are often issues. Although
PubChem has taken some measures to ensure quality control (QC) in terms of referencing
between compounds and substances, the quality of the structural data related to the bioassay
data of PubChem was termed ‘user beware’ because the structural content submitted by the
depositor is accepted without review.13 It should be mentioned that PubChem has neither the
resources nor the assigned responsibility to curate the data. Notably, if errors are identified,
they may be reported to and corrected by the depositor. Accepting screening data from multiple
sources, one might expect inconsistent endpoints and instrument variations leading to
standardization issues and precision errors.

In order to address the issues of QC and reliability, we have chosen to work with the NCI60
human tumor cell line anti-cancer drug screen, as it is one of the most recognized datasets
assembled by a single organization with all assays run at the same location. It provides a well
curated publicly available dataset of toxicity profiles for 43899 substances assayed in vitro
against nine distinct organ based classes of cancer: breast, colon, CNS, leukemia, lung,
melanoma, ovarian, prostate and renal. Furthermore, cytotoxic concentrations of substances
determined in vitro have been shown to correlate well to lethal doses in laboratory animals and
humans for a range of selected drugs and chemicals.14,15 With a rich history spanning over
20 years, 59 of the 60 cancer cell lines are still currently available. The NCI60 contains in
vitro screening data for up to three IC50 endpoints: GI50, TGI and LD50, referring to the
concentration of a substance in units of molarity or μg/mL, required for 50% growth inhibition,
total growth inhibition, and 50% lethal dose, respectively. The GI50 is our measurement of
choice, as the lowest concentrations of substances are used for the observed effect. In this paper
we use only the log GI50 values where the concentration unit is molarity.

In a previous work we contributed our novel method for automatically generating selective
SMARTS strings which are able to classify cytotoxic molecules based on mean log GI50 cutoff
of –5.0.16 Each substance is associated with its respective mean log GI50, which is the
calculated mean of the available log GI50 data from the NCI60 for each respective substance.
While the SMARTS produced work quite well as a filter, they fail to classify a significant
portion of the NCI60. Here, we are more concerned with a robust model that accurately predicts
mean log GI50.

In this study, we take a closer look at the NCI60, as it refers to the existing 59 cancer cell lines.
First, we address the issues of dataset acquisition, analysis and completeness. Next we examine
how principal component analysis (PCA) can be applied to large chemical datasets to extract
hidden relations and attribute meaning to orthogonal toxicity profiles. We then apply binary
decision trees for the in silico prediction of general cytotoxicity. Finally, we demonstrate how
stepwise regression was used to develop a least squares fit (LSF) model allowing data from 9
of the NCI60 cell lines to be used as an accurate predictor of generalized cytotoxicity across
the 59 cell lines.
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Methods
All calculations were performed using the Molecular Operating Environment (MOE)17 on a
Dell Precision 380 workstation utilizing Red Hat Linux Enterprise version 4.0.

Data Gathering
The PubChem FTP site9 was our preferred data source, as structural data for each molecule
could easily be obtained through the association of the PubChem Substance and BioAssay
databases. The entire PubChem database is available in the following file formats: abstract
syntax notation (ASN) and extensible markup language (XML). PubChem Substance and
Compound downloads are also available in standard data file (SDF) format,18 while Bioassay
downloads are also available in comma separated value (CSV) format. MOE's built in functions
were used to import and merge the required structural data and log GI50 profiles into a flat
table for computational analysis.

Data Analysis
Understanding the landscape of a dataset is necessary in order to avoid ‘garbage in garbage
out’, especially in cases where the dataset is an incomplete matrix, as is the NCI60 dataset.
Preliminary analysis of the toxicity profiles showed that only 88.2% of the assay data was
complete, i.e. data were available for 88.2% of the 59×43889 possible experimental endpoints.
Approximately half of the experimental data consists of upper or lower threshold
concentrations signifying minimal, log GI50 = −4.0 or −5.0, or maximal activity, log GI50 =
−8.0. The remaining portion of the experimental data shows some quantitative level of activity
which is not threshold. Furthermore, only 4824 substances have been screened against the
entire NCI60. The NCI60 dataset provides log GI50 data based on the measurements taken in
one of three concentrations units: molarity (M) (43474 substances), μg/mL (369 substances),
and volumetric (48 substances). There is no log GI50 data for 108 substances. In order to
determine the units used for the volumetric formats, one must contact the contributor, according
to the NCBI help desk. See Figure 1 for the distribution of available experimental log GI50
values in molarity across the different cell lines.

