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ABSTRACT 

Dinitrogen pentoxide (N2O5) is an important intermediate in the atmospheric chemistry of nitrogen 

oxides. Although there has been much research, the processes that govern the physical interactions 

between N2O5 and water are still not fully understood at a molecular level. Gaining quantitative 

insight from computer simulations requires going beyond the accuracy of classical force fields, 

while accessing length scales and time scales that are out of reach for high-level quantum chemical 

approaches. To this end we present the development of MB-nrg many-body potential energy 

functions for simulations of N2O5 in water. This MB-nrg model is based on electronic structure 

calculations at the coupled cluster level of theory and is compatible with the successful MB-pol 

model for water. It provides a physically correct description of long-range many-body interactions 

in combination with an explicit representation of up to three-body short-range interactions in terms 

of multidimensional permutationally invariant polynomials. In order to further investigate the 

importance of the underlying interactions in the model, a TTM-nrg model was also devised. TTM-

nrg is a more simplistic representation that contains only two-body short-range interactions 

represented through Born-Mayer functions. In this work an active learning approach was employed 

to efficiently build representative training sets of monomer, dimer and trimer structures, and 

benchmarks are presented to determine the accuracy of our new models in comparison to a range 

of density functional theory methods. By assessing binding curves, distortion energies of N2O5, 

and interaction energies in clusters of N2O5 and water, we evaluate the importance of two-body 

and three-body short-range potentials. The results demonstrate that our MB-nrg model has high 

accuracy with respect to the coupled cluster reference, outperforms current density functional 

theory models, and thus enables highly accurate simulations of N2O5 in aqueous environments.  
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INTRODUCTION 

Dinitrogen pentoxide (N2O5) is an important molecule in the atmospheric chemistry of nitrogen 

oxides (NOx). Because N2O5 serves as a temporary reservoir for NOx, its fate has important 

consequences for the abundance of atmospheric ozone, hydroxyl radicals, methane, and other 

species, with major implications for air quality and climate.1–4 Up to 50% of N2O5 is thought to be 

removed from the atmosphere through reactive uptake by aqueous aerosol.1 Because of its 

importance, N2O5 has been extensively studied over the past few decades, both theoretically and 

experimentally.5–21 Notwithstanding all these efforts, the mechanism of reactive uptake of N2O5 to 

aqueous aerosol is still not fully understood at a molecular level. The initial step of this process is 

the physical accommodation of N2O5 in aqueous aerosol.6, 12, 14, 22 Important steps towards the goal 

of understanding this mechanism include predictive computer simulations of N2O5 with small 

water clusters, at extended air/water interfaces, and in bulk water. 

Classical force fields, which are widely used in computer simulations because of their 

computational efficiency, have been employed in molecular dynamics (MD) simulations to study 

the hydration properties of N2O5.5, 23 However, due to their inherent approximations and limited 

accuracy, classical force fields might not be relied upon for quantitative predictions. In ab initio 

MD (AIMD), the configurations of a system are explored at a given thermodynamic condition with 

energies and forces computed on-the-fly from first-principles electronic structure calculations 24, 

25. AIMD simulations, accessing limited time scales, have been employed to explore the physical 

accommodation of N2O5 to bulk water.5 While AIMD can be directly used without the need for 

any prior parametrizations, condensed phase simulations are typically restricted to density 

functional theory (DFT), which has limited accuracy and displays difficulties in correctly 

describing the structure of liquid water.26 In addition, the high computational cost associated with 
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AIMD precludes sampling over long time scales, especially for systems that contain a large 

number of atoms. 

With the recent advent of new machine learning techniques, electronic structure calculations can 

now be reproduced quite accurately at relatively low computational cost.27–31 A popular class of 

current deep learning approaches for quantum chemistry makes use of symmetry functions32 for 

the description of the chemical environment around an atom and transferable neural networks in 

order to describe the molecular interactions.33–35 Using appropriate training data, such methods 

have been shown to accurately reproduce coupled cluster potential energy surfaces of small 

molecules in the gas-phase.36 However, because these models rely on descriptors of the local 

atomic environment, they do not explicitly incorporate long-range interactions, which are essential 

to accurately describe extended systems or condensed phase systems.37, 38 

This drawback can be addressed with an approach that is based on the many-body expansion 

(MBE)39, 40 of the total energy as has been demonstrated with the successful MB-pol model for 

water.41–43 In brief, MB-pol consists of a classical polarizable model with physically motivated 

representation of long-range interactions in combination with explicit data-driven corrections to 

the low-order terms of the MBE. MB-pol uses highly accurate coupled cluster electronic structure 

calculations as reference data for short-range interactions. Specifically, short-range two-body and 

three-body potentials are represented in terms of permutationally invariant polynomials (PIPs),44–

47 although it was shown that similar accuracy is obtained using other functions such as Gaussian 

approximation potentials or neural networks.48 Importantly, since the classical induction is fully 

many-body in MB-pol, the MBE is not truncated, which differs from typical fragmentation 

approaches.49–54 MB-pol thus accurately represents each term of the many-body expansion at all 
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orders, both at short- and at long-range. As a result, MB-pol is capable of correctly describing the 

properties of water across different phases.37, 42, 43, 55, 56 

The MB-pol model has been extended to describe generic mixtures of molecules. These potential 

energy functions, termed MB-nrg (for “many-body energy”), employ the same underlying 

functional forms for the intermolecular many-body interactions as MB-pol. The first MB-nrg 

models have been devised to describe the interactions of water with monoatomic ions57–59 and, 

more recently, to describe CO2/water and CH4/water mixtures.60, 61 Similarly to MB-pol, the MB-

nrg potential energy functions have been successfully used in studies across phases from clusters62–

