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Abstract
Several studies have suggested that disrupting interactions of the G protein βγ subunits with
downstream binding partners might be a valuable study for pharmaceutical development. Recently,
small molecules have been found which bind to Gβγ with high apparent affinity in an enzyme-linked
immunosorbent assay (ELISA), have demonstrated selective inhibition of interactions of Gβγ with
downstream signaling partners, and have been shown to increase antinociceptive effects of morphine
and inhibit inflammation in vivo. In this paper we examine several docking and scoring protocols for
estimating binding affinities for a set of 830 ligands from the NCI diversity set to the Gβ1γ2 subunit
and compared these with IC50s measured in a competition ELISA with a high-affinity peptidic
ligand. The best-performing docking protocol used a consensus score and ensemble docking and
resulted in a 6-fold enrichment of high-affinity compounds in the top-ranked 5% of the ligand data
set.

INTRODUCTION
G protein-coupled receptors (GPCRs) trigger cellular signaling cascades through interactions
with heterotrimeric guanine nucleotide binding proteins (G proteins) and are involved in many
diverse physiological processes such as sensory perception, modulation of cardiac rhythm,
neurotransmission, attraction of motile cells by chemotaxis, and regulation of mitosis.1,2
GPCRs are common targets for pharmaceutical intervention; around half of all drugs in clinical
use are GPCR agonists or antagonists.3 In the standard model for signaling, the receptor acts
as a catalyst for the exchange of GDP for GTP on the Gα subunit, which leads to dissociation
from the Gβγ subunits. Gα and Gβγ are then free to interact with downstream signaling partners.
Five distinct β subunits and twelve distinct γ subunits have been identified in the human and
mouse genomes; these subunits can pair to form many Gβγ different combinations. Evidence
suggests that the different Gβγ isoforms interact with different GPCRs, although this selectivity
is not completely understood.4

Several studies have suggested that disruption of interactions of Gβγ with downstream binding
partners might be a valuable strategy for pharmaceutical development.4–21 Recently, small
molecules have been found which bind to Gβ1γ2, as demonstrated by the ability to compete
with a high-affinity peptide ligand (SIGK) in an enzyme-linked immunosorbent assay
(ELISA). An X-ray crystal structure of SIGK bound to Gβ1γ2 has been determined and shows
that SIGK binds to the same region of the β subunit as the switch II region of Gα, in the center
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of the β-propeller.22 This region has been postulated to be a hotspot or a small area on a protein–
protein interaction surface particularly important for mediating binding. The small molecules
were discovered with the help of a small virtual screen of ~2000 compounds from the National
Cancer Institute (NCI) diversity library, using the FlexX software package.23 One compound,
M119 (NSC119910), was subsequently shown to inhibit Gβγ-dependent activation of
phospholipase C and phosphoinositide 3-kinase γ (PI3K) and to increase the antinociceptive
effects of morphine in mice.21 A very similar compound, gallein (which is commercially
available at high purity), was found by surface plasmon resonance to bind Gβ1γ2 with Kd ~
400 nM and was shown to inhibit PI3K activation and chemoattractant-dependent neutrophil
migration and lessen carrageenan-induced inflammation in mice.20 In general, disruption of
protein–protein interactions has the potential to be an important strategy for developing
therapeutics. Although contact surfaces are often large in size and relatively flat,24–26 studies
involving point mutations show that only a small subset of residues contribute most of the free
energy of binding; these “hotspots” are often located at the center of the interface.27–33 Recent
reviews of the principles of protein–protein interactions and their significance for drug design
have been published.34,35

Virtual screening by docking compounds from chemical libraries has become widely used in
drug discovery, for finding new lead compounds when a high-resolution structure of the target
is available.24–26,36–40 Many docking programs have been developed over the past few
decades, and good success in screening applications has been reported in some cases. However,
accurate prediction of binding affinities remains challenging.41–46 All recently available
programs provide false negatives (active compounds that are not given a high-ranking score
by docking programs) and false positives (inactive compounds that are given a high-ranking
score). Individual programs often show better ability to predict high-affinity compounds for
particular receptors or compound classes. It is difficult to say in advance whether a particular
program or scoring function will be successful for a certain case without any supporting
experimental knowledge about the target.