Figure 2 describes the mean log GI50 for 43474 compounds for the NCI60 using 1000 bins
with the following statistics: mean = −4.518, standard deviation = 0.7447, mode = −4.0,
minimum = −11.74 and maximum = 4.0. Interesting features to note are the significant skew
of the data toward −4.0, a shoulder at −5.0, and the maximum mean log GI50 = 4. The maximum
mean log GI50 = 4.0 is an anomaly, which we assume to be a data entry problem where the
submitter intended to instead enter −4.0. In order to conform to most common standard upper
threshold, the mean log GI50 of all substances greater than −4.0 was adjusted −4.0.
Approximately 80% of all substances have mean log GI50 greater than −5.0 explaining the
skew towards inactivity. Finally, 5782 and 413 substances, respectively, have mean log GI50
= −4 and −5 (indicating no activity) for all assays against which those substances were screened.
These values correspond to the maximal allowable concentration of a substance used for assays
over a specific timeframe. The National Cancer Institutes Developmental Therapeutics
Program (NCI/DTP) home page designates a link to important changes to the NCI60 cell
screen, specifying the addition of a one-dose 59 cell assay at concentration 10−5 M
(corresponding to log GI50 = −5) in an attempt “to increase substance throughput and reduce
data turnaround time to suppliers while maintaining efficient identification of active
compounds.” This is followed by the regular 5-dose assay used to determine the GI50, TGI and
LD50. 12 For some period in the past, only the 5-dose assay was used with maximum recorded
concentration of 10−4 M, corresponding to log GI50 = −4 (inactive).
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Correlation analysis between the activity data from different NCI60 screens of the same
substances, i.e. on different cell lines, can also be applied to detect anomalies. In this case two
of the threshold values are visualized. In Figures 3a and b the upper log GI50 threshold is
apparent at −4, and a lower threshold is seen at −8. The lower threshold was used for only 178
substances. In this case the threshold values are the maximum and minimum cutoffs in the
NCI60 dose response experiments. Note, another apparent threshold of log GI50 = −10 can
also be detected for some experiments.

MOE's correlation matrix tool allowed us to select n database fields (in this case cancer cell
lines containing log GI50 data) for which it calculates an n×n matrix of pairwise log GI50
correlations (R), where n ≤ 25. By selecting a specific pairwise correlation from the matrix,
we can visualize the scatter plot between any two of the selected cancer cell lines. When
examining the scatterplots of pairs of NCI60 log GI50 data, very strong correlations were
observed. The R2 ranged from 0.66 to 0.88. It is interesting to note that some cell lines of
similar tissue type were less correlated than those of differing organ types as shown in Figures
3a and b.

The initial analysis is performed to ensure the quality and mining potential for the dataset. In
this case, the vast majority of the log GI50 data points occur over the range [−8, −4],
corresponding to four orders of magnitude in concentrations. Just over 10% of the substances
have complete toxicity profiles, 43% of the data points are at threshold values, and 12% of the
possible data points are missing. It is encouraging to note that there are four orders of magnitude
difference between the high and low threshold values, representing the difference between 0.1
mM and low 10 nM concentrations. This range is good for the differentiation of profiles based
on activity, as required concentrations for drug leads are typically in the low μM range. It is
expected that the vast majority of molecules in an HTS dataset will be inactive against multiple
or all targets of interest, however it is desirable that the distribution of activity data span several
orders of magnitude for a large set of substances.

Imputing Missing Data
Missing values are a problem for all data analysts. If only a few substances had missing values,
we could simply omit them from the dataset, but in this case many substances have missing
log GI50 observations for multiple assays. Removing these substances drastically reduces the
dataset from 43474 to 4824 substances, which would diminish the predictive power of the
resulting model. We implemented a common strategy used in linear models in order to preserve
the size of the predictor subset by imputing the missing data, null values, with the mean log
GI50 of all the screening data for each respective substance.19

