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Abstract

Reactive molecular dynamics (MD) simulation is a powerful tool to study the reac-

tion mechanism of complex chemical systems. Central to the method is the potential

energy surface (PES) that can describe the breaking and formation of chemical bonds.

The development of PES of both accurate and efficent has attracted significant effort in

the past two decades. Recently developed Deep Potential (DP) model has the promise

to bring ab initio accuracy to large-scale reactive MD simulations. However, for com-

plex chemical reaction processes like pyrolysis, it remains challenging to generate reli-

able DP models with an optimal training dataset. In this work, a dataset construction
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scheme for such a purpose was established. The employment of a concurrent learning

algorithm allows us to maximize the exploration of the chemical space while mini-

mize the redundancy of the dataset. This greatly reduces the cost of computational

resources required by ab initio calculations. Based on this method, we constructed a

dataset for the pyrolysis of n-dodecane, which contains 35,496 structures. The reactive

MD simulation with the DP model trained based on this dataset revealed the pyrolysis

mechanism of n-dodecane in detail, and the simulation results are in good agreement

with the experimental measurements. In addition, this dataset shows excellent trans-

ferability to different long-chain alkanes. These results demonstrate the advantages of

the proposed method for constructing training datasets for similar systems.
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Introduction

Linear alkanes are major components of many jet fuels. At high temperatures, heavy linear

alkanes will decompose into smaller alkanes and then trigger the combustion process.1–4

Such process is also used to cool down the wall of the scramjet engine. A comprehensive

understanding of the chemical kinetics in the pyrolysis process of heavy linear alkanes is

crucial to the design of novel engines for the improvement of combustion efficiency.

In the past decades, reactive molecular dynamics (MD) simulations based on either em-

pirical potential energy surface (force fields) functions5 or ab initio quantum mechanical

(QM) calculations6–9 have gradually become an indispensable tool for the investigation of

the mechanisms of complex chemical reactions such as combustion.10 Compared with tradi-

tional knowledge-based QM calculations such as transition state optimization,11 reactive MD

simulation can provide the dynamical properties of the involved reactions without the need

of additional information other than the initial state of the reactants. Moreover, compared

with experiments, the reaction conditions and resolution can be controlled in a much easier

way by atomistic simulation.

Over the past 20 years, the ReaxFF force field, which was initially designed for combustion

simulation has been a great success in the theoretical study of combustion mechanisms.12–16

However, it has not satisfied all the demands of researchers in the community of combustion

study. Due to the employment of empirical energy functions and complex parameterization

processes, the accuracy of the ReaxFF is of great concern.17–19 Reactive MD based on ab

initio QM calculations (ab initio MD simulation, AIMD), despite its much more reliable

accuracy, is only suitable for short-time (normally dozens of pico-seconds) simulation of

small systems due to its high computational cost. Thus, more and more researchers have

devoted themselves to the improvement of existing reactive MD methods and the exploration

of new approaches.

Machine learning based tools, especially neural networks (NN), have provided the possi-

bility to develop PES models with the efficiency of the molecular mechanics (MM) method
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and the accuracy of the QM method. NN models constitute a very flexible class of mathemat-

ical functions, which in principle is able to efficiently approximate a large class of real-valued

functions to a satisfactory accuracy. Different types of NN-based PES models have been

proposed for materials and bio-molecules. Some examples are found in Refs.20–32

In our previous study, an end-to-end NN-based model called Deep Potential - Smooth Edi-

tion (DeepPot-SE)32 has been developed to efficiently represent the PES of organic molecules,

metals, semiconductors, and insulators, with an accuracy of ab initio QM models. With the

assistance of DeepPot-SE, in an earlier study by some of the authors, a Deep Potential (DP)

model was built to simulate the combustion process of methane33 at the MN15/6-31G**

level.34 Benefitted from the efficiency of the DP model, one nano-second reactive MD simu-

lation for a system containing 100 CH4 and 200 O2 molecules was performed and details of

the combustion mechanisms were revealed.

