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Abstract
Ensemble methods have become popular for QSAR modeling, but most studies have assumed
balanced data consisting of approximately equal numbers of active and inactive compounds.
Cheminformatics data is often far from being balanced. We extend the application of ensemble
methods to include cases of imbalance of class membership and to more adequately assess model
output. Based on the extension, we propose an ensemble method called MBEnsemble that
automatically determines the appropriate tuning parameters to provide reliable predictions and
maximize the F-measure. Results from multiple datasets demonstrate that the proposed ensemble
technique works well on imbalanced data.
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Introduction
Compounds with similar chemical structure often have similar biology activity1. The goal of
quantitative structure-activity relationship (QSAR) modeling is to determine whether chemical
structures are quantitatively correlated with biology activities. A QSAR study incorporates
statistical and mathematical approaches and uses computer-based tools to implement those
approaches. Over the last decade, many QSAR modeling tools have been developed. Some
popular examples include Decision Tree (DT)2, K-Nearest Neighbors (KNN)3, Support Vector
Machines (SVM)4, Neural Networks (NNet)4,5 and Random Forest (RF)6,7. All of these
methods are reputed for their application in QSAR modeling. However, none of them fully
address all “practical” features required by QSAR modeling, including the ability to effectively
handle imbalanced data and multiple mechanisms.

Typically, binary designations are used to indicate presence of the studied biological activity.
Each compound is assigned a value of one or zero, with one indicating desired activity and
zero indicating no or little activity. When compound collections have unequal numbers of
active and inactive compounds, the resulting data on activity and structural descriptors is said
to be imbalanced. In the real world, biologically active compounds tend to be rare when
compared with inactive compounds, so the chemical data set is usually highly imbalanced.
High-throughput screening data submitted to PubChem8 by the Molecular Libraries Screening
Centers Network9 tend to have activity rates much less than 0.1%.

QSAR modeling is complicated by the imbalanced feature of the data. It is more difficult to
predict active than to predict inactive no matter which QSAR model is utilized. For extremely
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imbalanced data, the activity rate is so low that some methods may predict inactive status for
the entire collection. Although the resulting accuracy rate is high, we miss all compounds that
are truly active. Since one of the major goals of a QSAR study is to identify chemical structures
that lead to active chemical reaction, QSAR modeling needs the ability to handle imbalanced
data.

Significantly different chemical structures may cause the same biological activity. In other
words, multiple mechanisms can lead to the same biological response2, and therefore correct
prediction depends on the ability to distinguish multiple regions of activity amidst an
overwhelming excess of inactive structures. It is difficult to detect all the mechanisms and most
conventional methods may only recognize some of them. When using a multiple linear
regression model, for example, we may detect at most one mechanism. In general, the number
of mechanisms is unknown and many popular QSAR methods fail because of this uncertainty.
DT, for example, may ignore some active structures due to using a single descriptor as the
splitting variable10. With these complexities induced by multiple mechanisms, the ability to
detect multiple mechanisms is crucial for QSAR modeling.

No single modeling approach has been shown to be optimal for all QSAR studies. Moreover,
some modeling approaches have been shown to be highly sensitive to small perturbations in
their training data. For this reason, the method of ensembling has gained popularity in recent
years7. The method of ensembling aggregates results from several individual models in an
attempt to achieve substantial improvement over all individual models. Ensemble models can
be designed in many different ways. Dietterich11 points out that the performance of ensembles
depends critically on three factors.

In this paper, we focus on the “family ensemble”. Our choice of the word family indicates that
all individual models used as input of the ensemble come from a common ancestor, i.e., a
common data-mining algorithm. There are three factors for implementing a family ensemble:
(a) the base learner, which is the data-mining algorithm used to create all individual models
for the ensemble – examples are DT and KNN; (b) the selection of training datasets – the goal
is to create an ensemble whose individual input models are as diverse as possible; and (c) the
strategy for combining results from all individual input models, including specifying weights
on the results of all base learners, e.g., the strategy of majority voting assigns equal weights to
each learner. RF belongs to the class of family ensembles. It uses DT as the base learner,
bootstrapping to select the training set, and makes ensemble prediction by majority vote.

A recent study by Bruce et al.12 compared many family ensembles for their effectiveness on
balanced biological activity data. They concluded that several family ensembles are more
accurate than individual methods, but a single decision tree remains competitive. Because
imbalance is a common feature of QSAR datasets, we believe it is important to study the
performance of family ensembles on imbalanced datasets. Moreover, we also believe that well-
constructed family ensembles, which use an “unstable” base learner (able to obtain very
different results from slightly different subsets of the training dataset) and employ a flexible
method to aggregate the results, can outperform the individual method on imbalanced data.
Our goal in this paper is to propose a model-based ensembling method that provides good
prediction on imbalanced data. Additionally, we motivate use of the F-measure as an
appropriate assessment criterion for QSAR studies.