67 to bulk mixtures.60, 66 It is possible to replace the PIPs with  simple atom-pairwise Born-Mayer 

functions68, 69 to describe the two-body (2B) short-range repulsion between pairs of molecules in 

an approximate fashion, in which case the model is called TTM-nrg,70, 71 because it is inspired 

from the Thole-Type Model (TTM).72–76 TTM-nrg potentials have been developed for the same 

systems for which MB-nrg models are available.60, 70, 71 

In the current work, we present and validate the development of MB-nrg and TTM-nrg models for 

accurate simulations of N2O5 and water. We have employed an active learning procedure that 

makes use of neural networks during the construction of our training sets in order to efficiently 

sample the multi-dimensional configurational space of N2O5 as well as all relevant two- and three-

body configurations of dimers (N2O5 + H2O) and trimers (N2O5 + 2 H2O). In line with MB-pol, 

we have used coupled cluster theory with single and double excitations and perturbative treatment 

of triple excitations, CCSD(T), extrapolated to the complete basis set (CBS) limit as our reference 

level. We present a detailed analysis of the fit quality of the new MB-nrg potential energy functions 

and benchmark calculations that demonstrate superior accuracy as compared to a range of density 

functional theory (DFT) methods. Specifically, we assess distortion energies of N2O5, binding 
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curves in the (N2O5 + H2O) dimer and (N2O5 + 2 H2O) trimer, and interaction energies in (N2O5 + 

n H2O) clusters (n < 5). We also investigate the relative importance of individual terms in the 

many-body expansion for interaction energies and cluster geometries. 

THEORY AND METHODOLOGIES  

The MB-nrg and TTM-nrg models 

According to the many-body expansion (MBE) 39, 40, the total energy of a system with N bodies 

can be described in terms of contributions of one-body, two-body, three-body, etc., up to the N-

body contribution: 

 
𝐸 =∑𝑉1B(𝑖)

𝑁

𝑖

+∑𝑉2B(𝑖, 𝑗)

𝑁

𝑖<𝑗

+ ∑ 𝑉3B(𝑖, 𝑗, 𝑘)

𝑁

𝑖<𝑗<𝑘

+⋯

+ 𝑉𝑁B(1,… , 𝑁) 

( 1 ) 

Here, 𝑉1𝐵(𝑖) corresponds to the one-body (1B) distortion energy of monomer i from its 

equilibrium geometry, and the n-body (𝑉𝑛B) energies are defined recursively starting from the 1B 

energies. By construction, this expansion is expected to converge rather quickly. The use of the 

MBE for larger systems, truncated at some order in which the errors are sufficiently low, becomes 

significantly more efficient than performing a single calculation considering the whole system.39, 

40 Instead of computing the individual terms of the MBE with electronic structure methods on-the-

fly, further speedup can be obtained by using analytical functions that closely represent these 

terms. These underlying ideas are exploited in MB-nrg and MB-pol potential energy functions. 

Both MB-pol and MB-nrg rely on an underlying polarizable classical potential that contains 

permanent electrostatics, dispersion, and polarization interactions. Many-body induction 

interactions are naturally taken into account by the classical potential without truncation at all 
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orders of the MBE due to the nature of the polarization effects. In order to capture short-range 

effects adequately, the lower order many-body interactions up to three-body (3B) are corrected 

using permutationally invariant polynomials (PIPs).44–46 The many-body interactions are described 

in MB-nrg and MB-pol as follows:41–43 

 𝑉1B = 𝑉SR
1B ( 2 ) 

 𝑉2B = 𝑠2B𝑉SR
2B + 𝑉elec

2B + 𝑉ind
2B + 𝑉disp

2B  ( 3 ) 

 𝑉3B = 𝑠3B𝑉SR
3B + 𝑉ind

3B ( 4 ) 

 𝑉>3B = 𝑉ind
>3B ( 5 ) 

The terms labeled with short-range (SR) are described by the PIPs, except for 𝑉SR
1B in MB-pol, 

which is described by the accurate water monomer model devised by Partridge and Schwenke.77 

𝑉elec
2B  represents 2B permanent point-charge electrostatics and 𝑉ind

𝑛B represents n-body polarization 

contributions that are described by an extended Thole-type model as originally introduced by the 

TTM4-F water model.72 𝑉disp
2B  is the 2B dispersion energy that is represented by a sum of pairwise 

additive contributions with interatomic dispersion coefficients determined from electronic 

structure calculations, dampened at short-range with Tang-Toennies functions.78 As can be seen, 

the PIPs in the 2B and 3B potentials are designed to correct for the difference between the classical 

potential and the reference electronic structure calculations. 

TTM-nrg is a simpler model in which the short-range corrections go up to two-body (𝑉SR
3B = 0) 

and the PIPs in the short-range 2B term 𝑉SR
2B are replaced with a simple atom-pairwise Born-Mayer 

repulsion potential68 between monomers M1 and M2 without a switching function so that 𝑉2B 

becomes a Coulomb-Buckingham potential69, 79 plus induction effects: 
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 𝑉SR
2B(TTM-nrg) = ∑ 𝐴𝑖𝑗𝑒

−𝐵𝑖𝑗𝑟𝑖𝑗

𝑖∈M1,𝑗∈M2

 
( 6 ) 

TTM-nrg can be regarded as a simple polarizable potential which is expected to be less accurate 

than MB-nrg. 

The switching functions 𝑠2B and 𝑠3B in Equations (2) and (3) are employed in order to guarantee a 

smooth transition when switching off the short-range terms at large distances. The cutoff distances 

are chosen such that the 2B and 3B interactions are accurately described by the underlying classical 

potential, hence saving computational time by not evaluating the short-range expressions for 

dimers and trimers at larger distances. In this work we are using the following switching functions: 

 𝑠2B(𝑟12) =

{
 
 

 
 

1, 𝑟12 ≤ 𝑟in
0, 𝑟12 ≥ 𝑟out

1 + 𝑐𝑜𝑠 [(
𝑟12 − 𝑟in
𝑟𝑜𝑢𝑡 − 𝑟in

)𝜋]

2
, elsewhere

 ( 7 ) 

 𝑠3B(𝑟12, 𝑟13, 𝑟23) = 𝑓(𝑠2B(𝑟12) + 𝑠2B(𝑟13) + 𝑠2B(𝑟23)) ( 8 ) 

 𝑓(𝑥) = {

0, 𝑥 ≤ 1
1, 𝑥 ≥ 2

1 − 𝑐𝑜𝑠2 [(𝑥 − 1)
𝜋

2
] , elsewhere

 ( 9 ) 