Data Mining with PCA
Principal component analysis was used for two purposes. First, PCA was used for validation
purposes to ensure that we did not inadvertently skew our matrix of toxicity profiles by
imputing 12% of the missing assay data with the mean log GI50 for each respective substance.
PCA was performed on a matrix of random values from [−9.0, −4.0] to show that the first
principal components of the datasets containing experimental and imputed data was not due
to mean centering. Also, PCA of the non-imputed dataset was performed using the covariance
matrix derived from eq 1, such that all existing pairs of log GI50 values between assays were
considered. The covariance matrix is a square 59×59 matrix, where each row i and column j
correspond to their respective NCI60 cancer cell line. Let the matrix X be defined by xk,j. Where
xk,j is the log GI50 for substance k and cell line j. Then, x̄j is the mean log GI50 of the substances
for cell line j. Now, let k refer to the substances having experimental log GI50 data for assays
i and j, such that x̄i and x̄j refer to the mean log GI50 values for the substances having
experimental log GI50 data for both assays i and j. Note, i = j is allowed in eq 1. Validation for
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using an imputed dataset can be established by showing a high correlation between the
components of the eigenvectors responsible for the majority of log GI50 variance from the
imputed and non-imputed datasets.

(1)

PCA was then used to extract interesting features of the NCI60 for further investigations.
MOE's PCA tool can output the importance of substance contribution to the principal
components based on the respective log GI50 toxicity profile of X. This is done by first
calculating the sample average vector x = [x̄1, Λ x̄59] and covariance matrix C based on the
matrix of toxicity profiles for all n substances. C is diagonalized such that C = QTDDQ, where
Q, the PCA transform, is orthogonal and D is diagonal-sorted from top left to bottom right.
There are p non-zero diagonal values in D, the square roots of the eigenvalues of S,
corresponding to the principal components. If we take the p×n matrix Z = Q(X − x), such that
Z has identity covariance and zero mean, there exists a p-vector of the form zi = Q(xi − x),
where the p components of each zi can be taken as the relative weights for the respective
principal components corresponding to each substance. Hence, the zip values are weights for
each substance (i) and principal component (p). The substances most responsible for a
particular principal component's variance have the largest magnitudes of zip values.

Predictive Binary Decision Tree
We applied two concepts in the construction of a binary decision tree. First, consider the ‘ideal’
fingerprint where the different descriptors' occurrence are statistically independent and each
descriptor evenly divides a dataset of n molecules with some property value, such as mean log
GI50. The ‘ideal’ fingerprint has length nd, where nd is the minimum number of descriptors to
uniquely identify all n molecules in the training set.

(2)

Using this concept we have applied the MACCS keys as our base fingerprint. The MACCS
key which most evenly divides the substances at any given node in our tree is given weight
when making our branching decision. As our goal was to not only reduce the number of
substances at each child node, but also to reduce the range of mean log GI50, a weighted
accuracy factor was also included in our branching decision. Branching is allowed to continue
as long as a MACCS key exists that can divide a node into children nodes, each containing no
fewer than two substances. If branching cannot occur, the node is taken to be a leaf. Thus the
trained binary tree has a MACCS key at each nonterminal node, and a prediction value at each
leaf equal to the average of the mean log GI50's of the training set substances at each respective
leaf node. Eqs 3-8 describe how decisions are made at each node.

hk and ĥk are binary vectors with length equal to the number of substances m at a node with
hk representing the hit profile and ĥk the inverse hit profile with respect to MACCS key k. |

hk| and  are the sum totals of the hits and misses for the respective profiles. See eqs 3-5.

(3)

(4)
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(5)

Eq 6 defines the idealness score, S1,k, for MACCS key k where 0.5 ≤ S1,k ≤ 1.0. A value of 0.5
indicates that the substances at a particular node are evenly divided into children nodes, whereas
a score of 1.0 indicates that one child node contains all of the substances and the other contains
none.

(6)

Eq 7 defines the accuracy score S2,k, for MACCS key k where 0 < S2,k ≤ 1. rk and rˆk are the
log GI50 ranges at the two child nodes for MACCS key k. Values less than 1.0 represent child
nodes with smaller log GI50 ranges than the parent node. Values closer to zero reflect child
nodes with more narrow log GI50 ranges.

(7)

Eqs 6 and 7 have been normalized such that the lower values of the scores are desirable. Eq 8
describes how the final decision is made at each node and considers the ability of a particular
MACCS key to evenly split the substances and at the same time minimize the log GI50 range
of the children nodes. Weighting factors for S1,k and S2,k were systematically determined by
spawning several decision trees and varying the weights. The final weighting scheme was the
one resulting in the highest fit R2 based on correlating the mean of all log GI50 values of the
leaf and experimental log GI50 values from our training set.