The construction for model-based ensembling is described in the Methods section. We
investigate the proposed ensemble method by studying the datasets used by Bruce et al.12 plus
two additional datasets obtained from the Molecular Libraries Screening Center Network9

through PubChem8. Results for these datasets and discussions comparing performance are
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presented in the Results and Discussion section. Finally, in the Summary section we review
the advantages and limitations of the model-based ensembling method.

Methods
The proposed method, model-based ensembling (MBEnsemble), is developed for QSAR
classification problems that make predictions for binary designations of activity. MBEnsemble
is able to automatically adjust the decision rule determining prediction that a compound is
active according to the performance of base learners on training datasets. As will be
demonstrated later in this paper, this feature is especially suitable for imbalanced data. All
feature of MBEnsemble will be further discussed in this and subsequent subsections. To
construct a family ensemble, it is necessary to carefully decide three factors: (a) the base learner
for the ensemble; (b) the manipulation of the dataset for each learner; and (c) the scheme to
combine the results from all learners. Before introducing MBEnsemble, we first discuss some
basic concepts used to develop MBEnsemble.

Probability Averaging
There are various schemes to aggregate multiple learners. Majority vote (MV) is a common
choice, e.g. RF uses MV for classification problems. It jointly uses the learners by counting a
vote from each learner and the class that receives the largest number of votes is selected as the
final decision. Suppose there are m independent learners in the ensemble and each learner has
accuracy rate θ. The accuracy rate of the ensemble using MV is:

While MV has received much attention, other schemes can be more effective. Using a dataset
on hand-written digit recognition, Kittler et al.13 compared six combination schemes: sum rule,
min rule, max rule, product rule, median rule, and MV. They concluded that the median rule
outperformed the other five combination schemes. For data with binary designations of activity,
probability averaging (PA), which averages over the predicted probabilities of being active
obtained from all m learners, is a competitive alternative to the median rule. As the mean of
probabilities, PA has benefits over the median rule and results in the following approximation
of ensemble accuracy rate:

where Z represents a random variable that follows the standard Gaussian distribution, Pr(Z ≤
z) is the cumulative distribution function and Pr(Z ≤ zθ) = θ.

Figure 1 displays the gain in accuracy due to PA relative to the accuracy due to MV, namely
(θE,PA − θE,MV)/θE, MV. PA can get more than 6% improvement in accuracy over MV if the
base learner is more accurate than a learner that performs random selection, i.e. θ > 0.5. The
goal of ensembling is to achieve the best possible performance and the base learner used in the
ensemble is usually better than random guessing. Therefore, we choose PA to make decisions
in MBEnsemble.
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Threshold
The above accuracy rates, θE,MV and θE,PA, assume that the base learners are independent of
each other. In practice, it is difficult to ensure independence among all base learners. To relax
the restriction of independence and have a further understanding of ensemble prediction based
on PA, we generalize the assumptions as follows: (1) VYi, the estimated probability of being
active from the ith learner for the compound with true response Y (0 ≡ inactive, 1 ≡ active),
follows a distribution with mean μY and standard deviation σY; (2) the correlation between
VYi and VYi for i ≠ j is ρY; (3) V1i and V0i are independent of each other; and (4) the truly activity
rate is known to be p. PA prediction is based on a preset threshold δ and

 where I (·) is the indicator function. If V̄ >δ, the compound is
predicted to be active; otherwise, the compound is predicted to be inactive.

When m is large (m = 100 used in this paper is typically considered large), V̄ approximately
follows a mixture-of-normals distribution. The components of this mixture are: a normal
component with μ1 mean and standard deviation  with weight p, and a
normal component with mean μ0 and standard deviation  with weight 1
− p. The above assumptions imply the accuracy rate of the ensemble using PA as

Parameters μY, σY and ρY depend on the base learner chosen for the ensemble, the scheme for
selecting a training dataset for each base learner, and the richness of the data. On the other
hand, the activity rate p depends only on the data. Once we decide the construction scheme of
the ensemble for a given data set, then p, μY, σY and ρY become unchangeable and so prediction
quality is controlled only by adjusting δ. In the Results and Discussion section, we will show
the role of δ and how distributions of V1i and V0i affect the selection of δ.