The 2B switching function 𝑠2B is 1 when the dimer distance is below the inner cutoff value 𝑟in, and 

then it smoothly transitions to 0 at the outer cutoff value 𝑟out. The 3B switching function 𝑠3B is 1 

when the distance of at least two dimers inside the trimer is below the inner cutoff value 𝑟in. Thus, 

𝑠3B is 1 for any interacting trimer, including the most extreme case of linear trimers, and then it 

smoothly transitions to 0 when at least two dimer distances exceed the outer cutoff distance 𝑟out, 

that is, when one monomer is sufficiently separated from the two other monomers. It is important 

to emphasize that we can use different values of 𝑟in and 𝑟out for 𝑠2B and 𝑠3B, and that the first 

derivatives of 𝑠2B and 𝑠3B are continuous. The expression used here for 𝑠2B is identical to the one 



 9 

used in MB-pol, while we employ a different expression for 𝑠3B in this work. The value of 𝑠3B in 

MB-pol can go up to 3.0, 48 which is not a problem if the switching function is included during the 

determination of the 3B PIPs. On the other hand, with the 𝑠3B expression that we are proposing 

here, the values of 𝑟in and 𝑟out can be modified without refitting the 3B PIPs. The proposed 

expression for 𝑠3B could even be employed in case electronic structure calculations would be 

directly employed in place of evaluating the fitted potential. 

Building training sets with neural networks and active learning 

A crucial point when developing many-body potentials for new systems is the generation of high-

quality training sets that adequately sample the relevant high-dimensional intra- and inter-

molecular configurational space. In this work, we have employed the active learning procedure via 

query-by-committee through cross-validation proposed in Ref. 80 in the process of selecting 

structures for the one-body (N2O5), two-body (N2O5 + H2O), and three-body (N2O5 + 2 H2O) 

training sets. In this procedure, ANI neural networks (NNs)33 are constructed aiming at building a 

criterium for the selection of new structures for  the training sets. Given that we only need to 

describe monomers, dimers, or trimers at short range, the lack of long-range effects inherent to 

NN potentials can be overcome by increasing the NN cutoff distance in such a way that all 

structures are fully considered. 

In a nutshell, in this active learning procedure the initial training data set is split into Ng random 

groups of approximately equal size. Then, a total of Ng different NNs are constructed where the 

training data of each NN is composed of the total data set minus one of the random groups. 

Therefore, each NN does not contain “1/ Ng”-th of the data set. 
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Once this ensemble of NNs is constructed, it can be employed to determine whether new structures 

should be accepted or rejected for inclusion into the existing training data set. For each new 

structure i we use the following inclusion criterium:80 

 𝜌𝑖 =
𝜎𝑖

√𝑁at
=

1

√𝑁at
√
1

𝑁𝑔
∑(𝐸𝑖,𝑛 − 〈𝐸𝑛〉)

2

𝑁𝑔

𝑛=1

 ( 10 ) 

where 𝑁at is the number of atoms, 𝜎𝑖 is the standard deviation of 𝐸𝑖,𝑛, the energy predicted for the 

new structure i by each neural network n, and 〈𝐸𝑛〉 =
1

𝑁𝑔
∑ 𝐸𝑖,𝑛
𝑁𝑔
𝑛=1  is the average energy predicted 

by the ensemble. The normalization coefficient √𝑁at has been introduced due to system size 

effects on the energy fluctuations, and allows a given value for the criterium 𝜌𝑖  to be used for 

systems of different sizes. If the energy predictions of all NNs agree with each other, then 𝜌𝑖  is 

small, and there is no need to add the new structure i into the training set. However, if 𝜌𝑖  is larger 

than a given threshold, then the new structure i is added to the training set. Once a given number 

of new structures is fed to the ensemble of NNs, an active learning iteration step is completed. 

Then, the whole process can be repeated, starting from building a new ensemble of NNs with the 

new data set that contains the new structures that have been accepted. Active learning iteration 

steps are performed until the number of selected structures becomes sufficiently small. As shown 

in Ref. 80, this active learning procedure can be employed effectively to avoid redundancies in the 

training sets, which consequently leads to smaller training sets, thus significantly saving 

computational time during the calculation of reference energies with electronic structure methods. 

More details about this active learning approach can be found in Ref. 80. 
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COMPUTATIONAL DETAILS 

Description of the MB-nrg model 

We employ the MB-pol model to treat all water molecule properties (monomer distortion energies, 

atomic charges and polarizabilities) and all interactions that involve only water molecules. 

Molecular properties of N2O5 that are required for the classical potential were computed with the 

range-separated hybrid meta-GGA density functional ωB97M-V81 and the aug-cc-pVTZ82, 83 basis 

set at the optimized C2 geometry of an isolated N2O5 monomer. The ChElPG model84 as 

implemented in Q-Chem 5.085 was used to determine atomic charges. Atomic dipole 

polarizabilities (𝛼𝑖
free) were taken from the literature86 and scaled by the ratio of the effective 

atomic volumes (𝑉𝑖
eff) of the atoms in N2O5 and the free volumes of the isolated N and O atoms 

(𝑉𝑖
free):87, 88 

 𝛼𝑖
eff = 𝛼𝑖

free 𝑉𝑖
eff

𝑉𝑖
free

 ( 11 ) 

Both 𝑉𝑖
free and 𝑉𝑖

eff were obtained using the exchange-hole dipole moment (XDM) model89, 90 as 

implemented in Q-Chem 5.0.85 The XDM model was also used to compute the C6 dispersion 

coefficients that describe both intramolecular dispersion in N2O5 and intermolecular dispersion 

between N2O5 and water. The values of the N and O charges and polarizabilities are reported in 

Table S1 in the Supporting Information, and the C6 dispersion coefficients in Table S2.  