The accuracy and transferability of DP models are determined by the quality of its train-

ing set, including the QM level at which the training set is labeled and how representative

and complete the training snapshots are. As such, one needs to ensure that the training set

covers the target chemical space with as small redundancy as possible. Only in this way can

we label the training set with high-level QM calculations. Such a task has been very diffi-

cult. For example, in our previous study of the combustion process of methane, a training

set consisting of half a million structures was constructed to cover all reactants, products,

intermediates, and their reactions.

To address this issue, we have introduced the Deep Potential GENerator (DP-GEN)

scheme,35 a concurrent-learning algorithm used to generate PES models in a way that mini-

mizes human intervention and reduces the computational cost for data generation and model

training. The DP-GEN scheme has demonstrated its success in the modeling of metallic sys-

tems,35,36 chemical reactions at the interface of water and TiO2,
37 transition from molecular

to ionic ice at high pressure,38 etc. Moreover, DP-GEN has been turned into an open-source

software platform for the generation of reliable DP models.
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In the present work, we extended the capability of DP-GEN to complex gas-phase reac-

tive systems. Taking the pyrolysis of n-dodecane as an example, the exploration and labeling

algorithms were developed and their performance was systemically benchmarked. We also

evaluated the transferability of the DP model by applying the PES trained on n-dodecane to

study the pyrolysis of n-decane, n-tetradecane, and n-icosane. The details of the method-

ology are introduced in Section 2. The results and discussions are presented in Section 3.

Finally, the conclusion is given in Section 4.

Methodology

Construction of DP

As shown in Figure 1, the whole workflow for the construction of DP model is divided

into 3 modules: Initialization, Concurrent Learning, and Finalization. An initial dataset

is obtained in the Initialization module to kick-off the Concurrent learning section. In the

Concurrent learning section, the chemical space of the reaction is gradually explored as the

reaction proceeds. When the chemical space is sufficiently explored, a final dataset will be

obtained and the final DP can be trained based on it. Taking the n-dodecane pyrolysis as

an example, details of these modules are introduced below.

Figure 1: The DP-GEN workflow for the construction of reliable DP models.
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Initialization . The main purpose of the initialization module is to create an initial

dataset for the concurrent learning module. It roughly contains 3 steps:

Exploring I. As the starting configuration, a box containing 40 n-dodecane molecules

with the density of 0.25g/cm3 was constructed by using the Amorphous Cell module in the

Materials Studio 2017 program suite.39 Then, a 1 ps NVT MD simulation was performed by

using the LAMMPS software40 and the ReaxFF PES model developed by Chenoweth et al.

(CHO-2008).41 The NVT ensemble was employed and the temperature was maintained at

3000K with the Berendsen thermostat. The time step was set to 0.1 fs and the atomic coor-

dinates were recorded in every 10 fs. We also built boxes containing n-decane, n-tetradecane,

and n-icosane, respectively, with the same method and density. Then, a molecular cluster

was created for each atom (defined as the center atom) in the trajectory, which contains the

center atom and any molecular species within a 3.5 Å distance from it. Since the pyrolysis

reaction is dominated by bond breaking and short-range collision between different spices,

3.5 Å is a reasonable cutoff threshold that balances the accuracy and computational cost.

Sampling. From the previous step, we might obtain thousands of molecular clusters,

which exhibit heavy redundancy. In this step, these clusters were firstly classified according

to the bond-type of the center atom and then the k -means clustering algorithm was used to

remove the redundancy. Details of relevant methods can be found in our previous study.33

Finally, an initial dataset containing 590 molecular clusters was obtained.

Labeling. The potential energy and atomic forces of each molecular cluster in the dataset

were calculated with Gaussian 1642 at the MN15/6-31G** level.34

It is worth mentioning that the size and the content of the initial dataset was not very

critical. It was only used as a start point of the concurrent learning section. However, the

employment of initial data set might effectively reduce the number of iterations of concurrent

learning.