Assessment Using the F-Measure
In learning from imbalanced data, accuracy rate is an inappropriate measure of performance.
There are many alternative measures for performance evaluation. Misclassification cost14, F-
measure15 and Geometric Mean16, 17 are common choices to assess performance on
imbalanced data. These measures are functions of the confusion matrix as shown in Table 1.
Given the unit cost of a false negative (FN), c1, the unit cost of a false positive (FP), c0, and
the total number of compounds, N, the misclassification cost, F-measure and G-Mean (or
geometric mean) can be defined respectively as:

• Misclassification cost = (c1 FN + c0 FP)/N. All nonnegative values are possible, with
zero being ideal.

•
. Values range from zero to one, one

being ideal.

•

, where α ≥ 0 is set by the user. Values range from zero
to one, one being ideal.
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According to the above definitions, the ratio of c1 to c0, c = c1/c0, has an obvious influence on
the use of misclassification cost. If c is very large, most attention will be paid to reduce FN
and the misclassification cost will lose the control of FP as well as its responsibility of
assessment. Large c may lead the algorithm to predict actives for all compounds if the goal of
the algorithm is to minimize the misclassification cost. In reality, the ratio c is large since the
cost of misclassifying a rare active compound to be inactive is quite high. Although the 100%
active prediction minimizes the misclassification cost, it does not provide valuable results for
a QSAR study.

The geometric mean is a popular assessment measure that is typically used outside of QSAR
studies16, 17. Based on the proportion of truly active compounds that are correctly predicted
(a+) and the proportion of truly inactive compounds that are correctly predicted (a−), the
geometric mean is high when both a+and a− are high and when the difference between a+and
a− is small. Consequently, the geometric mean applies equal weights to correctly identifying
actives and inactives. While this strategy is preferable to only monitoring the overall accuracy
rate, it still is not entirely appropriate for QSAR goals. For QSAR studies, there is very little
(likely no) interest in identifying inactive compounds, hence a− is not informative and so an
assessment measure based on a− is not attractive. In fact, TN in Table 1 is of little use because
correctly identifying inactives is not of primary value in QSAR studies. Hence we argue that
because both the misclassification cost and the geometric mean directly involve TN, they are
less desirable for assessing QSAR model effectiveness for binary outcomes in the presence of
imbalanced classes.

In the spirit of misclassification cost, the F-measure uses α to control the numbers of FN and
FP. When α approaches zero, the F-measure approaches a measure that is quite popular in the
text-mining literature, namely the precision, where precision is defined as TP/(TP + FP).
Precision is exactly equivalent to the hit rate that is more commonly known in the QSAR
community. When α approaches infinity, the F-measure approaches another popular measure
called recall, where recall is defined as TP/(TP + FN). Recall is the proportion of truly active
compounds that are predicted to be active. Using the notation introduced for the geometric
mean, recall is exactly equivalent to a+.

The F-measure is actually a weighted harmonic mean of precision and recall, and α is the weight
for recall. Therefore, the F-measure takes values between zero (indicating the worst
performance) and one (indicating the best performance). A commonly used F-measure is F1
that uses α = 1 and has equal weight on recall and precision.

A geometric mean based on precision and recall has also been proposed17, defined as

, where values range from zero to one, one being ideal. This measure
enjoys many of the benefits of the F-measure but does not allow unequal weights to be applied
to precision and recall. Although we use the equal-weight version of the F-measure for the
remainder of this paper, we ascribe to the belief that there are studies for which unequal weights
are appropriate and necessary, and hence we find value in the F-measure.

To more clearly see difference and similarities between the six assessment measures accuracy
(A), misclassification cost (MC), geometric mean based on accuracy rates (G1), geometric mean
based on precision and recall (G2), the equal-weight F-measure (F1), and an unequal-weight
F-measure (F2), consider the following two confusion matrices (A and B), both ordered as
described in Table 1 with, c1 = 10 c0 = 1:

• A: TP=90, FN=10, FP=20, TN=80. Then A=0.85, MC=0.60, G1=0.85, G2=0.86,
F1=0.86, F2=0.87.
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• B: TP=90, FN=10, FP=200, TN=800. Then A=0.81, MC=0.27, G1=0.85, G2=0.53,
F1=0.46, F2=0.55.

Confusion matrix B is reflective of imbalance, and most would agree that the predictive model
is far less effective in this case than in matrix A. However, G1 rates these matrices equally
while A assigns only marginal penalty to matrix B. Even worse, MC rates matrix B as better
than matrix A. On the other hand, G2, F1, and F2 all significantly penalize matrix B, albeit in
varying amounts.