The PIPs that are used to represent 𝑉SR
1B, 𝑉SR

2B and 𝑉SR
3B in Eqs. 2 to 4 depend on the distances 𝑑𝑖𝑗 

between atom pairs ij involving the atoms of N2O5 and water, which can be intramolecular or 

intermolecular distances. A set of exponential functions of the type 𝜉𝑖𝑗 = 𝑒
−𝑘𝑖𝑗𝑑𝑖𝑗 is constructed 

for each atom pair and the PIP is written as a sum of products of these functions: 𝑉PIP = ∑ 𝑐𝑙𝜂𝑙𝑙 . 
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The terms 𝜂𝑙 are symmetrized monomials, which are products of the functions 𝜉𝑖𝑗  up to a given 

degree. Symmetrization in this context means ensuring that 𝑉PIP is invariant with respect to 

permutations of equivalent atoms. In N2O5 the four peripherical oxygen atoms (Op in Figure 3) 

were considered equivalent, as well as the two nitrogen atoms. In the water molecule, the two 

hydrogen atoms were considered equivalent. The 𝑐𝑙 and 𝑘𝑖𝑗  terms are, respectively, the linear and 

non-linear parameters to be fitted based on the reference electronic structure calculations 

performed on the configurations in the training sets while satisfying equations 2, 3, and 4. See 

Refs. 41, 42, 48 for more details. 

The number of terms and the degree of the PIPs devised to describe the 1B distortion energy of 

N2O5 and the 2B and 3B interaction energies between N2O5 and water were carefully tuned to find 

a balance between accuracy and efficiency. For the 1B potential, monomials up to 5th degree were 

considered, giving a total of 2624 monomial terms and 5 non-linear parameters. For the 2B 

potential, monomials up to 3rd degree were considered and all monomials that contain only intra-

molecular distances were removed, which results in a total of 983 monomial terms with 13 non-

linear parameters. For the 3B potential, monomials up to 2nd degree were considered if distances 

involving any oxygen atom from N2O5 and one oxygen atom of water are present, and up to 3rd 

degree otherwise. As for the 2B potential, monomials that contain only intra-molecular distances 

have been excluded. The resulting 3B PIP contains 2038 monomial terms with 16 non-linear 

parameters. The final 1B, 2B and 3B potentials have been included in the MBX software for MB-

nrg simulations, which is publicly available on GitHub.91 

Having a balance between accuracy and efficiency in mind, the following inner and outer cutoffs, 

respectively, (see equations 7 to 9) were used in combination with these potentials: 8.0 and 9.0 Å 
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for the 2B potential, and 4.0 and 5.0 Å for the 3B potential. In our implementation, the cutoff 

distance is computed with respect to the distances between Oc of N2O5 and Ow of water (see 

Figure 3). 

Description of the TTM-nrg model 

As mentioned above, the TTM-nrg model developed here uses the same 1B PIPs as the MB-nrg 

model. For the description of 2B interactions between N2O5 and one water molecule, the TTM-nrg 

potential contains 6 pairs of parameters Aij and Bij (see equation 6), one for each pair of inter-

molecular atom types; thus, 6 linear and 6 non-linear parameters. As can be observed, the number 

of linear parameters is significantly smaller than in the 2B PIPs in MB-nrg.  

Training and test sets for the MB-nrg model 

In order to build our training sets, we performed active learning with an ensemble of 8 neural 

networks and the parameter 𝜌𝑖  (see equation 10) set to 0.06 kcal/mol for the 1B training set and 

0.12 kcal/mol for the 2B and 3B training sets. The neural networks were trained with data from 

electronic structure calculations performed at the ωB97X/6-31G* level of theory computed with 

Gaussian 09,92 which is the same level of theory that was used for the development of the ANI-1 

neural network.33 

The structures for the initial 1B, 2B and 3B training sets were generated using normal mode 

sampling (NMS) 33, 93 at 600K for the optimized N2O5 monomer at its two minima, with C2 and Cs 

symmetry, and at 300K for optimized (N2O5 + n H2O) dimers and trimers (n = 2, 3), respectively. 

The geometry optimizations and frequency calculations for NMS were performed at the 

ωB97XD/aug-cc-pVDZ level using Gaussian 09.92 For the geometry optimizations, a total of 400 
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dimers and 400 trimers were extracted from ab initio MD simulations of N2O5 in bulk water and 

N2O5 at a water liquid/vapor interface performed in Ref. 5. Only the unique minima, as determined 

by a root-mean-square distance with a tolerance of 0.1 Å, were considered and submitted to 

frequency calculations. Not only structures from NMS were fed to the active learning selection, 

but also additional structures of monomers, dimers, and trimers from the ab initio MD trajectories 

with center-of-mass (COM) distances up to the cutoff distances of 9.0 and 7.0 Å, respectively for 

dimers and trimers. 

The training sets as described above were used to generate an initial MB-nrg model. Simulations 

of N2O5 in bulk and at a water liquid/vapor interface were performed with this model, and 

monomers, dimers, and trimers were extracted from these simulations, using active learning 

selection, to refine the training sets. 

Part of the final configurations selected were removed from the training sets and considered as test 

sets. The final training and test sets for N2O5 and water contain, respectively: 7118 and 358 

monomers, 6723 and 642 dimers, and 15415 and 908 trimers. It is interesting to compare the 

number of structures in these training sets to the MB-pol training sets that contain 42508 water 

dimers and 12347 water trimers.48 Given that N2O5 has more degrees of freedom than a water 

molecule, one would expect a larger number of structures in the N2O5 training sets, assuming that 

the same procedure would be used as employed during the construction of the MB-pol training 

sets. Therefore, our reduced number of dimers and a similar number of trimers in comparison to 

the MB-pol training sets is a good indication of the effectiveness of active learning, since the 

original MB-pol training sets have been devised without an active learning selection. 
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Training set for the TTM-nrg model 

Given the simplicity and the small number of free parameters in the repulsive 2B Born-Mayer 

potential (see equation 6), a simpler training set was constructed for TTM-nrg. This training set is 

composed of random rotations of the optimized structures of the N2O5 monomer at C2 symmetry 

and of a water molecule at varying center-of-mass distances between the molecules up to 4.5 Å 

using logarithmic progression. Shorter distances were favored because only repulsive interactions 

are described by the Born-Mayer potential used in TTM-nrg (see equation 6). A total of 200 

structures, that adequately cover the relevant repulsive regions, were considered in the training set. 