(8)

Substances were randomly divided into ten subsets of nearly equal size. The predictive binary
decision tree was trained on 90% of the substances and validated on the remaining 10% in an
attempt to maximize two relevant metrics: R2 and the binning of cytotoxic (mean log GI50 <
−5.0) and non-cytotoxic (mean log GI50 > −5.0) substances. Cross validation was performed
on different training and test sets based on the random classification of the substances. A final
validation was performed to ensure that the predictive nature of this procedure was not an
artifact by randomly assigning the mean log GI50 values to different substances within the
training set and then rebuilding the decision tree. There was essentially no log GI50 correlation
(R2 < 0.02) between the predicted values for training set and these randomly assigned values.

Prediction using Least Squares Fit
A more accurate prediction model was devised by randomly dividing the 4284 substances
having complete toxicity profiles into equal sized training and test sets. The experimental log
GI50 values for each cell line were then correlated to the mean log GI50. Starting with the cell
line whose log GI50 values have the highest R2 with the mean log GI50 values, we applied
forward stepwise linear regression with the constraint that no more than one cell line from each
class can be used. The final model was validated on the test set. A second validation was
performed using the remaining 38650 substances with incomplete toxicity profiles.
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Results & Discussion
We chose to adopt this strategy of imputing missing data with mean values to maintain the
largest possible set of substances for mining. In order to validate that imputing the mean log
GI50 did not inadvertently skew the overall dataset, PCA was performed on four different
datasets: the complete set of 4824 substances having complete toxicity profiles, the imputed
set consisting of all 43474 substances with the imputed mean log GI50 for the missing values
respective to each substance, the nonimputed dataset consisting of all 43474 substances with
missing values, and a random dataset modeled after the complete set having 4824 entries each
with 59 random data points ranging from [−9, −4]. Figure 4 compares the first four principal
components, accounting for over 92% of the log GI50 variance for all datasets. There is
extremely good correlation between the components of the eigenvectors for these principal
components relating to all datasets except for the one with randomly assigned data. As
expected, the correlation of principal components between the datasets continues to degrade
when examining the lower order components. Since the components of the eigenvectors are
strongly correlated, we can assume that the imputed mean values did not severely impair the
quality of the dataset. A similar analysis, comparing the principal components of the set of
substances having complete toxicity profiles and those having greater than or equal to 90%
complete toxicity profiles, showed an even closer fit to the non-imputed dataset depicted in
Figure 4 than any of the other datasets.

It was interesting to note that PC1 accounts for over 89% of the log GI50 variance for all the
datasets with real experimental values, while PC1 for the dataset having randomly generated
log GI50 values only accounted for 2% of the variance. Aside from the random dataset, all the
components of the eigenvector for PC1 were found to be approximately equal in magnitude
(even more so in the case of the non-imputed dataset). Given the high explanatory power of
this component, we see that many substances tend to be uniformly toxic across all the NCI60
assays. Even when the 176 and 6203 substances having only threshold log GI50 values are
eliminated from the respective datasets of complete toxicity profiles and the one including
imputed values for all substances, PC1 still accounts for over 88% of the total log GI50 variance.
Since this pattern dominates in both the imputed and complete datasets, while the random
dataset deviates and explains very little, we can conclude that this is not an artifact of our
procedure. Since PC1 corresponds to uniform log GI50 across all cell lines, we can artificially
remove this component by mean centering each substance's toxicity profile and performing
PCA once again. Indeed, PC2 in Figure 4 from the first analysis becomes the first principal
component in the new analysis. In the original PCA, PC2 explained approximately 1.2% of
the log GI50 variance. As the first principal component in the new analysis, it explained 12%
of the log GI50 variance and maintained the eigenvector components from the first analysis.
In any case, the result that most compounds show uniform toxicity (high or low) across all cell
lines is hardly surprising, but it leads to our least squares model that greatly reduces the effort
required for screening compounds.