In this paper, we examined several docking and scoring protocols for estimating binding
affinities for a subset of 830 ligands from the NCI diversity set to the Gβ1γ2 subunit and
compared these with IC50s measured in competition ELISA with the high-affinity SIGK
peptidic ligand. The DOCK6 and GLIDE software packages were used, and the influences of
the assignment of protonation states and partial charges of ligands and receptors were
evaluated. Enrichment factors from both software programs (the number of high-affinity
ligands found as a fraction of the amount of the database screened) were compared depending
on variations. The influences of the assignment of protonation states and partial charges of
ligands and protein receptor were evaluated. Solvation effects were introduced using the
Poisson–Boltzmann continuum method. The effects of structural flexibility were explored in
detail by molecular dynamics (MD) simulation. The aim of this study is to obtain the best-
optimized docking method to apply to a larger database.

METHODS
Measurement of Binding Affinities

830 compounds taken from the NCI diversity set (comprising a total of 1990 compounds) were
tested for competition with the SIGK peptide in ELISA as described in refs 16 and 21.
Compounds with less than 300 μM of median inhibitory concentration (IC50) value were
assumed to be high-affinity compounds; a total of 36 such high-affinity compounds were found
in this assay (see Table 1).
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Preparation of Receptors
The crystal structure of Gβγ complexed with the SIGK peptidic ligand (PDB ID 1XHM) was
separated into protein and ligand PDB files. The protein was processed to add hydrogen atoms
and remove water molecules and minimized to alleviate bad steric contacts with the Protein
Preparation Wizard utility in Maestro (Schrödinger, Inc.). Two different sets of partial charges
were employed for the receptor: AMBER charges,47 assigned using the CHIMERA program,
48 and OPLS/AA charges,49 which were automatically assigned by Glide version 4.5
(Schrödinger, Inc.) in the receptor grid calculation. The protein–ligand file was subsequently
used to select spheres in the hotspot of the receptor in the process of receptor preparation by
the DOCK6 program.50

Preparation of Ligands
Coordinates for molecules in the NCI diversity set were downloaded from NCI. Metal ions
were removed and hydrogens were added using SYBYL version 6.8 (Tripos, Inc.). Tautomers
were generated using ionization states estimated for pH 7 with the LigPrep program
(Schrödinger, Inc.). Four different sets of partial charges (CM1,51 CM2,52 AM1-BCC,53 and
Mulliken54) were assigned to each ligand using the Antechamber program in the AMBER
software package. OPLS ligand charges were also obtained using Glide by the default setting.

Docking
Using the DMS program in the DOCK6 software package, the solvent-accessible molecular
surface of the protein binding site was calculated using a probe radius of 1.4 Å. Receptor
spheres were generated using the program SPHGEN. Spheres covering the hotspot were
selected within 10 Å from the positions of the heavy atoms of the SIGK peptide ligand. The
grid box enclosing the selected spheres was generated with an extra 5 Å added in each
dimension. Ligand flexibility was employed during the docking process. When performing
docking with Glide, the inner box, which defines the range of motion for the center of each
ligand, was set to 10 Å on each side. The outer (enclosing) box, which includes the entire hole
at the center of Gβγ, was set to 11 Å longer than the inner box on each side. Docking calculations
were performed using both standard-precision (SP) and extraprecision (XP) modes.

Introducing Solvation Effects
The Poisson–Boltzmann continuum method implemented in MEAD55 was used to introduce
solvation effects. The best poses of ligand molecules from DOCK6 were used for solvation
free energy calculations. A grid spacing of 1.0 Å was applied, and a focused grid of 0.25 Å
was utilized. The differences of solvation free energies of ligands in protein and in water were
calculated.

Docking Using a Conformational Ensemble
A relatively simple way to take in to account the effects of receptor flexibility is to dock to an
ensemble, rather than a single structure.56–58 To create an ensemble of receptor conformations
for docking, molecular dynamics (MD) simulations of the unbound receptor were performed
with the SANDER module of the AMBER9.0 software package. The parm99 force field
parameters were used, and solvent effects were incorporated using the pairwise generalized
Born model of Case and co-workers.59–61 Prior to a production run, the receptor was first
relaxed by steepest descent energy minimization, followed by conjugate gradient energy
minimization. The system was then heated over 25 ps from 0 to 300 K. An MD simulation of
1 ns was performed to produce a conformational ensemble of the receptor at 300 K. A
nonbonded cutoff distance of 12 Å and a time step of 2 fs was used. Constant temperature was
maintained using the Langevin thermostat, and all bonds involving hydrogen atoms were
constrained using the SHAKE algorithm. Coordinates were saved every 1000 steps, for a total
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of 500 snapshots. The snapshots were classified into ten groups by the fuzzy c-means (FCM)
clustering algorithm using the GA Fuzzy Clustering program.62 From each cluster, the structure
closest to the center was chosen for docking. A docking score was obtained for each of the ten
conformations. These scores were then averaged to rank compounds.