To provide further assistance in calibrating numerical values of the F-measure to other
assessment measures, two addition confusion matrices (C and D) are considered below. These
matrices fix the total number of truly active and truly inaction compounds to match the
corresponding totals in confusion matrices A and B discussed above, but instead use a “random
guess” approach to arbitrarily provide correct prediction for half of the true actives and correct
predictions for half of the true inactives. Assessment measures on confusion matrices C and D
are shown below:

• C: TP=50, FN=50, FP=50, TN=50. Then A=0.50, MC=2.75, G1=0.50, G2=0.50,
F1=0.50, F2=0.50.

• D: TP=50, FN=50, FP=500, TN=500. Then A=0.50, MC=0.91, G1=0.50, G2=0.21,
F1=0.15, F2=0.20.

Again we see that G2, F1, and F2 significantly penalize matrix D but in varying amounts, and
their values are much worse for these random guesses than for matrices A and B that result in
more true positives and fewer false negatives and false positives.

Based on features of the misclassification cost, geometric mean and F-measure, we choose
F1 as the performance assessment measure and use it as a tool to find the appropriate threshold
δ. Other options for α can also be used, depending on the needs of the study. Results, as
presented in the Results and Discussion section, using other values of α are available upon
request.

MBEnsemble
As mentioned in the beginning of the Methods section, there are three factors determining the
construction and performance of a family ensemble. For Factor (a), DT is probably the most
desired learner12. There are several reasons for this choice: the DT algorithm is very scalable
for binary classification and hence can work for very large datasets; DT has the ability to deal
with collinear descriptors; DT is interpretable; and DT can give big changes in estimation as
a result of small changes in the training dataset, thus leading to less correlated learners. Because
of its valuable properties, Bruce et al.12, Svetnik et al.7 and Dietterich11 all suggest using DT
as the base learner for ensembling methods. Accordingly, MBEnsemble consists of 100
decision trees.

For Factor (b), 10-fold cross-validation is used (the result by Kohavi18 implies that 10-fold
cross-validation with decision tree works well) and only 70% of the descriptors are randomly
selected for each training dataset in each fold. When it comes to selection of base learners for
an ensemble, there are two major factors that greatly impact performance: the correlation
between any two models in the ensemble, and the strength of individual models. It is known
that the ensemble method works best if base learners are independent of each other6, 18.
Increase of the correlation decreases the strength of the ensemble. Increase of the strength of
individual models increases the strength of the ensemble. Unfortunately, increasing the
percentage of descriptors used to construct each individual tree increases both correlation and
strength of individual trees. We conducted a trial on a simulated data set (with 1000
observations, 100 variables and 7.5% activity rate). Nine percentages were considered for how
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many descriptors to include in training: 10%, 20%, … 90%. The results are in favor of using
70% of the descriptors to construct individual trees for the ensemble.

Alternatively, other techniques could be employed for selecting base learners (indeed, we find
the techniques used in RF to be desirable). The primary focus in this paper is combining the
base learners by adjusting the threshold and using PA, and these procedures are applicable no
matter how one chooses to create base learners.

For Factor (c), probability averaging is implemented in MBEnsemble because of its great
appeal, as mentioned earlier. When using PA, the threshold δ becomes a tuning parameter that
is used to control the prediction of being active. Different δs may be needed for different data,
especially for imbalanced data. Furthermore, the ideal δ relies on the properties of the base
learner, e.g. μ1, σ1, μ0 and σ0. It is difficult to decide a good δ before the analysis. Therefore,
MBEnsemble is designed to automatically choose the optimal δ enroute to its analysis.

The procedure of MBEnsemble is listed as follows:

Loop A: for i in (1:10): do 10-fold cross validation

Loop B: for j in (1:100): use 100 decision trees for analysis

I. randomly select 70% of descriptors from the complete data matrix to get data Di j

II. use the ith fold of Di j as a test set and the rest of Di j as the training set

III. run the decision tree on the training set to obtain the model Mi j

IV. use model Mi j to estimate the probabilities of being active for the training set 

V. use model Mi j to estimate the probabilities of being active for the test set Pi j

End Loop B

•

use the PA scheme to aggregate  and get  for the prediction on all
the folds except the ith fold

• find the optimal threshold δi that maximizes the value of F1 (F-measure with α = 1)
based on 

•

use PA on Pi j to obtain  and the optimal δi to make prediction on the
ith fold data

End Loop A

The inner Loop B in MBEnsemble ensures multiplicity for the ensemble because it creates 100
different DT models. Combining those DT models supports the detection of multiple
mechanisms. The outer Loop A of MBEnsemble controls cross validation and selection of
control parameter δ. As such, the outer loop works to decrease the variance of ensemble
estimation and resists overfitting the data.