Concurrent Learning . To explore the chemical space more efficiently, the concur-

rent learning algorithm was used, which contains a number of iterations. Each iteration is
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composed of three steps:

Training I. In this step, based on the dataset from the previous step (or the initial dataset

at the beginning), 4 DeepPot-SE models were trained at the same time with the same network

architectures but different random seeds for their parameters. The DeePMD-kit package43

was used for this step. The batch number, which denotes the number of training steps, was

set to a relatively medium value (400,000) to improve the efficiency without too much loss

of the accuracy. Other technical details were consistent with Ref 33.

Exploring II. In this step, four reactive MD simulations of n-dodecane at different tem-

peratures (1500, 2000, 2500, and 3000K, respectively) were performed starting from the

initial configuration of the system, driven by the DP model from the previous iteration.

The Nose-Hoover thermostat44 was used to sample the NVT ensemble. The simulation time

gradually increases from 0.1 ps to 1 ns as the number of iterations increases. To enhance

the transability of the model, we added an extra iteration to perform a 1 ns MD simulations

of n-decane under 2000 K. For each atom in the system, its atomic force was also evaluated

by the other three DP models. And the relative force model deviation between these four

models was calculated by

Efi =
|Dfi |
|fi|+ l

, (1)

where fi denotes the force on atom i, Dfi denotes the corresponding model deviation, and l

is a constant (1 eV/Å in this study) used to make sure that an atom having a small absolute

model deviation will also have a small relative model deviation. The employment of relative

model deviation instead of the absolute one is crucial for studying combustion reactions,

since in such a situation the atomic forces have a very large range of values.

In each iteration, a large number of molecular clusters were extracted from the trajectory.

Based on the relative model deviation of the atomic force of the central atom, these clusters

were classified into three different groups named “Accurate” (the relative force deviation is

less than 20%), “Candidate” (the relative force deviation is between 20% and 45%), and

“Failed” (the relative force deviation is greater than 45%). To minimize data redundancy, in
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each iteration, at most 1000 molecular clusters were randomly selected from the “Candidate”

group and added to the training dataset.

In the Labeling step, the PES and atomic forces of the candidate clusters were calculated

using the same method detailed in the previous section. It has to be emphasized that in

each iteration, the MD simulations should start from the initial configurations. When the

iteration procedure stops depends on the specific problem. In this work, we stopped the

iteration when MD reached 1 ns, with all the clusters extracted from the trajectory at this

point correctly predicted by the DP model (with an accuracy of 99.5% and a failure rate of

0.0).

In other words, the dataset at this point should cover the chemical space we need from 1-

ns simulations, during which the reactants should have been consumed and then equilibrium

should have been reached.

In the end of the Concurrent learning module, we got the final training dataset.

Finalization . In this section, a DP model was trained (in the Training II step) based

on the final dataset. To guarantee the accuracy of the model, the batch number of the

training process was set to 4,000,000 while other parameters were as same as those in the

Training I step.

All three sections were integrated into the DP-GEN software36 and are fully automatic

and user-friendly.

The Production MD Simulation

With the final DP model, a 1-ns reactive MD simulation at 2000 K was re-performed to study

the pyrolysis process of n-dodecane. The NVT ensemble was sampled by the Nose-Hoover

thermostat44 with a time step of 1 fs. To evaluate the transferability of the DP model, 1-ns

reactive MD simulations were also performed for the pyrolysis of n-decane, n-tetradecane,

and n-icosane, based on the same final DP model.
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Analysis

The analysis of MD trajectories, which contain thousands of species and reaction pathways,

has become a major obstacle to the application of reactive MD simulation in large-scale sys-

tems. In the current study, the ReacNetGenerator method45 developed in our previous work

was used. ReacNetGenerator can automatically detect reaction events from the trajectory

and construct the reaction network. Details of this method can be found in Ref 45.