Benchmarks: choosing highly accurate reference levels of theory 

Our goal is to train the MB-nrg model against highly accurate reference data with accuracy 

comparable to CCSD(T) calculations extrapolated to the complete basis set (CBS) limit, similarly 

to what has been done in MB-pol. To this end we have investigated a large set of DFT methods in 

addition to CCSD(T) with different correlation-consistent Dunning basis sets82 in order to gain 

insight into the errors afforded by each method and to make an informed choice about the 

computationally cheapest approach that meets our target accuracy. 

All single point energy calculations for these benchmarks and the final training sets were 

performed with Psi4 version 1.4a3.94, 95 Interaction energies were corrected for the basis set 

superposition error (BSSE) by using the counterpoise approach.96 Density fitting (DF) as 

implemented in Psi4 was employed for the DFT calculations. The frozen natural orbitals (FNO) 

method97 in combination with density fitting98 was employed for the CCSD(T) calculations. FNO-

DF-CCSD(T) has been shown to significantly speed up the calculations with negligible errors.97, 

98 In our own benchmarks, we found that monomer deformation energies and 2B and 3B interaction 
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energies are reproduced with errors below 0.01 kcal/mol with respect to regular CCSD(T) 

calculations. All valence electrons have been correlated in the CCSD(T) calculations (frozen core 

approximation). CBS extrapolation of the FNO-DF-CCSD(T) energies was performed separately 

for the Hartree-Fock (HF) energy using an exponential extrapolation and for the correlation energy 

using a power form:99, 100 

 𝐸HF
(𝑋)

= 𝐸HF
(∞)

+ 𝐸𝐴𝑒
−𝛼𝑋 ( 12 ) 

 𝐸corr
(𝑋)

= 𝐸corr
(∞)

+ 𝐸𝐵𝑋
−𝛽𝑋 ( 13 ) 

Here, X is the cardinal number of the basis set. The extrapolated energies 𝐸𝐻𝐹
(∞)

 and 𝐸𝑐𝑜𝑟𝑟
(∞)

 can be 

computed from the energies at two consecutive basis sets given values for 𝛼 and 𝛽. We have used 

a global value of 𝛼 = 1.6399 for all cardinal numbers, the optimized values 𝛽 = 2.51 for 2/3 

extrapolation  (double- and triple-zeta basis sets) and 𝛽 = 3.05 for 3/4 extrapolation (triple- and 

quadruple-zeta basis sets), and the “ideal” value 𝛽 = 3.00 for 4/5 extrapolation (quadruple- and 

quintuple-zeta basis sets).100 

For the benchmarks illustrated in Figure 1, 10 monomers, 10 dimers, and 10 trimers have been 

selected from the ab initio MD simulations performed in Ref. 5. A limited number of structures 

was considered due to the substantial computational cost associated with the FNO-DF-CCSD(T) 

calculations using the larger basis sets. In Figure 1, the mean absolute error (MAE) and its standard 

deviation is shown for 1B deformation energies and the 2B and 3B interaction energies with 

respect to the best FNO-DF-CCSD(T) extrapolation that has been performed. Table S3 in the 

Supporting Information contains additional data from DFT calculations with different basis sets, 

mean unsigned errors (MUE), and the average relative errors (ratio between the error and the 

reference energy). 
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Figure 1. Mean absolute error (MAE) and its standard deviation for one-body deformation 

energies (top panel), and two-body (middle panel) and three-body (bottom panel) interaction 

energies with respect to the best CBS extrapolated FNO-DF-CCSD(T) reference data for 10 
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different structures of N2O5 monomers, N2O5 + H2O dimers, and N2O5 + 2 H2O trimers. All DFT 

calculations were performed with the aug-cc-pV5Z basis sets. aVXZ = aug-cc-pVXZ. exA/B = 

A/B CBS extrapolation. 

As can be seen in Figure 1, the errors with respect to the reference FNO-DF-CCSD(T)/CBS level 

are overall higher for 1B deformation energies than for 2B and 3B interaction energies, and higher 

for 2B than for 3B interaction energies, correlating with the magnitude of the many-body energies 

(see Table S3). For 1B deformation energies, all explored DFT methods exhibit MAEs that exceed 

0.95 kcal/mol, similarly to FNO-DF-CCSD(T) with the aug-cc-pVDZ basis set. For 2B interaction 

energies, a few DFT functionals like SCAN-D3BJ and ωB97M-V have a significantly smaller 

error than others; however, as shown in Table S3, this error is still relatively high in comparison 

with the magnitude of the reference interaction energies. The 3B interaction energies are smaller 

in magnitude than the 2B interactions energies, and most DFT methods exhibit MAEs smaller than 

0.1 kcal/mol with B97M-V showing the best performance. Overall, SCAN, SCAN-D3BJ, and 

B97M-V are the DFT functionals with the best performance in predicting nB energies. 

Having a balance between accuracy and efficiency in mind, Figure 1 and Table S3 allows us to 

choose FNO-DF-CCSD(T)/CBS with 2/3 extrapolation for both 1B distortion energies and 2B 

interaction energies, and FNO-DF-CCSD(T)/aug-cc-pVDZ for 3B interaction energies. As Table 

S3 shows, the errors corresponding to these choices are minimal in comparison to the magnitude 

of the reference values and outperform the DFT results. 
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RESULTS AND DISCUSSION 

Accuracy of MB-nrg and TTM-nrg on training and test sets 

Figure 2 shows the correlation plots between the FNO-DF-CCSD(T) reference energies and the 

MB-nrg 1B, 2B, and 3B energies, including MAE with standard deviation and maximum errors 

for both training sets and test sets (left column). The figure also shows the errors of the MB-nrg 

model with respect to the FNO-DF-CCSD(T) reference energies (central column), and, for 

comparison, correlation plots that show how the TTM-nrg model performs for the MB-nrg training 

and test sets data. The colors in the figure encode the density of data points ranging from red (low 

density) to yellow (high density). 
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Figure 2. Correlation plots (left column) and errors (central column) between the FNO-DF-

CCSD(T) reference data and MB-nrg for the MB-nrg 1B, 2B, and 3B training and test sets. For 

comparison, correlation plots are presented for TTM-nrg for the same training and test sets (right 

column). The colors represent the density of data points ranging from low (red) to high (yellow). 