The PC2 corresponds to a rather uniform level of toxicity across most cancer cell lines with
the majority of its components between −0.17 and 0.17. It is very interesting to note that all
six leukemia cell lines (RPMI_8226, SR, CCRF_CEM, K_562, MOLT_4, HL_60(TB)) have
eigenvector components less than −0.2. For the complete subset, CNS_SNB_75 and
Breast_HS578T have component values greater than 0.2. The increased absolute value of the
eigenvector components corresponds to certain cancer cell lines, indicating that there are
groups of substances for which these cell lines are either more sensitive or more resistant. PC2
is responsible for just over 1% of the total variance over all cancer cell lines. We attempted to
relate the values of the eigenvector components to the doubling times of these outstanding
cancer cell lines and noted that the leukemia cell lines doubling times (19.6–33.5 hours) are
approximately half that of CNS_SNB_75 (62.8 hours) and Breast-HS578T (53.8 hours).12
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Unfortunately, this trend does not follow for the remainder of the cell lines with eigenvector
values close to −0.2 and 0.2. The outstanding feature of PC2 is that it identified all the leukemia
cell lines.

We speculate that PC2 may have identified the leukemia cell lines due to the fact that a greater
portion of their surface areas is available to exogenous substances. The leukemia cell lines are
grown in vials suspended in solution, whereas the other cancer cell lines are grown on plates
and require attachment to the plate wall, reducing the exposed surface area. Therefore, it is
plausible that the leukemia cancer cells are more susceptible to toxic substances due to
increased surface area exposure.

In order to substantiate this claim, we first identified the substances most responsible for PC2
using MOE's PCA tool. We found that over 4000 substances with |zi2| ≥ 1.0 and removed them
from the complete dataset in order to examine the eigenvectors produced by PCA in their
absence. By removing the substances with |zi2| ≥ 1.0, we were able to reduce the predominance
of this feature tenfold. Instead of being the second principal component and accounting for
over 1% of the total log GI50 variance, the leukemia cancer cell lines were identified in the
ninth principal component along with several other cancer cell lines with absolute values of
eigenvector components greater than 0.2 and accounting for less than 0.1% of the total log
GI50 variance. Furthermore, there are 782 substances with |zi2| ≥ 2.0. Notably, less than 5% of
the data was imputed with 313 substances having no imputed data whatsoever. 543 of these
substances, 228 with no imputed values, have fairly uniform increased cytotoxicity against the
leukemia cell lines compared to the other 53 cancer cell lines. The remaining 239 substances,
75 with no imputed values, were shown to be slightly less cytotoxic to the leukemia cell lines
on average. The more sensitive nature of the leukemia cell lines is illustrated by the scatter plot
in Figure 5 between the mean log GI50 for the leukemia cell lines and the mean log GI50 for
the non-leukemia cell lines for the 543 substances of interest. The plot shows that there is
approximately 1.8 orders of magnitude difference between the respective mean log GI50 of the
leukemia and other cell lines. Also, the mean log GI50 distributions of the leukemia cell lines
are shifted to significantly higher levels of toxicity than the distributions of the non-leukemia
cell lines as seen in Figures 6a and b. As a side note, only 33 of the 782 substances most
responsible for PC2, |zi2| ≥ 2.0, were uniformly more toxic to the leukemia cell lines than all
others of the NCI60. Even through the substances responsible for PC2 do not exhibit the highest
levels of cytotoxicity for all leukemia cell lines, they do show a tendency to be uniformly more
toxic for the majority of the leukemia cell lines.

We examined the layout of the eigenvector components for the latter principal components
looking for outstanding features similar to that of PC2. While no other classes were uniformly
identified having all cancer cell lines with the absolute value of the eigenvector components
greater than 0.2, we did find several principal components that identified a few cancer cell lines
with the absolute value of the eigenvector components significantly greater than 0.2. The two
principal components with few outstanding eigenvector components accounting for the largest
log GI50 variance are depicted in Figure 7.

