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Abstract

Ž .Genetic algorithms GAs have been proven to be very useful in data analysis and can be applied as a very powerful
Ž .technique in quantitative structure–activity relationship QSAR analysis. QSAR based on GAs allows the construction of

models competitive with or superior to standard methods; moreover, from the analysis of the calculation results, we may get
very useful additional information which cannot be provided by other methods. We developed a QSAR program combining
genetic algorithm with multiple linear regression and cross-validation. We use it in the QSAR analysis of 23 HIV-1 in-

Ž . Ž .hibitors pyrrolobenzothiazepinones PBTP and pyrrolobenzoxazepinones PBP . A group of suitable QSAR models has been
obtained. Using the best model we predicted the RT activities of some compounds whose RT experimental activities are
unknown. Moreover, from the statistical analysis of the multiple models, we found that low lipophilicity at C-6, small com-
pounds surface, high p electron density of the benzo fused ring and low dipole along the z axis were the most important
factors that may influence the RT activities. These descriptors allow a physical explanation of hydrophobic interaction, elec-
tronic and steric effect contributing to HIV-1 inhibitory potency. q 1999 Elsevier Science B.V. All rights reserved.

Ž . Ž .Keywords: Genetic algorithms GAs ; Quantitative structure–activity relationship QSAR ; HIV-1 reverse transcription inhibitors;
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1. Introduction

Quantitative structure – activity relationship
Ž .QSAR modeling provides a rational basis for un-
derstanding mechanisms of biological performance
and how to improve performance by altering chemi-
cal structure. Current QSAR methods are mainly lim-
ited by the structure of the data: the number of com-

Žpounds with requisite behavior measures e.g., bio-
.logical activity is usually small compared with the

number of features which can be measured or calcu-
lated. One of the most important and difficult prob-
lems in traditional quantitative structure–activity re-
lationship is how to choose the adequate features to
build the regression models. Recently some pub-
lished papers suggested that genetic algorithms may

w xbe useful in QSAR analysis 1 , especially the fea-
tures selection in obtaining the proper QSAR mod-
els. We have developed a QSAR program based on

w xGAs 2 . It has been used in our QSAR study. In most
cases, very good results can be obtained.

Ž .Pyrrolobenzothiazepinones PBTP and pyrrolo-
Ž .benzexapinones PBP which belong to non-nucleo-

side reverse transcriptase could become a new kind of
potent and selective drugs against HIV-1 reverse

Ž . w xtranscriptase HIV-1 RT 4 . They can inhibit HIV-1
Ž .reverse transcriptase RT enzyme in vitro to prevent

HIV-1 cytopathogenicity in T4 lymphocyteases with-
out appreciable activity on HIV-2 cytopathic effects
and against HBV as well as calfhymus DNA a-poly-
merase. Until now, no quantitative structure–activity

Ž .relationships QSAR analysis of PBTP and PBP has
been reported in the literature. A correlation study is
expected to provide insight into the anti-HIV-1
mechanism of PBTP and PBP and give some useful
information that can help researchers design new
candidates as potential drugs.

2. Methods

2.1. QSAR based on GAs

Many methods, including CART, PCA and PLS,
develop a single regression model by incremental ad-
dition or deletion of basis functions. In contrast,
QSAR based on genetic algorithms uses a population
of many models and tests only the final, fully-con-
structed models.

The brief basic steps of QSAR based on GAs are
involved.

Ž .1 Creation of the initial population. According to
the genetic algorithm, an individual should be repre-
sented as a linear string, which plays the role of the
DNA for the individual, so we randomly choose a
series of features as a string. The initial population are
generated by randomly selecting some numbers of
features from the training set. Then these models are
scored according to their fitness score. We use a elite
population to remain the best and different individu-
als.

Ž .2 CrossoÕer operation. Once all models in the
population have been rated using the fitness score, the
crossover operation is repeatedly performed. In the
operation, two good models are probabilistically se-
lected as ‘parents’ with the likelihood of being cho-
sen inversely proportional to a model fitness score.

Ž .3 Mutation operation. After crossover opera-
tion, mutation operation may randomly alter all indi-
viduals in the new population, the new model fitness
is determined.

Ž .4 Comparison operation. After the crossover and
mutation operation, we compare the newly created
population and the elite population. If there are some
individuals in the newly created population are better
than some individuals in the elite population, we copy
these better individuals to the elite population. if the
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total fitness of the elite population could not be im-
proved, we can say that ‘convergence’ is achieved.