Also shown are the mean absolute errors (MAE) with standard deviation, and the maximum 

errors (Max). 
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By evaluating Figure 2, it is noticeable that the MB-nrg errors are similar for the training and the 

test sets in all cases. It can also be observed that the PIPs in MB-nrg are very accurate: the MAE 

with standard deviation and maximum errors for the test sets are, respectively, 0.047±0.048 

kcal/mol and 0.384 kcal/mol for 1B energies, 0.068±0.068 kcal/mol and 0.490 kcal/mol for 2B 

energies, and 0.020±0.023 kcal/mol and 0.309 kcal/mol for 3B energies. On the other hand, the 

TTM-nrg model exhibits errors that are significantly higher, especially for 2B energies, which 

demonstrates the limitations of a purely classical description of many-body effects at short range 

and indicates that a higher number of parameters is needed to accurately describe the 2B and 3B 

interactions between N2O5 and water. 

Another interesting point to be observed in Figure 2 is the range of sampled energies in the training 

and test sets and the location of the majority of the data (see colors). For 3B interactions, it is 

noticeable that most structures have their interaction energy close to zero, which is an indication 

that 3B interactions might not be very relevant to describe the behavior of N2O5 in water. 

Evaluation of multiple rigid scans 

In order to further assess the accuracy of the MB-nrg and TTM-nrg models, several rigid scans for 

monomers, dimers, and trimers have been performed starting from different structures. The 1B, 

2B, and 3B energies predicted by our models are compared with the reference level (FNO-DF-

CCSD(T)/CBS(extrap.2/3) for 1B and 2B energies, and FNO-DF-CCSD(T)/aug-cc-pVDZ for 3B 

energies), and with MP2/aug-cc-pVTZ, ωB97XD/aug-cc-pVTZ, and SCAN/aug-cc-pVTZ. These 

DFT methods have been chosen for this analysis because of their overall performance in the 

prediction of nB energies: as Figure 1 shows, SCAN and ωB97XD have, respectively, good and 

intermediate performance. A comparison with these DFT functionals is expected to indicate at 
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least qualitatively how our MB-nrg model performs with respect to state-of-the-art DFT 

calculations. 

 

Figure 3. Atom type labels used in this work for the dinitrogen pentoxide (N2O5) and water 

molecules. 

Figure 4 shows rigid scans performed for the N2O5 monomer, starting from structures with both 

Cs and C2 symmetry. The figure presents changes caused by modifying one dihedral angle, one 

bond angle, and one bond distance. 



 23 

 

Figure 4. Rigid scans along the Oc-N bond (lower panel), around the N-Oc-N angle (central 

panel) and around the N-Oc-N-Op dihedral angle (top panel) for the N2O5 monomer, starting 

from structures with Cs and C2 symmetry. Atomic labels can be found in Figure 3. 

All deformation energies shown in Figure 4 were computed with respect to the same reference 

structure. The figure shows that MB-nrg closely reproduces the FNO-DF-CCSD(T)/CBS reference 

energies. Notably, MP2, ωB97XD, and SCAN do not reproduce the FNO-DF-CCSD(T)/CBS 

results as closely as MB-nrg. 

Figures 5 and 6 present, respectively, rigid scans performed for dimers and trimers. For 

comparison, the interaction energies in the scans have also been computed with the polarizable 

AMOEBA force field.101 Details about the AMOEBA parametrization are provided in the 
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Supporting Information. Figures 5 and 6 show the water molecule(s) that move during the scan (in 

green) and the direction of motion (dotted lines). The positions of the inner and outer cutoffs 

applied in the switching functions (see Equations 3 and 4) are presented as vertical dashed lines. 

The cutoffs are applied based on the distance between Oc of N2O5 and Ow of water (see Figure 3 

and Equations 7 to 9). 

 

Figure 5. Rigid scans for dimers (N2O5 + H2O). The water in green is the one that moves during 

the scan, and the dotted lines indicate the sampled distance and the direction of the motion. The 

vertical dashed lines represent the inner and outer 2B cutoffs. 

According to Figure 5, MB-nrg, MP2 and SCAN closely reproduce the 2B interaction energy 

curves computed with FNO-DF-CCSD(T)/CBS, both at long- and short-range. ωB97XD performs 
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rather well for the stronger hydrogen bonding interaction (top panel) but exhibits significant 

deviations in the attractive and repulsive regions of the other two binding curves. AMOEBA is 

also considerably close to the reference for both hydrogen bonding interactions (top and lower 

panels) but significantly underestimates bonding between N and Ow atoms (central panel) with an 

onset of repulsion that is much too early. The TTM-nrg model does not perform well overall, which 

again indicates that the use of a Born-Mayer repulsion potential (see equation 6) instead of PIPs 

for 2B interactions is not sufficient for an accurate description in the relevant binding region. 

 

Figure 6. Rigid scans for trimers (N2O5 + 2 H2O). The water molecules depicted in green are the 

ones that move during the scan, and the dotted lines indicate the sampled distance and the 

direction of the motion. The vertical dashed lines represent the inner and outer 3B cutoffs. 
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For the trimer scans, Figure 6 shows that MB-nrg, MP2 and SCAN closely reproduce FNO-DF-

CCSD(T)/aug-cc-pVDZ. A disagreement between MB-nrg and the reference is observed for 

distances below 2.3 Å in the scan in the central panel. Figure S1 shows the 2B interaction energies 

between the N2O5 and the water molecule in green in the scan at the central panel of Figure 6. The 

figure shows that the 2B potential is very repulsive for the distances below 2.3 Å, hence such 

structures will never (or very rarely) be visited during MD at ambient condition, which means that 

our training sets will not contain many samples in this region. It also means that the observed 

discrepancy is not of relevance for our targeted applications. 