Of 600 substances found to be responsible for PC9 with |zi9| ≥ 1.0, only 45 showed specific
cytotoxicity against the Leukemia_SR cell line, i.e. the concentrations of substances required
to inhibit cell growth for the Leukemia_SR cell line were two to four orders of magnitude lower
than the concentration necessary for the remainder of the NCI60 cell lines. We found that most
of these substances are structurally dissimilar. Only one pair, the phosphonium molecules,
show significant structural similarity with a Tanimoto similarity coefficient Stan = 0.92 based
on the MACCS keys, as depicted in Figure 8a. Figures 8b and c illustrate two other molecules
and their respective highest scoring (most similar) match within this set of molecules. In the
game of fingerprint based similarity searching, one typically does not consider molecules with
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a Stan < 0.70 as structurally similar. Most of the 45 substances exhibit multi-cyclic ring systems
with aromatic components, and we have identified a few purine and pyrimidine derivatives.
Figure 9 depicts a histogram of the highest Stan for each of the 45 substances when compared
to the other respective substances in the dataset. The mean Stan for each molecule and its most
structurally similar pair of the set of 45 substances was 0.55. Having established that these
substances are structurally dissimilar yet share similar toxicity profiles, we conjecture that these
substances do not share a common mechanism of action against the Leukemia_SR cell line,
which is contrary to the belief that substances sharing the same toxicity profiles also follow
the same mechanism of activity.20 We are not implying that toxicity profiles cannot be used
for predicting mechanism of activity, but rather we believe that there may be several viable
Leukemia_SR cell specific targets which when activated lead to cell death based on different
mechanisms of action.

PC13 identifies the Lung Hop_92 and CNS_SNB_75 cell lines. Even fewer substances are
responsible for this principal component, as it is responsible for less than 0.3% of the total
system variance. The analysis of the substances responsible for toxicity profiles matching the
landscape of PC13, while similar to that of PC9, can neither confirm nor reject our hypothesis
that multiple mechanisms of actions may be in play when examining cytotoxic substances with
similar toxicity profiles.

Several groups have recently published their ability to predict cytotoxicity.3,4,5,6,7Table 1
contains a summary of the methods used and results obtained, including the results in our study.
Our method used the MACCS keys, paying attention to narrowing the range of log GI50 in all
children nodes of our decision tree. While we were unable to achieve reliable results in a leave
some out cross-validation study using only the substances in the dataset with complete toxicity
profiles, we did derive a predictive model that achieved R2 = 0.53 and RMSE = 0.71, using
the dataset having imputed values for less than 10% of the cancer cell lines. See Figure 10.
While this number is not outstanding, it allows for improved discrimination between toxic vs.
non-toxic substances. Furthermore, we achieve similar results when using different 90:10
training:test splits of the dataset. When taking log GI50 = −5 as the cutoff, we were able to
correctly classify 83% of all substances and 82% of the cytotoxic substances in our test set.
With a log GI50 cutoff = −6 we correctly classified 93% of all substances in our test set, but
only 72% of those taken to be cytotoxic. See Table 2 for the results presented as a confusion
matrix.

Finally, with least squares fitting we achieved excellent prediction using equal sized randomly
selected training and test sets using the 4824 substances with complete toxicity profiles, i.e.
no data was imputed. While still skewed towards log GI50 = −4.0, this dataset was more
uniformly distributed than the dataset used when training and testing our decision tree. If one
considers log GI50 = −5.0 as the cutoff value between toxic and non-toxic substances, then the
dataset is evenly distributed. Random selection was performed by first sorting the substances
by ascending mean log GI50 and then dealing them one-by-one into the training and test set.
This ensured that there was an even distribution between the two sets. We identified the
Ovarian_OVCAR-8 cancer cell line as having the best fit to the mean log GI50. Applying
forward stepwise linear regression and allowing only one cancer cell line from each class to
be included in the model yielded eq 9.
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(9)