A natural question concerns possible overfitting due to our search for optimal thresholds in
Loop A. As explained in the MBEnsemble pseudo-algorithm, 10-fold cross validation is used
inside Loop A. Consequently, 10 optimal thresholds are determined. Each threshold is the
optimal choice for the subset of 90% of the compounds used to construct trees in Loop B. With
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this threshold and the trees constructed in Loop B, we make predictions on the remaining 10%
of the compounds that are not used in the construction of trees. Prediction on this set is fair
because the set is excluded from tree construction and search for the optimal threshold.
Therefore, MBEnsemble is less prone to issues with overfitting.

With MBEnsemble, we do not need to specify δ beforehand and hence “optimal” thresholds
can be identified through the analysis. Such properties will benefit the analysis on imbalanced
data. Empirical results shown in the next section indicate how analyses on imbalanced data
profit from MBEnsemble.

Results and Discussion
Data

In this section, we will discuss results of eight small datasets from the study of Bruce et al.12

as well as two larger assays obtained from PubChem8. The earlier discussion on the choice of
δ will continue and the importance of δ will be displayed through empirical results obtained
from these datasets. Moreover, MBEnsemble results will be compared with results from RF
(an ensemble method based on MV) and a single DT (using 0.5 as a threshold to distinguish
between active and inactive compounds).

A summary of the eight small datasets studied by Bruce et al.12 is shown in Table 2. The assay
measurement for these original datasets is continuous and shows a uniform distribution. Bruce
et al12 focused on balanced classification, so they created binary responses by thresholding the
continuous assay response at the median. Our study focuses on classification in the presence
of imbalanced class counts, so we applied thresholds other than the median. While we studied
many thresholds, even those that resulted in activity rates as low as 10 percent, we only present
results corresponding to a near 20% activity rate. Due to ties in assay values at the threshold,
the actual activity rates fluctuated around 20 percent. Table 2 shows activity rates of the eight
small datasets; only ACE and BZR do not have activity rate of 20%.

Bruce et al.12 use two types of descriptors: 2.5D descriptors generated by Sutherland et al.20

and linear fragment descriptors. In this paper, we focus on the 2.5D descriptor set. Among the
eight datasets, GPB, THER and THR are quite small. In these datasets, the number of
descriptors nearly equals the number of compounds. Therefore, these three datasets have more
challenges for QSAR modeling. Furthermore, GPB is believed to be the most difficult dataset
among the eight datasets because it has only 66 compounds and the number of descriptor is
greater than the number of compounds.

The two large assays are assay AID364 and assay AID371. Both assays are expected to
experience modeling challenges. Assay AID364 is a cytotoxicity assay with 1.4% activity rate;
the data was downloaded from PubChem8 on June 4, 2006. Assay AID371 is an assay of A549
lung tumor cell growth inhibition with 8.4% activity rate; the data was downloaded from
PubChem8 on November 2, 2006. Because toxic reactions can occur in many different ways,
multiple mechanisms are expected in both assays and we expect difficulty detecting all the
mechanisms.

There are a large number of different sets of molecular descriptors for quantitatively
representing chemical structure. Nevertheless, there is no consensus of opinion on types of
input descriptors for QSAR models because a descriptor can achieve success for some targets
but fail for other targets. Since the choice of descriptor is target-dependent, we report results
of five types of descriptors for the two PubChem assays studied in this paper. With the
descriptor generation engine of PowerMV (Liu et. al.21), five sets of descriptors were generated
for each assay: weighted Burden numbers (BN), pharmacophores fingerprints (PF), atom pairs
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(AP), fragment pairs (FP), and Carhart atom pairs (CAP). Table 3 summarizes the two assays
with different descriptor types.

Results – Specification of δ
In the previous section, we mentioned that the threshold δ is an important tuning parameter
when using PA to make predictions. To show the importance of δ, we run a pedagogic ensemble
that consists of 100 decision trees with 10-fold cross validations. Predictions of the pedagogic
ensemble are based on PA with a preset threshold. The major difference between the pedagogic
ensemble and MBEnsemble is that MBEnsemble determines and uses the optimal threshold
δi on the ith fold data while the pedagogic ensemble uses a preset threshold on the complete
dataset. The results of F1 (F-measure with α = 1) for the pedagogic ensemble with varying
preset threshold δ are reported in Tables 4 and 5. We actually report averages of 9 replications
for the small datasets (in Table 4) and averages of 3 replications for the large assays (in Table
5). The value in bold denotes the highest F1 that was achieved among the seven preset
thresholds (δ = 0,0.1, ···,0.6) for the data set. Also shown are the optimal F1 value F1 (δopt) for
this pedagogic study, as well as the threshold δopt that achieves this optimum.