Another aspect that can be seen from Figure 6 is in the top panel, which indicates that higher 3B 

cutoffs could be employed to improve agreement where the underlying classical potential does not 

yet fully reproduce the reference data, even though the current 3B cutoff values lead to perfect 

agreement in the other scans. As previously mentioned, the cutoff values have been chosen by 

having a balance between accuracy and efficiency in mind. Given that the number of trimers (N2O5 

+ 2 H2O) scales with the square of the number of waters, whereas the number of dimers (N2O5 + 

H2O) scales linearly with the number of waters, increasing the 2B cutoffs to larger values, as we 

did, has a smaller impact in the computational efficiency in comparison to increasing the 3B 

cutoffs. 

It is noticeable in Figure 6, that TTM-nrg and AMOEBA but also ωB97XD, albeit to a lesser 

degree, show significant deviations from the reference 3B energies in at least one of the three scans 

that are presented. 3B interactions in TTM-nrg are completely represented through the classical 

polarization model. TTM-nrg performs significantly better for 3B interactions than for 2B 

interactions, as can be observed by comparing Figures 5 and 6. This observation agrees with the 
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expectation that the classical potential should be sufficient for the description of induction effects 

and long-range interactions. 

Truncation effects in the explicit short-range corrections 

We now evaluate if the inclusion of up to 2B or 3B explicit short-range corrections is sufficient 

for an accurate description of N2O5 in water. For this assessment, we have performed a many-body 

decomposition of the total energy of clusters of N2O5 with up to 4 water molecules and investigated 

the corresponding nB (n = 1 to 5) energies. The interaction energies predicted by the MB-nrg and 

TTM-nrg models were compared with results obtained with AMOEBA, MP2/aug-cc-pVTZ, 

ωB97XD/aug-cc-pVTZ, SCAN/aug-cc-pVTZ, and FNO-DF-CCSD(T). The clusters used in this 

analysis have been randomly selected from an MD trajectory of N2O5 in bulk water at ambient 

conditions performed with MB-nrg. 100 monomers, 100 dimers, 100 trimers, 10 tetramers, and 10 

pentamers whose molecules are in closer proximity, with center-of-mass distances smaller than 4 

Å, have been selected. FNO-DF-CCSD(T)/CBS(extrap.2/3) has been employed as the reference 

level for 1B and 2B energies, and FNO-DF-CCSD(T)/aug-cc-pVDZ for 3B, 4B, and 5B energies. 

The number of tetramers and pentamers had to be limited due to the large computational cost 

associated with the FNO-DF-CCSD(T) calculations for these systems. Table 1 shows the errors of 

the investigated methods in reproducing the nB energies of the clusters consisting of n molecules 

with respect to the reference data. The table also presents the range of nB energy values at the 

reference level. 

  



 28 

Table 1. Mean absolute errors (MAEs) with standard deviation in the nB energies with respect to 

the FNO-DF-CCSD(T) reference energies (REs). Minimum, maximum, and average with standard 

deviation of the reference energies (REs) are also shown. Values are in kcal/mol. aVTZ refers to 

the aug-cc-pVTZ basis set. Averages are over 100 structures for monomers, dimers and trimers, 

and over 10 structures for tetramers and pentamers. 

 MAEs in with respect to the reference REs, FNO-DF-CCSD(T) 

 TTM-nrg AMOEBA 
MB-nrg 
(1B+2B) 

MB-nrg 
(1B+2B+3B) 

MP2/ 
aVTZ 

ωB97XD/ 
aVTZ 

SCAN/ 

aVTZ Min. Max. Average 

N2O5 0.031±0.027 N/A 0.031±0.027 0.031±0.027 1.843±1.056 1.196±0.946 1.483±0.676 2.257 40.345 9.193±5.109 

N2O5 + H2O 0.830±0.648 0.588±0.669 0.147±0.143 0.147±0.143 0.156±0.115 0.707±0.298 0.163±0.078 -3.828 1.528 -1.155±1.098 

N2O5 + 2 H2O 0.047±0.042 0.039±0.041 0.047±0.042 0.037±0.035 0.011±0.013 0.036±0.057 0.022±0.028 -0.419 0.27 0.009±0.120 

N2O5 + 3 H2O 0.002±0.002 0.002±0.001 0.002±0.002 0.002±0.002 0.001±0.001 0.001±0.001 0.002±0.001 -0.015 0.013 0.002±0.008 

N2O5 + 4 H2O 0.001±0.001 0.001±0.001 0.001±0.001 0.001±0.001 0.001±0.001 0.001±0.001 0.001±0.001 -0.005 0.001 -0.001±0.002 

 

By evaluating the right part of Table 1, it can be observed that, as expected, the nB energies 

decrease systematically from 1B to 5B. Noticeably, 4B and 5B energies are essentially zero, which 

indicates that the inclusion of these interactions may not be important for the description of N2O5 

in bulk water at ambient conditions. 

The left part of Table 1 indicates that the addition of 2B short-range corrections in MB-nrg is 

important as the results improve significantly in comparison to TTM-nrg; however, the addition 

of 3B short-range corrections is not as important since the improvement in accuracy is rather small 

compared to MB-nrg without 3B short-range corrections and TTM-nrg, which describes the 3B 

energies entirely through induction. Similarly to what has been observed in the previous subsection 

for the scans, MP2, ωB97XD and SCAN have higher errors than MB-nrg for 1B energies. Also, 

MP2, SCAN and MB-nrg have similar errors for 2B interaction energies whereas the ωB97XD 

errors are higher. Additionally, ωB97XD and MB-nrg have similar errors for 3B interaction 

energies while MP2 and SCAN perform slightly better for the selected clusters. For 4B and 5B 

interaction energies, TTM-nrg and MB-nrg correctly reproduce the reference energies. 
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Optimized clusters of N2O5 in water 

We now evaluate if the conclusions drawn from the analyses of the scans and structures taken from 

MD trajectories still hold true in optimized clusters. Optimized clusters have been taken from Ref. 