When applied to the test set, 96.7% and 99.1% assignment accuracy was obtained. The
predictive R2 was found to be greater than 0.99 and RMSE less than or equal to 0.09. See
Figures 11a and b. While this method is superbly predictive for mean log GI50, it requires that
assay data be available for 9 of the 59 available NCI60 cancer cell lines. One surprising
observation shown in Table 1 based on the test set of 2412 substances with complete toxicity
profiles was the relative lack of improvement over random selection when compared to our
decision tree model. This may be attributed to the distributions of the test sets. In the test set
described for the decision tree there was approximately 25% and 9% chance that a randomly
selected substance would be toxic based on the respective log GI50 cutoffs of −5.0 and −6.0.
With the least squares fit derived through stepwise linear regression, the respective chances
are 50% and 18%. Based on the dataset distribution, the second method can only improve half
as much as the first. Thus, the quality of prediction should never be based on improvement
over random selection alone. To verify the robustness of this method, we also used the least
squares fit model to predict the mean log GI50 for the remaining 38650 substances with toxicity
profiles containing imputed data. We found that the correlation coefficient was little changed
and RMSE improved to 0.06. This was expected due to the incidences of imputed mean log
GI50 values for all missing data. See Figure 11c. Here significant improvement over random
selection was seen. This was due to the change in ratio of toxic:non-toxic substances. The ratio
for the test set having 2412 substances with the more complete toxicity profiles was 1200:1212
and 428:1984 for the respective log GI50 cutoff values of −5 and −6. Whereas the ratios for
the test set containing having 38650 substances with imputed data were 5268:33382 and
1215:37435 for same respective log GI50 cutoff values. The ratio of toxic:non-toxic is inversely
proportional to the improvement over random. When considering the improvement over
random selection, one must also consider the classification ratio, as the maximum improvement
over an evenly divided set 1:1 (50% chance to correctly classify any substance) is twofold, as
was the case with our unimputed test set. In our case with 1215:37435 toxic:non-toxic
substances it is possible to improve the identification of toxic substances by ∼32 fold
(38650/1215).

Conclusions
Refining chemical datasets can facilitate the process of drug development by helping to
minimize the high attrition due to poor ADMET during the clinical phases.21 The largest
problem with current public domain chemical and biological activity data is lack of curation
procedure and QC. We have shown that even in the cases where curated datasets are available,
one must carefully evaluate the data in order to ensure the greatest accuracy for data mining
purposes.

In this work we have preprocessed and validated the quality of a large reliable subset of the
NCI60 for data mining toxicity profiles. Here we have used PCA to validate the use of larger
training sets by demonstrating that PC1 was not an artifact due to imputing the mean log
GI50 and further establishing a correlation between the components of the eigenvectors for the
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principal components responsible for 92% of the total log GI50 variance. The same steps can
be used to refine screening data from multiple assays, whether they include a subset of the
NCI60 assays, a combination of the NCI60 and other biological screens, or any selection of
HTS drawing their activity data from a common set of substances. Further examination of the
PCA results led to interesting deductions regarding the general landscape of a dataset. In this
case over 89% of the total system variance relates to the generally cytotoxic nature of
substances, and the leukemia cell lines behaved differently. PC2, responsible for ∼1.2% of the
log GI50 variance, identifies the leukemia cell lines. Finally, it is possible to extract the
substances responsible for the principal components in order to mine for similarities or
differences. Here PC9 and PC13 indicate that multiple mechanisms may share similar toxicity
profiles based on the NCI60.

Based on our analysis of the substances responsible for PC9 and the latter principal
components, we have found the chemical structures to be of such diversity that it would be
impossible to derive the underlying QSARs based on the limited size of the dataset and the
likelihood that the substances' cytotoxic natures are due to different mechanisms of action.
QSPR investigations may provide valuable insights regarding the compounds responsible for
these principal components. Identifying QSARs within the larger groups of substances
responsible for PC1 and PC2 based on structurally similar subsets of these substances may also
be possible. However, as it stands both QSAR and QSPR investigations are beyond the scope
of this work.

We derived two predictive methods: one using a binary decision tree, the other using forward
stepwise linear regression and least squares fit. In our study, greater than tenfold enrichment
over random selection can be expected for substances with mean log GI50 < −6, using both of
our methods based on our subset of the NCI60. The least squares model further offers a very
accurate method for determining the level of general cytoxicity for substances that need not
be limited to the NCI dataset. While it has shown improved results over past cytotoxicity
prediction methods, there is one caveat, that future predictions on substances outside of the
NCI60 cannot be performed completely in silico. This pitfall is also our major discovery, i.e.
only 9 of the 59 available NCI60 cancer cell lines are required to implement our model. In
other words, for the purposes of an initial screen to identify generally cytotoxic substances, the
59 cancer cell lines are highly redundant. While selectivity is one of the main goals with
antitumor agents, our method can flag nonselective substances with significantly low mean log
GI50 values for early elimination. Selective substances will not be flagged as they have higher
mean log GI50 values for the majority of cancer cell line assays, deemphasizing the increased
toxicity of selective substance for only a few cancer cell lines. The goal is to flag compounds
as early as possible for elimination in the drug discovery pipeline in order to save time and
money through streamlining the toxicity detection system while decreasing the overall demand
on chemical and biological resources.