Results

The concurrent learning process

Details of the concurrent learning process for pyrolysis of n-dodecane are listed in Table

1. To obtain a minimal dataset based on which the DP model can accurately simulate the

pyrolysis of n-dodecane, we pre-set an concurrent learning process containing 37 iterations.

In each iteration,four MD simulations of same length but different temperatures (1500, 2000,

2500, and 3000K, respectively) were performed to maximize the exploration of the chemical

space. It should be noted that since pyrolysis is a highly non-equilibrium process, we always

start from the initial state for MD simulations during DP-GEN. Usually, when we extend the

length of the simulations, the accuracy of the DP model will firstly decrease, but then increase

at later iterations. For example, when we extend the trajectory from 51.2 ps to 102.4 ps,

the accuracy ratio of the DP model dropped from 91.19% to 45.18%, but after another three

iterations, the accuracy ratio increased back to 96.00%. Sudden accuracy decreases can be

observed occasionally. For example, in the 3rd round of the 51.2 ps, the accuracy of the

model suddenly decreased to 46.59%. But this is exactly what we want, because it means

that we have explored new chemical spaces and new training data is required.

To check the performance of the concurrent learning procedure, we did not iterate the

trajectory of length 6.4 ps (iteration 11) and 500 ps (iteration 34). As can be seen from Table
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Table 1: Details of the concurrent learning process for the pyrolysis of n-dodecane. The
length of trajectories, the number of frames, and the percentages of accurate, candidate,
and failed data points for each iteration are given in the table. In order to maximize the
exploration of chemical space, four MD simulations were performed at 1500, 2000, 2500, and
3000 K, respectively, in each iteration of n-dodecane. The NVT ensemble was used.

Iteration Length (ps) # of frames Accurate(%) Candidate(%) Failed(%)
0 0.2 84 95.32 4.25 0.44
1 0.2 84 99.66 0.33 0.00
2 0.2 84 99.88 0.12 0.00
3 0.4 164 99.70 0.30 0.00
4 0.8 324 99.76 0.24 0.00
5 1.6 644 99.39 0.59 0.03
6 3.2 1284 97.06 2.81 0.13
7 3.2 1284 99.77 0.23 0.00
8 3.2 1284 99.94 0.06 0.00
9 3.2 1284 99.85 0.15 0.00
10 3.2 1284 99.97 0.03 0.00
11 6.4 2564 99.96 0.04 0.00
12 12.8 5124 98.77 0.42 0.81
13 12.8 5124 90.54 8.29 1.17
14 12.8 5124 46.13 35.10 18.77
15 12.8 5124 81.12 18.00 0.88
16 25.6 10244 86.70 9.51 3.79
17 25.6 10244 67.45 27.77 4.77
18 25.6 10244 80.25 19.12 0.62
19 25.6 10244 72.65 25.45 1.89
20 25.6 10244 96.40 3.55 0.05
21 25.6 10244 95.88 4.08 0.04
22 25.6 10244 49.04 17,71 33.25
23 25.6 10244 95.08 4.81 0.11
24 51.2 20484 79.83 18.90 1.27
25 51.2 20484 82.97 10.75 6.27
26 51.2 20484 46.58 39.30 14.12
27 51.2 20484 91.19 8.52 0.30
28 102.4 40964 45.18 24.13 30.69
29 102.4 40964 93.95 5.76 0.29
30 102.4 40964 91.97 7.58 0.45
31 102.4 40964 96.00 3.93 0.07
32 204.8 40964 60.01 21.48 18.51
33 204.8 40964 89.61 10.07 0.32
34 500 100004 64.96 22.61 12.43
35 1000 200004 95.94 3.94 0.12
36 1000 (n-decane) 50001 98.79 1.12 0.00
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1, the accuracy of the DP model in iteration 11 is as high as 99.96%, thus it is safe to extend

the simulation length in iteration 12. However, the accuracy of the DP model in iteration

34 is only 64.96%. Fortunately, after adding 1000 data to the training set and retraining,

the model performed well in iteration 35 (with accuracy 95.95%), and its accuracy reached

99.59% in iteration 36, and the failure rate was 0.00%. This may be because the simulation

almost converged at 500ps.