We first consider the results in Table 4. The table shows that the values of F1 heavily depend
on the choice of δ: (1) when δ = 0, the value of F1 is small because the number of false positives
reaches its maximum, which is equal to the number of inactive compounds, and far exceeds
the number of true positives, which is equal to the number of active compounds; (2) the optimal
threshold δopt resulting in the highest value of F1 is always less than 0.5 for all eight datasets
- this confirms that using 0.5 as the threshold may not provide favorable performance for
imbalanced data; (3) δ and F1 are positively correlated if δ < δopt, while δ and F1 are negatively
correlated if δ > δopt, i.e. the relationship between δ and F1 appears to be unimodal, thus
suggesting an algorithm aimed at determining optimum δ (such as MBEnsemble) has
likelihood for success; and (4) datasets with similar activity rate p can have quite different
values of δopt. The inherent features of imbalanced data and the definition of F-measure account
for observations (1) – (3), but not for observation (4). Therefore, we focus our discussion on
observation (4).

As mentioned in the subsection of Probability Averaging, the appropriate choice of δ relies on
distributions of V1i and V0i. Figure 2 displays estimated densities of V1i and V0i as dashed and
dotted curves for datasets ACE and ACHE, and illustrates how the distributions of V1i and
V0i affect the location of δopt. Both densities of V0i for ACE and ACHE have exaggerated peaks
around zero and hence most predictions on truly inactive compounds are correct when δ is far
enough from zero. On the other hand, both densities of V1i have two peaks. For ACE, the peak
around one is much higher than the peak around zero. This allows correct predictions on the
majority of truly active compounds when δ is far enough from one and zero, and in this case
the optimal δ is δopt = 0.30. The distribution of V1i for ACHE is contrary to that for ACE.
Because of the high peak of V1i around zero, it is difficult for ACHE to make correct predictions
on most truly active compounds if δ is far from zero. As a result, the value of δopt for ACE is
greater than the value of δopt for ACHE (which equals 0.07).

The impact of δ can even be demonstrated for a single tree. Figure 3 shows a tree obtained
from a subset of the ACE dataset. By default, δ is set to 0.5 and this results in the predicted
classes shown as the number listed for each leaf (terminal node) of the tree; one indicates that
compounds falling the leaf predicted as active while zero indicates prediction as inactive. The
numbers shown in parentheses for each leaf are the estimated probabilities of being active.
Using δopt = 0.30 as suggested by Table 4, we clearly see that one additional leaf (probability
of 0.43) would predict compounds as active, thus possibly increasing the chance of identifying
additional true actives.
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The importance of specifying δ is more obvious in Table 5 since AID364 and AID371 are both
extremely imbalanced. For AID364, the values of F1 in bold are greater than at least 147% of
the values of F1 using δ = 0.5. For AID371, the values of F1 are almost zero when we use δ
δ ≥ 0.3. Also, F1 is very sensitive to the value of δ for AID371 with input of some descriptors;
for example, for descriptor type AP, F1 is 0.207 when δ = 0.1 and falls to 0.007 when δ = 0.2.
All these observations again indicate that using δ = 0.5 may be dubious for extremely
imbalanced data and the choice of δ determine prediction quality.

Results – Comparisons
By specifying a preset threshold before the analysis, the above pedagogic ensemble exhibits
the role of δ for prediction on imbalanced data but is not preferred over the datadriven
MBEnsemble. Table 4 shows that the optimal threshold δopt varies with different datasets
despite these sets having approximately equal activity rates and Table 5 implies that the value
of δopt can change when using different molecular descriptors for the same assay. Therefore,
it is difficult for the pedagogic ensemble to determine a reasonable δ only based on simple data
properties such as the observed activity rate, the number of compounds, and the number of
descriptors.

With MBEnsemble, we do not need to determine the threshold beforehand and optimal
thresholds can be automatically determined through the performance of base learners on
training datasets. As a result, MBEnsemble is a better candidate as a family ensemble on
imbalanced data. Moreover, its incorporation of careful cross validation, to avoid model
building and assessment using the same set makes MBEnsemble resistant to overfitting. Next,
we will show the comparison results of F1 from MBEnsemble, Random Forest (RF:
randomForest22 using ntree = 100, nodesize = 5 and default settings in R), a single decision
tree (DT: tree23 using default settings in R) and random guessing as described in the subsection
Assessment Using the F-Measure. Our ChemModLab website,
http://eccr.stat.ncsu.edu/ChemModLab/Default.aspx, provides a computing platform for
QSAR modeling based on different methods, including RF and DT discussed here. Due to
heavy computing, the MBEnsemble is not yet available on the ChemModLab website.