RESULTS
Influence of Protonation State of Ligands

Enrichment factors (i.e., the number of high-affinity compounds found as a function of the
amount of the ranked database examined) were calculated using both unrefined original forms
of NCI database ligands and ligands with protonation states corrected for pH 7, using LigPrep.
AM1-BCC charges were used for the ligand, with AMBER charges for the receptor. When the
structures in the unrefined original ligand database were inspected, most of the titratable
functional groups such as carboxyls were found to be protonated. The charges on the acid
functional groups were also significantly different from those on the refined ligands. However,
most of the basic functional groups such as amines were deprotonated in both the refined and
unrefined ligand structures. Docking was performed with DOCK6 using the Grid scoring
function as described above. Enrichment factors are shown in Figure 1. With unrefined, original
protonation states, DOCK6 could not effectively identify active ligand compounds, since the
enrichment curve was only slightly better than random selection. After the ligand protonation
state was corrected, the percent known active ligands found in the top tenth of the ranked
database was increased from 13% to 33%, suggesting that the protonation state of ligands has
a significant effect on molecular recognition by the Gβγ active site.

Influence of Partial Charges
To investigate the role of partial charges in docking and scoring accuracy, charges for Gβγ
were assigned using both AMBER99 and OPLS/AA force fields; four different sets of charges
(CM1, CM2, AM1-BCC, and Mulliken) were assigned to the ligands. The DOCK6 program
was used to generate poses and obtain scores. Results are shown in Figure 2 and suggest that
overall, more accurate results are obtained using AMBER receptor charges. Using AM1-BCC,
28% of the known high-affinity ligands were found in the top 10% of the database using OPLS
receptor charges, while 33% of known ligands were found using AMBER receptor charges. In
general, AM1-BCC charges resulted in the greatest enrichment, followed by Mulliken, CM2,
and CM1. This trend held for both sets of receptor charges. The influence of the receptor
charges was less significant than that from the ligand charges.

Comparing Docking Methods
Success in enrichment and in accurately reproducing correct binding poses has been reported
for the Glide docking program.63–65 We computed enrichment factors with Glide; results are
shown in Figure 3. The best enrichment (33% of high-affinity ligands found in the top 10% of
the database) was slightly higher with DOCK6 than with Glide (21% of high-affinity ligands
found in the top 10% of the database). Combinations of AMBER and OPLS receptor charges
and AM1-BCC and OPLS ligand charges were used. Similar to results with DOCK6, the
AMBER receptor charges were generally superior to the OPLS receptor charges when using
Glide. When OPLS charges were used for the ligands, Glide SP with AMBER receptor charges
found 21% of known ligands in the top 10% of the ranked database, while Glide SP with OPLS
receptor charges found only 12% of known ligands. When AM1-BCC charges were used for
the ligand and AMBER charges were used for the receptor, the fraction of actives found in the
top 10% dropped from 21% to 9%. Results indicate that the AMBER/OPLS receptor/ligand
charge combination is the most effective to identify known active compounds for this system
with Glide. However, when the AMBER/OPLS receptor/ligand charge combination was
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applied to DOCK6, the enrichment in the top 10% of the database was less than that from the
AMBER/BCC receptor/ligand charge combination, as shown in Figure 2a.

The Glide extended-precision (XP) mode has previously been reported to be more effective
for finding known active compounds for a large and diverse set of ligands and receptors than
Glide SP.66 However, it was designed as a refinement tool for use with relatively good ligand
poses from Glide SP because it demands more intensive computational expense. We took the
best-scoring poses from Glide SP mode using the AMBER/OPLS combination of charges and
docked again using Glide XP mode. This actually provided degradation of the fraction of
actives found in the top 10% of the database from 21% to 12%. However, in the top 30% of
the database, enrichment was essentially the same.

Solvation Free Energy
To account for solvation, we used the Poisson–Boltzmann continuum method implemented in
MEAD. Because PB energies are known to be very sensitive to receptor–ligand geometry, only
the best poses from previous docking with DOCK6 were considered. The ligand charge set
used in this method was AM1-BCC, which gave the best enrichment out of the charge sets we
considered. The solvation free energy differences of the ligand in protein and in water were
added to the DOCK6 Grid scoring function. (Solvation free energy calculations were not
included for Glide, because the Glidescore already includes a solvation term.) Calculated
solvation free energy differences were small and had little effect on enrichment factors.