To be more rigorous, one can keep iterating a specific length of MD simulation until the

accuracy of the DP model satisfies a user-defined criterion (such as 95%) and then extends

the simulation time.

The whole concurrent learning procedure contains 37 iterations including 59,200,000

training batches, 114,040,000 MD simulation timesteps. A total of 37,000 structures were

sent to the Labeling process. However, the QM calculation of very few structures cannot

reach convergance. Thus after the last iteration, the final dataset was obtained which con-

tains 35,496 structures.

Table 2 shows the computing cost in the concurrent learning section. The Training and

Exploring steps were performed with 4 NVIDIA V100 GPUs. On a single V100 GPU card,

the training process consumes 0.03257s per batch and the MD simulation consumes 0.03056s

per timestep.46,47 The Labeling steps were even more efficient as DFT calculation for small

molecular cluster is very fast.

Table 2: Computing cost of the n-dodecane workflow.

Task Hardware Cost
Training NVIDIA Tesla V100-PCIE-32GB 535.60 card·hours
Exploring NVIDIA Tesla V100-PCIE-32GB 968.07 card·hours
Labeling Intel(R) Xeon(R) CPU E5-2680 v4 @ 2.40GHz 5174.79 core·hours

Compare with our previous study,33 the explosion of the concurrent learning procedure

in this work can greatly reduce the redundancy of the data set, saving the computational

cost of Labeling and Training. The whole concurrent learning procedure in this work can be

finished within 2 weeks with a couple of CPU servers and 4 NVIDIA V100 GPU cards.
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The predictive power of the DP model.

To check the accuracy of the final DP model, the predicted atomic forces (based on the final

training set) were compared with that calculated by DFT. As shown in Fig. 2, the overall

correlation between DFT and DP results is quiet well. The mean absolute error (MAE) is

0.42 eV/Å and the root mean squared error is 0.75 eV/Å. Compared with the range of the

force, the MAE and RMSE values are very small.

Figure 2: Correlation between atomic forces predicted by the DP model and that calculated
by DFT in the final training set. The color bar indicates the density of data. Forces greater
than 100 eV/Å are not shown in the figure.

Pyrolysis mechanisms of n-dodecane

Fig. 3 shows the evolution of the number of molecular species that contain different numbers

of carbon atoms during the simulation. After the simulation started, the number of n-
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dodecanes dropped sharply, and almost all of them were pyrolyzed at about 30ps. Meanwhile,

the number of small species such as C1, C2, C3 increased rapidly, with the largest number

of C2. As intermediates, the number of species such as C5 to C11 was maintained within a

dozen during the simulation.

Figure 3: Time evolution of species that contains different number of carbon atoms during
DPMD simulation of pyrolysis of n-dodecane at 2000K.

Fig. 4 shows the main reaction paths of n-dodecane pyrolysis detected from the trajec-

tory. The β-C-C scission of C12H26 was observed most frequently which can form alkenes and

alkyls. Species contains 2 to 10 carbons were all observed with C2 species the most abundant

one. The H abstract reaction was also observed which produce the C12H25 radical. These

alkenes and alkyls further underwent a new round of β scission to eventually generate butyl,

propyl and ethyl radicals. These radicals are the dominant sources of ethylene and methane,

which are primary pyrolysis products. The reaction network shown in Fig. 4 agrees well

with the experiments1,3 except that ethane is also a main product in our simulation. This

may be because the density in our simulation is higher than that of experiments, thus the

C2H5 radical can capture H radicals more easily. From the trajectory, we found that the

carbon-carbon breaking reaction occured more easily than H-abstraction reactions, which is
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also consistent with experiments.1,3

Figure 4: Main paths extracted from the MD trajectory n-dodecane pyrolysis.