Ž .5 Partial reinitialization. In some cases, the con-
vergence is achieved too fast, the individuals in the
population largely change to the same, in this case the
elite population are very difficult to improve, that is
to say, it is trapped in a local minimum. How to es-
cape from it, we proposed a partial reinitialization
procedure, after a several steps of crossover and mu-
tation operations, reinitialize some worst individuals
in the population. Normally, we randomly reproduce
the 80% individuals in the population. From study,
we find that this procedure is effective to escape from
local minima. Generally, three to six reinitializations
are enough to find all different QSAR models.

Upon completion from the elite population, we can
get the highest fitness score models. For a population
of 200 models, if the data set contains about 30 fea-
tures, 300–500 cycles are usually sufficient to
achieve ‘convergence’, if the data set has 40 fea-
tures, 1000–1500 operations are usually enough. For
a typical data set this process takes 10 min to 1 h for

Ž .a PC Pentium 150 .

2.2. Choosing appropriate indiÕidual data structure

It is well known that genetic algorithm is very
flexible, there may be many variations in traditional
genetic algorithm. Especially, for the data structure of
the individuals, many data structures have been de-
veloped, for example: invariable length strings, vari-
able length strings, matrix structure, tree type struc-
ture, etc. How to choose an adequate individual data
structure is very important. Usually, we use invari-
able integral number string data structure for individ-
uals in our QSAR analysis, the integral number string
comprised the information of selected features and the
user-specified basic functions. We think that it is
simple, direct and effective in most QSAR analysis.
This kind of data structure for individuals is very ap-
propriate. Another data structure-variable length inte-
gral number string data structure for individuals has

w xnever been used in other QSAR analysis 2 , the
length of the string for the individuals can change
according to the fitness score after crossover opera-
tion, this data structure can be used to build QSAR

models with different terms. Because different model
has different terms so it is difficult to choose suitable

w xfitness function. In Ref. 1 , Rogers and Hopfinger
Ž . w xused Freidman’s ‘lack of fit’ LOF measure 3 as the

fitness function to evaluate the individuals. But there
will appear many other problems if we use LOF as
fitness function, the first problem is that it lacks suf-
ficient mathematical backgrounds, the model with the
best LOF do not thoroughly provide the best QSAR
model; the second problem is LOF must be con-
trolled by the users. For a new-user, there may be
some difficulties in choosing the magnitude of pa-
rameter d. Moreover, from our study, we found that
the GAs using the integral number string data struc-
ture are more convenient, more precise, more time-
saving than using variable length integral number
string data structure in most traditional QSAR analy-
sis. So in this QSAR analysis, we use invariable inte-
gral number string data structure for individuals.

2.3. Choosing adequate fitness function

The goal of QSAR analysis is to build the reliable
QSAR models. The critical factor of reliability to the
models derived from the QSAR based on GAs is
choosing a good fitness function. If we want to build
a linear regression model, the simplest fitness func-
tion is to choose the multiple linear regression coef-
ficient. But we think only relying on the multiple lin-
ear regression coefficient is not enough, at least we
should validate this model which not only has low
error measure on the training set, but also can predict
well. So in our program, we often define the fitness

� 4 � 4 � 4to be the product of r and r . The r is the lin-k c k
� 4ear regression coefficient of the model and the r isc

the leave-one-out cross-validation coefficient of the
model which appropriately links the multiple linear
regression and cross-validation together. But strictly
to say, evaluating a model only by a simple fitness
score is often not enough, fitness score only tell you
that this model maybe relatively good, but not abso-
lutely good, we should evaluate it from many aspects
including various experiments. In practice, you can
choose the appropriate fitness function according to
your needs. In our QSAR analysis, we use the r Prc k

as fitness function.
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3. Experiment

In this study, genetic algorithm was applied to the
QSAR analysis of PBTP and PBP which belong to

w xnon-nucleoside reverse transcriptase 4 . Due to their
high specificity and low level of toxicity, these non-
nucleoside inhibitors are the potential anti-AIDS
drugs. A correlation study is expect to provide in-
sight into the anti HIV-1 mechanism of PBTP and
PBP and give some useful information that can help
researchers to design new candidates for potential
drugs.