Consensus Scoring
We constructed a simple consensus score by adding together the grid score from DOCK6 using
AMBER/AM1-BCC receptor/ligand charges and the Glidescore from Glide SP with AMBER/
OPLS charges. In this case, the fraction of actives in the top 5% of the database increased to
28%, and the fraction of actives found in the top 10% was increased to 37%. When the
correction for solvation free energies was added to the consensus scoring function, the
enrichment factors in the top 5% and 10% of the database were the same (Figure 4).

Accounting for Receptor Flexibility by Ensemble Docking
Ensemble docking—that is, docking to ensembles of conformations of receptors taken from
molecular dynamics simulations—was performed to account for receptor flexibility. MD
simulations did not significantly change the overall receptor structure but produced fluctuations
(Figure 5). The receptor and ligand charge combinations used were AMBER/AM1-BCC for
DOCK6 and AMBER/OPLS for GlideSP, which resulted in the best enrichment as described
above. In general ensemble docking improved enrichment but only by a slight amount (Figure
6). For DOCK6, the fraction of actives found in the top 10% of the database was slightly
improved (from 33% to 38%). For Glide SP, ensemble docking resulted in fewer actives found
in the top 10%. However, consensus scoring with a combination of the DOCK6 grid score,
solvation correction from MEAD, and the Glidescore resulted in an increase of the number of
actives found in the top 10% of the database to 38%. The result shows that the performance
with ensemble docking is better for the top fraction of the database, which is most valuable as
it is this fraction that is likely to be tested in practice.67 Several studies have shown that docking
scores are often highly correlated with molecular weight, indicating that nonspecific
interactions are the most significant contributors to scores.67 Therefore, for comparison, we
calculated enrichment simply ranking compounds by molecular weight. Results indicate that
a consensus score with ensemble docking provides superior enrichment in the top fraction of
the database; however, in considering larger fractions (greater than the top fifth or so), a simple
ranking by molecular weight does just as well.
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CONCLUSIONS
In this work we examined the ability of docking and scoring methods to predict the binding of
small molecules to a protein–protein interface, the hotspot of the G protein β subunit. The
influence of variations in the ligand protonation state, initial structures of proteins and ligands,
partial charges, scoring functions, and docking protocols was investigated using the DOCK6
and Glide programs. Docking to a broad protein–protein interaction surface is a difficult
problem, but it was possible to obtain significant enrichment in the number of active
compounds found in the top-ranking portion of the database. The use of a consensus score and
taking receptor flexibility into account by docking to an ensemble of configurations from
molecular dynamics simulation resulted in greater enrichment. Limitations remain, such as the
neglect of changes of conformational entropy upon binding. Furthermore, docking programs
could not directly rank compounds according to affinities, and there was little correlation
observed between scores and measured inhibition constants. For example, the highest-affinity
compound M119 (IC50 = 200 nM) was filtered out of the top 10% of the database during this
screening process, although it appeared in the top 30% for all methods. In agreement with
previous studies, enrichment provided by docking is comparable to ranking compounds simply
by molecular weight, although ensemble docking using a consensus score was better at finding
high-affinity compounds in the top-ranked fraction of the database.

Somewhat surprisingly, the binding area of small molecules observed in docking does not
always overlap with the binding of the high-affinity SIGK peptide ligand (Figure 7). In general,
small compounds were observed to dock inside the hole of the Gβγ hotspot, rather than on the
surface. While this might be an artifact of the modeling, if poses are reasonable accurate, it
suggests that small molecules can disrupt the interaction without completely occluding the
binding surface.

Future work will involve applying the methods investigated here to larger databases of millions
of compounds. It is expected that docking/scoring methods will be able to make a contribution
toward discovery of new high-affinity ligands with the potential for selective inhibition of
interactions of Gβγ with downstream signaling partners as well as to a better understanding of
the structural basis for signaling specificity.
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Figure 1.
Docking enrichment plot with unrefined ligand protonation state and refined ligand protonation
state at pH 7.0, using the Grid scoring function of DOCK6. AM1-BCC and AMBER charges
were chosen for ligands and receptor, respectively. The percent of the ranked database screened
(x-axis) is plotted against the percent of known ligands found (y-axis). The black line represents
the values expected if all known ligands were ranked in the top 10% of the list. The red line
shows results expected if ligands were ranked completely randomly.