Transferability of the DP model/dataset

Transferability is one of the key requirements for the DP model, and it is determined by

the coverage of the dataset on the target chemical space. In the previous sections, we have

greatly reduced the redundancy of the n-dodecane dataset through the concurrent learning

algorithm. To evaluate the transferability of the DP model (and dataset), we simulated the

pyrolysis of n-decane, n-tetradecane, and n-icosane under 2000 K based on the four DP

models obtained in the last Training I step of n-dodecane. The length of all simulations was

1ns and the deviations of these four DP models were calculated.

Table 3: Concurrent learning and model deviations of DP models in the pyrolysis simulations
of different systems.

System Accurate (%) Candidates (%) Failed (%)
n-decane 99.74 0.26 0.00
n-dodecane 99.69 0.31 0.00
n-tetradecane 99.72 0.28 0.00
n-isocane 99.60 0.40 0.00

It can be seen from Table 3 that the DP model trained on the n-dodecane data set can

be perfectly used for the simulation of pyrolysis of other long-chain alkanes.

Detail mechanisms of the pyrolysis of n-decane, n-tetradecane, and n-icosane can be

found in the supplement material. These results are in agreement with experiments,48–51
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which indicate that the DP model and the dataset has strong transferability in long-chain

alkanes. It is worth mentioning that long-chain alkanes are the main components of many

fuels. Based on the dataset of this work, and further expanding it with DP-GEN, we can

study the pyrolysis and even combustion of other complex fuels.

Conclusion

In this work, a dataset generation approach for the pyrolysis simulation of long-chain alkanes

was established. The employment of the concurrent learning algorithm allows us to maximize

the exploration of the chemical space while minimize the redundancy of the dataset. This

greatly reduces the cost of computational resources of the Labeling and Training process of

the DP model.

Based on this method, we constructed a dataset for the pyrolysis of n-dodecane, which

contains only 35,496 structures. (The dataset can be downloaded at https://github.com/

tongzhugroup/NNREAX). The reactive MD simulation with the DP model trained based on

this dataset revealed the pyrolysis mechanism of n-dodecane in detail, and the simulation

results are in good agreement with the experimental measurements. In addition, this dataset

has excellent transferability for different long-chain alkanes, and can be reliably used for the

pyrolysis simulation of n-decane, n-tetradecane, and n-icosane.

It should be noted that in exploring steps, both the density of the system and the temper-

ature in MD simulation were increased to improve the sampling efficiency. Although these

are widely used strategies in reactive MD simulations, this can make it difficult to cover the

chemical space of reactions at low temperatures and pressures. To solve this issue, in our

future work we will try to employ the molecular generative model and/or enhanced sampling

MD algorithms in the exploring step. One might concern the accuracy of the QM level used

in the labeling steps. The MN15 functional was chosen because it was specifically designed

to have broad accuracy for multi-reference and single-reference systems.34 In fact, the main
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advantage of the current method is to ensure that the reference dataset covers the target

chemical space while it has as small redundancy as possible. The smaller dataset makes it

possible to perform calculations with a higher level of QM method. However, ultra-high com-

putational demands make it still difficult to apply ab initio methods with ideal accuracies,

such as MRCI, to label the reference dataset of such complex reaction systems. To achieve

this, further method development is still needed. In addition to pyrolysis, this method can

also be readily used in the reactive MD simulation of combustion. In addition, it is worth

to point that while pyrolysis and combustion are usually thought to be dominated by free

radical reactions, under certain conditions, one may also want to investigate the influence of

the excited electronic state of the species on the reaction. Although MD simulations involv-

ing excited states are highly non-trivial, some recent work has made promising progress in

relatively small systems.52–58 Through further development, these methods are expected to

be used in more complex pyrolysis or combustion systems.

The algorithms developed in this work has been integrated into the DP-GEN (https:

//github.com/deepmodeling/dpgen) software platform, which is user-friendly and efficient.

This method can be used not only for the simulation of reaction mechanisms of fuel pyrolysis

or combustion, but also for constructing general datasets for similar target systems. Related

research is currently being carried out in our laboratory.
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