Table 6 gives the average F1 of nine replications for the eight small datasets. Using modeling
approach as a four-level factor (with levels MBEnsemble, RF, DT, Random) and folds (from
the 10-fold cross-validation exercise) as a second factor, an analysis of variance (ANOVA)
was run with subsequent application of Tukey’s HSD to obtain multiple comparisons between
modeling approaches. For each dataset, the best statistically equivalent methods are in bold.
Recall that a higher value of F1 implies better performance of the model. The values of F1 are
dependent of the dataset — ACE has the most successful performance and BZR gets the least
successful performance. With “optimal thresholds”, MBEnsemble is one of the most effective
methods for all eight datasets. For all of these small datasets, the difference between the F1 of
MBEnsemble and the minimum F1 is between 10% and 65%. Even after accounting for
uncertainty and variability. MBEnsemble is statistically better than RF for five of the eight
datasets (BZR, COX2, DHFR, THERM, THR) and statistically equivalent to RF for the other
three.

Surprisingly, RF does not gain improvement over DT for all datasets. DT has higher value of
F1 on four out of eight datasets, but its F1 is not statistically higher than the F1 of RF except
for dataset THR. The last column in Table 6 gives the performance for random guessing, which
is used as the baseline method for model assessment. After accounting for variation, RF is
equivalent to random guessing for BZR and THR, and DT is equivalent to random guessing
for GPB. These results are contrary to the results obtained by Bruce et al.12. They showed that
ensembles(including RF) were superior methods and preferred to DT with respect to
performance on balanced datasets. The datasets for Table 6 are all imbalanced. The
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disagreement between the balanced datasets and imbalanced datasets implies that it is possible
for both RF and DT to fail in modeling imbalanced datasets. Next, we continue assessment for
the three methods and inspect the performance of RF on extremely imbalanced datasets.

Table 7 compares F1 of MBEnsemble, RF and DT on the two PubChem assays, which both
have relatively low activity rate. Because of the relatively large number of compounds in these
assays and the low activity rates, observed F1 values tend to be rather small. For example, a
method that results in perfect recall (TP=49, FN=0) and a hit rate ten times better than random
guessing (FP=301) for AID364 still results in the very low F1=0.25. So while the numbers in
Table 7 are much smaller than those in Table 6, it should not be assumed that all results in
Table 7 are unsuccessful attempts for prediction of these assays. In fact, several models provide
very effective prediction for these PubChem assays.

Table 7 shows that MBEnsemble has stable performance on those assays and achieves the best
performance. While both MBEnsemble and RF aggregate the results of 100 trees, the F1 of
MBEnsemble is between 0.201 and 0.316 and the F1 of RF can vary a lot when using different
molecular descriptors on the same assay. For example, F1 for RF can increase 379% when
changing molecular descriptors from PF (or AP) to BN on AID364. From Table 7,
MBEnsemble provides dramatic improvement over RF, except when using BN descriptors.
Statistical tests show that the difference in F1 between MBEnsemble and RF is not significant
for BN descriptors. Moreover, similar to Table 6, RF is not necessarily better than the DT in
Table 7 and is statistically equivalent to or worse than random guessing for many cases. So
Table 7 confirms possibly poor results when using RF on imbalanced data as studied in the
paper.

Additionally, the performance of DT on AID371 is not comparable to any of the two ensemble
methods, or even to random guessing. DT in this comparison uses 0.5 as the threshold. As
mentioned in the earlier sections, δ = 0.5 may not be an appropriate threshold for imbalanced
data. Figure 4 illustrates why the F1 of DT is almost zero on AID371 as revealed through
estimated probabilities of being active when the compound is truly active (V1i). For AP and
PF, all DT-estimated V1i are lower than 0.5 and this results in TP = 0 and hence F1 = 0. For
BN, FP and CAP, the mean of DT-estimated V1i is far below 0.5 and only a few “outliers” are
greater than 0.5. So the value of TP is much smaller than the value of FN and this results in
low value of F1 for BN, FP and CAP.

We conclude that MBEnsemble outperforms the other studied methods for both the small
datasets having approximately 20% activity rate as well as the larger PubChem assays having
less than 10% activity rate.

Summary
This paper introduces an ensemble method, MBEnsemble, for building QSAR models.
MBEnsemble selects a threshold based on the behaviors of its base learners on training sets,
rather than using a preset threshold in the decision rule for declaring that a compound is active.
Imbalanced data benefits from this ensemble approach that allows flexibility with regard to
thresholds. According to eight small datasets and two larger PubChem assays, MBEnsemble
is the best of the studied methods on imbalanced data, even in the presence of multiple
mechanisms within the PubChem assays.