Park et al. Page 10

J Chem Inf Model. Author manuscript; available in PMC 2010 March 29.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 2.
Docking enrichment plots for comparing different receptor and ligand partial charges using
DOCK6. Receptor charges and ligand charges used for docking are a) AMBER/(BCC, CM2,
CM1, Mulliken, and OPLS) and b) OPLS/(BCC, CM2, CM1, and Mulliken).
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Figure 3.
Performance of different combinations of receptor and ligand charges using Glide. Yellow,
purple, brown, and turqoise lines show enrichment factors calculated using Glide SP and
different charge sets. Each line shows a different combination of receptor and ligand charges.
For example, the yellow line represents the combination of AMBER receptor charge and OPLS
ligand charge. The blue line represents enrichment from redocking using ligand poses from
the AMBER-OPLS charge combination, under Glide XP mode.
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Figure 4.
Docking enrichment plots presenting consensus scoring function of Grid score from DOCK6
(AMBER-BCC charges) and Glidescore from Glide SP (AMBER-OPLS charges). The blue
line represents a simple combination of Grid score, solvation energy, and Glidescore. The
yellow line represents a “rank-to-rank” consensus scoring function of Glidescore and Grid
score that includes solvation energy: that is, compounds are ranked using the Glidescore and
the DOCK Grid score including solvation energy. A consensus rank is given as the average of
these two ranks.
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Figure 5.
A superposition of the ten receptor structures used for ensemble docking, taken from MD
simulation. The ten conformations are represented by blue wire with only backbone traces.
The X-ray crystal structure of the receptor without bound SIGK is represented by white wire.
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Figure 6.
Docking enrichment plots showing ensemble docking against 10 different receptor
conformations made by MD simulation. The consensus score (blue line) is the sum of Grid
scores from DOCK (AMBER-BCC charges), solvation free energies, and Glidescores from
Glide SP (AMBER-OPLS charges), averaged over all receptor conformations. The brown line
is the enrichment plot calculated by ranking compounds by molecular weight, which ranges
from 100 to 890 amu.
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Figure 7.
Docking pose of a compound (NSC83217) bound to the Gβγ subunits, generated using DOCK6,
superimposed with the bound high-affinity SIGK peptide. The SIGK peptide and compound
are represented by green and orange colored sticks, respectively. The receptor is represented
by gray wire, showing only the backbone structure.

Park et al. Page 16

J Chem Inf Model. Author manuscript; available in PMC 2010 March 29.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Park et al. Page 17

Ta
bl

e 
1

M
ed

ia
n 

In
hi

bi
to

ry
 C

on
ce

nt
ra

tio
n 

(I
C

50
) V

al
ue

s o
f 3

6 
B

in
di

ng
 In

hi
bi

to
rs

 o
f S

IG
K

 w
ith

 M
ax

im
um

 V
al

ue
 o

f L
es

s t
ha

n 
30

0 
μM

 a
nd

 th
e 

M
ol

ec
ul

ar
 W

ei
gh

t
fo

r E
ac

h 
In

hi
bi

to
r

co
m

po
un

d
M

W
IC

50
 (μ

M
)

co
m

po
un

d
M

W
IC

50
 (μ

M
)

11
99

10
37

0
0.

2
45

38
2

44
0

35
.4

11
99

11
31

4
0.

2
34

23
8

40
2

42

11
99

13
39

4
0.

7
15

02
89

46
4

42
.5

51
53

5
54

7
2.

4
88

91
5

55
0

47
.7

11
98

89
65

0
4.

3
19

63
0

18
3

53
.6

14
16

3
41

4
5.

9
11

70
79

47
3

56

28
05

24
6

7.
1

83
21

7
40

7
56

.9

11
81

76
47

1
8.

1
17

77
0

54
3

59
.1

39
20

7
78

7
10

.7
45

12
6

42
4

69
.7

22
22

5
38

7
11

.4
66

83
94

45
2

77
.7

12
15

5
44

5
24

90
83

1
56

0
92

.9

96
08

37
8

16
.5

11
71

99
36

2
16

1.
6

69
34

3
54

6
16

.8
17

04
23

49
7

16
6.

6

12
59

10
56

6
18

95
67

6
53

6
18

2.
4

12
84

37
47

7
24

59
27

5
52

3
19

7.
1

83
22

4
13

6
24

.9
12

17
71

26
0

19
8.

1

14
55

5
28

1
26

32
84

51
2

26
1.

9

23
12

8
89

9
27

24
04

8
44

2
29

2.
1

J Chem Inf Model. Author manuscript; available in PMC 2010 March 29.