3.1. Experimental data

Biological activities of 22 PBTP and PBP deriva-
tives against the cytopathic effect HIV-1 have been

reported as the test drug concentration which results
in a 50% survival of uninfected untreated control
CEMM-SS cells, e.g., cytotoxicity of the test drug
Ž .IC , mM . The potency has been defined as50

Ž .log 1rC in the QSAR analysis, where C is the IC50

of the compound, and is used as the independent
variable in the QSAR study. Compounds showed in
Fig. 1 were modeled using Cerius2 package. The ini-
tial structures were firstly minimized using molecu-
lar mechanics by using universal force field. The ter-
minal condition was RMS gradient smaller than 0.001

˚ .KcalrA mol . Quantum–chemical features were cal-
culated using AM1 method of MOPAC7 package.
The keyword PRECISE was used to get more accu-
rate results. Hydrophobic coefficient was calculated

w xbased on the Crippen’s fragmentation method 5 . The
data set contains 22 compounds, 24 features, and a set

Fig. 1. 2D topographies of pyrrolobenothiazepinones and pyrrolobenzoxazepinone.
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Fig. 2. The features that were used in the QSAR analysis in the data set.

Žof corresponding RT activities all features and their
.abbreviation are listed in Fig. 2 . Because some com-

pound activities are not definite, so we only selected
15 compounds as training set. The data set was of
particular interest because it contains a large number
of features relative to the number of compounds.

3.2. Calculation details

We respectively selected four features and three
features to search their best models. QSAR analysis
based on GAs began with randomly generating a
population of random models. These models were
generated by randomly selecting three or four fea-
tures from the data file. Product of multiple linear re-
gression coefficient and leave-one-out cross-valida-
tion coefficient was used as fitness function to gener-
ate the fitness scores of these models. For this data
set 200 populations were used, and the number of
elite populations were 100. The genetic operator was
applied until the total fitness score of the elite popu-
lations could not be improved over a period of 30
crossover operation. Moreover after 100 crossover
and mutation operations, we applied a partial reini-
tialization procedure. The convergence criteria was
met after 430 operations for four features and 280
operations for three features. The evolution took ap-
proximately 20 min for four features, about 10 min
for three features. After convergence, we respec-
tively got the 100 best models for four features and
three features.

3.3. Results and discussion

After analysis, we got a large amount of satisfac-
tory statistical models, the top 10 models are listed in
Table 1. Results show that GA is very powerful to
find the best models. We studied this quantitative
structure–activity relationships of this group of com-

w xpounds and proposed a QSAR model 6 . In our pre-
vious study, we used stepwise regression analysis
method to model a QSAR model from 16 molecular
parameters. From the results of the QSAR analysis
with GAs, the model which we proposed in our pre-
vious study was discovered and was rated 72 out of
200. We can see that QSAR based on GAs can effi-
ciently find a group of best models, so it afforded us
more opportunity to select the best model that we re-
quire than other methods. From the fitness score,
model 1 is the best, we can use it to predict the 7
compounds whose RT activities unknown. Table 2
lists all the four parameters and calculated activity
data for each compound. The predicting RT activities
of these compounds without RT experimental activi-
ties are listed in Table 2. The RT activity of com-
pound 15d is the lowest.

If we use traditional methods, we can only get a
single model. But sometimes a model with high lin-
ear regression coefficient sometimes does not mean it
is absolutely a good model because some other fac-
tors may effect the result, e.g., random correlation,
auto-correlation. In most cases the interaction be-
tween molecular features are very complex, as inter-
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Table 1
Top 10 models generated using the training set

Ž . Ž . Ž . Ž .1 log 1rC s4.916y0.906)Dip_zq2.574) 2 log 1rC s6.481q3.088)char_7y0.058)

p_frgq0.560)Dip_yy0.052)volum surfy0.396)Dip_zq0.060)Sfrg
Fitnesss0.8858 Fitnesss0.8268
Fs16.838; ss0.486 Fs14.000; ss0.502
r s0.933; r s0.892 r s0.928; r s0.891k c k c

Ž . Ž . Ž . Ž .3 log 1rC s17.751q5.230)cha_ny0.058) 4 log 1rC s17.737q5.229)char_ny0.057)

volumy1.414)E_ionq0.072Sfrg volumq1.413)E_homeq0.072)Sfrg
Fitnesss0.8146 Fitnesss0.8146
Fs13.922; ss0.527 Fs13.908; ss0.527
r s0.921; r s0.884 r s0.921; r s0.884k c k c