Being able to more accurately identify non-specific cytotoxins brings to light two new
questions relevant to the Food and Drug Administration's approval of current and new drug
substances. (1) Are non-cytotoxic molecules more “drug-like” for drugs that are not meant to
be anticancer agents? (2) Are drug molecules less cytotoxic than non-drugs? Answering these
questions might help to further access the overall generalizabilty of our methods and minimize
the attrition rates of new potential drugs in the later stages of drug development pipeline.
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Figure 1.
The number of available log GI50 values for the 43474 substances with measurements in units
of molarity was color coded according to the class of cancer cell lines. The cell lines within
each class have been alphabetized and numbered.
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Figure 2.
The mean log GI50 of the NCI60 substances is shown with a granularity of 1000 bins.

Lee et al. Page 14

J Chem Inf Model. Author manuscript; available in PMC 2008 October 6.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 3.
Figure 3a. Substance log GI50 correlation for 40131 data points between a non-small cell lung
and a CNS cancer cell lines having R2 = 0.86.
Figure 3b. Substance log GI50 correlation for 35680 data points between two non-small cell
lung cancer cell lines having R2 = 0.73.
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Figure 4.
The x-axis represents the 59 cancer cell line assays and has been color coded and organized as
described in Figure 1. The y-axis represents the components of the eigenvectors for each
respective principal component. ( ) represents random toxicity profiles for 4824 entries,
each cell within the range [−4, −9], plotted only for PC1; ( ) are from the 4824 substances
having complete profiles; ( ) are from the 43474 substances using imputed data for
missing values; ( ) are from the 43474 substance ignoring missing values.
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Figure 5.
(1) The fit line through 543 substances determined by PC2 (▪), which are most responsible for
increased leukemia cell line toxicity relative to the remaining 53 NCI60 cell lines. (2) The fit
line for 239 substances determined by PC2 ( ), which are responsible for decreased
cytotoxicity of the leukemia cell lines compared to the non-leukemia cancer cell lines.
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Figure 6.
Figure 6a. This histogram depicts the 543 substances determined by PC2 which are most
responsible for increased leukemia cell line toxicity relative to the remaining 53 NCI60 cell
lines. ( ), (•••••••••), and ( ) represent the mean log GI50 of the leukemia cell lines,
all cell lines, and the non-leukemia cancer cell lines, respectively.
Figure 6b. This histogram depicts the 239 substances determined by PC2 which are most
responsible for decreased leukemia cell line toxicity relative to the remaining 53 NCI60 cell
lines. ( ) and (•••••••••) represent the mean log GI50 of the leukemia cell lines and all cell
lines, respectively.
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Figure 7.
PC9 specifically identifies the Leukemia_SR cancer cell line related eigenvector component.
PC13 identifies NSC_Lung_Hop_92 and CSN_SNB_75. The axis and color coding scheme
are described in Figure 1.
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Figure 8.
Comparison of molecules from the 45 substances having specific toxicity for the Leukemia_SR
cancer cell line. The left molecule of each pair has the greatest similarity to the right one. (a)
Stan = 0.92, (b) Stan = 0.57, (c) Stan = 0.24.
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Figure 9.
Histogram of the highest Stan derived by comparing pairs of substances using the MACCS
fingerprint on the set of 45 substances specifically targeting the Leukemia_SR cancer cell line.
Mean = 0.55, σ = 0.13, min = 0.24, max = 0.92.
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Figure 10.
Prediction results using a decision tree. (a) The training set had a fit R2 = 0.9284 with RMSE
= 0.2285. (b) The test set exhibited predictive R2 = 0.5432 with RMSE = 0.7119.
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Figure 11.
Prediction results using the least squares fit and forward stepwise regression. (a) The training
set consisted of 2412 complete toxicity profiles and had a fit R2 = 0.9949 and RMSE = 0.07855.
(b) Test set 1 consisted of 2412 complete toxicity profiles and had R2 = 0.9932 and RMSE =
0.09000. (c) Test set 2 consisted of 38650 incomplete toxicity profiles and had R2 = 0.9918
and RMSE = 0.06195. The toxicity profiles used in (a) and (b) contained no imputed data,
whereas the toxicity profiles used to determine (c) had imputed data.
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