The F-measure is used as the primary measure of assessment due to its relevance for awarding
methods that correctly identify actives and avoid faulty decisions. Comparisons to other
assessment measures show the benefits of the F-measure for QSAR studies. This F-measure
comparison shows that MBEnsemble is at least as good as, and often better than RF and DT.
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MBEnsemble is not perfect. It is computationally intensive yet does not always provide
statistically significant improvements over the computationally attractive DT and RF for some
datasets. Nevertheless, despite the current limitations, MBEnsemble provides stable
performance on imbalanced data in the presence of multiple mechanisms. Empirical results
also confirmed it is not suitable to use majority voting or a preset threshold for classification
and prediction in the presence of the imbalanced data studied in this paper. Clearly, therefore,
MBEnsemble is a powerful tool for developing QSAR models.

More importantly, some effective and essential components implemented in MBEnsemble
(e.g., determining optimal thresholds and use of probability averaging) are directly
transportable to other base learners, thus allowing much broader application and potential
impact. For example, the KNN algorithm can be made equally scalable as a decision tree for
binary classification, but KNN has the additional benefit of flexible decision surfaces instead
of the hyper-rectilinear decision surfaces implemented by decision trees. KNN could be used
as the basis of an ensemble approach that incorporates probability averaging and selection of
the number of neighbors according to F-measure optimization. This and other ensemble
approaches will be the subject of future investigations.
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Figure 1.
Improvement in accuracy rate due to PA relative to MV’s accuracy rate, i.e. (θE,PA − θE,MV)/
θE, MV The improvement depends on m, the number of independent learners in the ensemble,
and θ, the accuracy rate for base learners.
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Figure 2.
The left plot shows the results obtained from dataset ACE and the right plot shows the results
obtained from dataset ACHE. The dashed curve is the density plot for V1i, the estimated
probability of being active when the compound is truly active as reflected in the observed
activity measurement; the dotted curve is the density plot for V0i, the estimated probability of
being active when the compound is truly inactive as reflected in the observed activity
measurement; the solid curve shows the F-measure as a function of δ; and the grey vertical line
is a base line displaying the location of δ opt.
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Figure 3.
A tree constructed for dataset ACE from randomly selecting 70% of the molecular descriptors
to build the tree. The first number listed for each leaf is the prediction for that node, based on
a default threshold of 0,5; 1 means active, 0 means inactive. The second number (shown in
parentheses) is the estimated probability of being active.
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Figure 4.
Box plots of DT estimated probability of being active when the compound is truly active as
reflected in the observed activity measurement (V1i) for AID371.
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Table 1
Confusion Matrix

Predicted Active Class Predicted Inactive Class

Truly Active Class TP FN

Truly Inactive Class FP TN
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Table 3
Summary of Assays

Assay Descriptor Type # descriptors

BN 24

AID364 PF 121

# compounds = 3381 AP 395

# actives = 49 FP 597

activity rate = 1.4% CAP 1578

BN 24

AID371 PF 119

# compounds = 3312 AP 382

# actives = 278 FP 580

activity rate = 8.4% CAP 1487
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Table 6
Average F1 from Nine Replicate Runs of MBEnsemble, Random Forest and Decision Tree.

Dataset MBEnsemble RF DT Random

ACE 0.703 0.684 0.599 0.288

ACHE 0.486 0.474 0.442 0.284

BZR 0.392 (0.294) 0.350 0.262

COX2 0.513 0.446 0.450 0.291

DHFR 0.591 0.530 0.497 0.285

GPB 0.513 0.493 (0.310) 0.283

THERM 0.580 0.484 0.521 0.283

THR 0.499 (0.302) 0.461 0.290

Bold: best statistically equivalent methods after multiplicity adjustments ( ): statistically equivalent to random guessing.
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Table 7
Average F1 from Three Replicate Runs of MBEnsemble, Random Forest and Decision Tree

Assay Descriptor MBEnsemble RF DT

AID364 Random: F= 0.029

BN 0.252 0.249 0.182

PF 0.223 (0.052) 0.137

AP 0.239 (0.052) 0.122

FP 0.316 0.173 0.188

CAP 0.277 0.115 0.169

AID371 Random F= 0.144

BN 0.211 0.243 0.030

PF 0.201 0.094 0

AP 0.218 (0.124) 0

FP 0.229 (0.158) 0.031

CAP 0.255 (0.122) 0.023

Bold: best statistically equivalent methods after multiplicity adjustments ( ): methods statistically equivalent to random guessing.
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