Ž . Ž . Ž . Ž .5 log 1rC s183.281y4.901)den_7q2.171) 6 log 1rC s8.167y0.670)Dip_zq1.857)

p_frgy0.579)Dip_zy0.054)surf p_frgy0.66)surfq0.020)Sfrg
Fitnesss0.8142 Fitnesss0.8114
Fs15.805; ss0.499 Fs14.000; ss0.526
r s0.921; r s0.884 r s0.921; r s0.881k c k c

Ž . Ž . Ž . Ž .7 log 1rC s283.003y54.963)den_9q0.057) 8 log 1rC s0.775q0.724)E_ionq2.346)

Sfrgy0.340)Dip_zy0.050)surf )p_frgy0.761)Dip_zy0.058)surf
Fitnesss0.8106 Fitnesss0.8050
Fs13.34971; ss0.537 Fs13.922; ss0.522
r s0.918; r s0.883 a s0.92; a s0.874k c k c

Ž . Ž . Ž . Ž .9 log 1rC s8.163y0.722)Dip_zq2.467) 10 log 1rC s26.130q5.260)char_9y0.072)

p_frgy0.063)surf surfq1.951)E_homoq0.068)Sfrg
Fitnesss0.8043 Fitnesss0.8041
Fs18.756; ss0.521 Fs13.824; ss0.529
r s0.915; r s0.879 r s0.920; r s0.874k c k c

action of several features may result in another fea-
ture, moreover, only from a single good model, we
may not get the most original factors influencing bio-
logical activity. So we think that we may get some
useful information from multiple models rather than
a single model. In our QSAR study, the data set is
very small, so a single model is maybe not very reli-
able, we can average the results and get the averag-
ing results. By averaging, the effect of models which
are extrapolating beyond their predictive region may
be reduced, so we can say sometimes that we may get
more useful and deeper information from averaging
the results of multiple models than an individual
model. From the elite populations, we can select 73
models whose fitness scores are higher than 1.7, we
count the features that appeared in these models. The
statistical results are listed in Table 3.

There are totally 21 features appear in 73 best
models in Table 3, but their appearing frequencies are
quite different. The p_frg’s frequency in the models

is the highest, that is to say, this factor with many
other features can generate good model. It is maybe
the most important factor that affect the RT activity.
Besides this factor, the frequency of surf, dip_z and
den_pil is relatively large, these three factors are also
maybe very important. Four factors and their param-
eters are listed in Table 4.

From the results of multiple model statistical anal-
ysis, we can see that the substituents at position 6 are
very significant to RT activities, small lipophilic sub-
stituents at C-6 were preferred. Beside this factor,
there are two electronic features are very important,
high p electron density of the benzo-fused ring and
low dipole along z can enhance RT activities, these
two factors actually are affected by the electronic
contribution on system. The p electron density is
mainly influenced by substituents on the benzo-fused
ring. The electron withdraw groups on benzo-fused
ring may contribute to the compound RT activities.
Moreover, the molecular surface area is very signifi-
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Table 2
List of structural parameters used in model 1 and experimental and calculated RT activities

Ž . Ž .Comp_num Dip_z Dip_y p_frg Volum log 1rC log 1rC Residue
Ž . Ž .experimental calculated

Comp_6a y0.889 1.235 2.03 250.88 y2.00 y1.60 0.40
Comp_7a y0.364 1.355 3.12 273.70 y0.70 y0.38 y0.32
Comp_7b y0.169 1.414 3.36 291.91 y1.17 y0.87 y0.30
Comp_7c 1.072 2.023 3.36 313.23 y2.78 y2.77 y0.01
Comp_7e y0.269 y0.400 3.36 310.68 y2.70 y2.78 0.08
Comp_8 2.523 3.289 3.36 298.92 y2.70 y2.63 y0.07
Comp_15a 0.690 1.322 1.33 207.93 y2.00 y2.48 0.48
Comp_16a 0.200 1.281 2.66 243.91 y1.00 y0.55 y0.45
Comp_16b 0.024 1.159 2.81 254.60 y0.70 y0.63 y0.07
Comp_16c y1.092 1.363 3.35 290.24 0.52 0.05 0.47
Comp_16d 1.240 1.539 3.11 264.04 y1.00 y1.24 0.24
Comp_16g y0.189 1.409 3.51 295.94 y1.40 y0.68 y0.72
Comp_16e y0.411 1.565 3.36 284.76 0.60 0.17 0.43
Comp_16f y0.449 1.519 4.36 328.77 0.30 0.11 0.19
Comp_16k y0.497 1.688 3.36 327.01 y2.18 y2.26 0.08
Comp_7d y0.054 1.306 3.36 323.924 y2.50
Comp_9 y2.265 y2.144 3.36 325.078 y2.49
Comp_15b y0.866 1.320 2.03 265.248 y2.13
Comp_15c y0.992 1.263 2.83 297.630 y1.67
Comp_15d 1.240 1.539 2.03 294.524 y5.44
Comp_16h y0.106 1.719 4.05 343.939 y1.49
Comp_16i y0.331 1.524 3.81 320.908 y1.33

Comp_7d, Comp_9, Comp_15b, Comp_15c, Comp_16h, Comp_16i are not used for regression calculation because of no definite activity
data available for those compounds.

cant, low molecular surface is favorable to RT activ-
ity. So we can see that the interaction between the
drug-receptor is really very complex, the effects of
electronic features, steric features and hydrophobic
features are all very potential.

But the fitness score of the model comprising the
above four important features is low and its multiple
linear coefficient is only 0.811, cross-validation co-

Table 3
The frequency of the features that appeared in the 73 best models

Features p_mol p_frg Surf Volum Sfrg E_for
n 5 34 28 14 14 2f

Features E_ion Weight E_homo E_lumo Dip_x Dip_y
n 5 3 5 12 0 0f

Features Dip_z Dip den_7 den_6 den_5 den_9
n 29 4 18 1 3 19f

Features char_7 char_6 char_5 char_9 den_pi1 den_pi2
n 3 0 4 10 28 3f

n s frequency of the features.f

efficient only 0.520. We think it is understandable.
The results from the statistical analysis only tell us
statistical results and do not mean the model using

Table 4
List of structural parameters of the most important factors

Ž .Comp_num log 1rC p_frg Surf dip_z den_pi1

Comp_6a y2.00 2.03 254.034 y0.889 6.262468
Comp_7a y0.70 3.12 263.812 y0.364 6.262202
Comp_7b y1.18 3.36 276.482 y0.169 6.261190
Comp_7c y2.78 3.36 293.399 1.072 6.290723
Comp_7e y2.70 3.36 292.331 y0.269 6.290116
Comp_8 y2.70 3.36 277.817 2.523 6.256459
Comp_15a y2.00 1.33 210.733 0.690 6.300765
Comp_16a y1.00 2.66 236.975 0.200 6.304856
Comp_16b y0.70 2.81 246.723 0.024 6.304469
Comp_16c 0.52 3.35 270.259 y1.092 6.304509
Comp_16d y1.00 3.11 254.487 1.240 6.302189
Comp_16e 0.60 3.36 269.057 y0.189 6.303014
Comp_16g y1.40 3.51 282.771 y0.411 6.304023
Comp_16f 0.30 4.36 308.012 y0.449 6.303283
Comp_16k y2.18 3.36 304.298 y0.497 6.317863
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these features must be very good. The statistical
analysis from the average may eliminate interaction
between some features from a single model and de-
duce the randomness for a or several QSAR models.
But a model with high fitness score only means that
it is a good model or it can predict well, it does not
mean that the features comprising this model are the
most important features, because the fitness score
usually can be enhanced by the interaction between
some features. The goal of our QSAR study is not
only to find the best predicting model but also to find
the most major factors and guide us to find more po-
tential compounds. If we cannot grasp the most ulti-
mate features influencing the biological nativity, it is
very difficult to guide us to find more potential com-
pounds. So we think a good model from regression
analysis and the most important features from the
statistical analysis are equally important. This statis-
tical analysis is helpful for QSAR analysis, espe-
cially adaptable to the small data set which have not
gotten enough information to verify results.

4. Conclusion

In our work, we use genetic algorithm to study the
quantitative structure–activity of PBTP and PBP.
From this study, we find genetic algorithm is very
powerful in QSAR analysis, it offers a new approach
to the problem of building activity models. Replac-
ing standard regression analysis with GAs allows the
construction of models competitive with or superior
to standard techniques and makes available addi-

tional information not provided by other methods.
The derived QSAR models in this study were rea-
sonably satisfying based on statistical significance.
Using the best model we predict seven compounds
whose RT activities are not known. Moreover, from
statistically analyzing the results, we got the most
important factors that may influence the HIV-1 RT
activity. Because of lacking enough RT activities of
some compounds we cannot proceed to the deeper
analysis of this group of compounds. Our goal is to
get some useful information to guide us for further
study. Deeper study will be resumed with the devel-
opment of laboratory work.

The source codes for the QSAR program used in
this study are available from the author upon request.
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