5, containing the N2O5 molecule in the C2 symmetry and, respectively, one, two, three, and four 

water molecules. These structures have been submitted to geometry optimization at the MP2/aug-

cc-pVDZ level in Gaussian 09.92 Afterwards, these structures have been resubmitted to geometry 

optimization using the truncated Newton linear conjugate gradient method102, 103 with the MB-nrg 

and TTM-nrg models. Our goal here is to understand how well the MB-nrg and TTM-nrg 

optimized geometries correlate with the minima predicted by MP2. Table 2 shows the RMSD 

values between the structure of each cluster as optimized with MP2/aug-cc-pVDZ versus the 

optimization with the MB-nrg and TTM-nrg models. 

Table 2. RMSD (in Å) of geometries optimized with the MB-nrg and TTM-nrg with respect to 

geometries optimized with MP2/aug-cc-pVDZ. 

 TTM-nrg 
MB-nrg 

(1B+2B) 

MB-nrg 

(1B+2B+3B) 

N2O5 0.04 0.04 0.04 

N2O5 + H2O 0.22 0.17 0.17 

N2O5 + 2 H2O 0.36 0.12 0.09 

N2O5 + 3 H2O 0.22 0.14 0.13 

N2O5 + 4 H2O 0.18 0.09 0.09 

According to Table 2, the optimized structures predicted by MB-nrg are close to the optimized 

geometries obtained with MP2/aug-cc-pVDZ, which is an indication of the accuracy of the MB-

nrg model if it is assumed that the MP2 optimized structures are close to CCSD(T) optimized 

geometries. As one would expect, the RMSD values are higher for TTM-nrg than for MB-nrg. 

Noticeably, the addition of explicit short-range 3B effects does not have a significant effect for the 

tetramer and the pentamer, but a closer agreement with MP2 is observed for the trimer. 
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The many-body energies of the clusters optimized at the MP2/aug-cc-pVDZ level have also been 

evaluated. Table 3 shows the interaction energies predicted for these clusters with MP2/aug-cc-

pVTZ, ωB97XD/aug-cc-pVTZ, SCAN/aug-cc-pVTZ, AMOEBA, TTM-nrg and MB-nrg in 

comparison to FNO-DF-CCSD(T)/CBS(extrap.2/3) for 1B and 2B energies and FNO-DF-

CCSD(T)/aug-cc-pVDZ for 3B to 5B energies. 

Table 3. nB energies (in kcal/mol) with different levels of theory for optimized clusters of N2O5 

in water obtained at the MP2/aug-cc-pVDZ level. aVTZ refers to the aug-cc-pVTZ basis set. 

 TTM-nrg AMOEBA 
MB-nrg 

(1B+2B) 

MB-nrg 

(1B+2B+3B) 

MP2/ 

aVTZ 
ωB97XD/

aVTZ 

SCAN/ 

aVTZ 

FNO-DF-

CCSD(T) 

N2O5 1.52 N/A 1.52 1.52 0.02 3.40 0.95 1.49 

N2O5 + H2O -1.27 -2.88 -5.49 -5.49 -5.76 -4.36 -5.58 -5.62 

N2O5 + 2 H2O -1.06 -1.49 -1.06 -1.95 -2.03 -2.25 -2.14 -1.96 

N2O5 + 3 H2O -0.20 -0.41 -0.20 -0.20 -0.27 -0.31 -0.33 -0.28 

N2O5 + 4 H2O 0.03 0.07 0.03 0.03 0.05 0.07 0.05 0.05 

 

Table 3 indicates that MB-nrg with 1B, 2B, and 3B explicit short-range interactions closely 

reproduces the reference FNO-DF-CCSD(T) energies for all terms of the MBE for all optimized 

clusters. For the trimer, the result without explicit 3B short-range corrections does not accurately 

capture the reference energy. TTM-nrg does not reproduce the 2B interaction energy accurately 

for the dimer. The trends observed for MP2, ωB97XD, and SCAN are similar to what has been 

observed for structures from MD trajectories, shown in the previous subsection. 
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CONCLUSIONS 

In this work, we have presented the development and validation of MB-nrg and TTM-nrg many-

body potential energy functions for simulations of N2O5 in water with high accuracy. These 

potential energy functions employ MB-pol for water and use the same functional form for the 

classical part of the potential (permanent electrostatics, polarization, dispersion). While TTM-nrg 

relies on simple Born-Mayer functions to represent two-body short-range repulsion, MB-nrg 

instead features an explicit representation of up to three-body short-range interactions in terms of 

multidimensional permutationally invariant polynomials. Importantly, both MB-nrg and TTM-nrg 

correctly capture long-range interactions, which is important for extended systems. 

We have employed an active learning approach that makes use of neural networks to guarantee an 

efficient selection of representative structures of monomers (N2O5), dimers (N2O5 + H2O), and 

trimers (N2O5 + 2 H2O) for the training sets used to describe short-range interactions. In order to 

choose an appropriate electronic structure method for the reference many-body energies of the 

training sets, we have performed benchmark calculations with different basis sets for a range of 

DFT methods and coupled cluster theory. In general, DFT with different exchange-correlation 

functionals exhibits non-uniform accuracy for 1B, 2B, and 3B energies with mean absolute errors 

exceeding 1 kcal/mol for 1B deformation energies, while only few functionals reach an accuracy 

of ~ 0.1-0.2 kcal/mol for 2B energies. Our benchmarks indicate that SCAN, SCAN-D3BJ, and 

B97M-V are the DFT functionals with the best performance in describing nB energies between 

N2O5 and water. For our training sets, we have therefore chosen to use FNO-DF-CCSD(T)/CBS 

with aug-cc-pVDZ and aug-cc-pVTZ basis sets for the extrapolation for 1B and 2B energies and 

FNO-DF-CCSD(T)/aug-cc-pVDZ for 3B energies. The corresponding errors in the many-body 
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energies associated with these choices are minimal in comparison to higher order FNO-DF-

CCSD(T) calculations, and significantly outperform the DFT calculations. 

We have assessed the accuracy of the new TTM-nrg and MB-nrg models by analyzing binding 

curves as well as optimized geometries and many-body energies of clusters (N2O5 + n H2O) with 

n ≤ 4. These analyses demonstrate that MB-nrg very closely reproduces the reference data at the 

coupled cluster level of theory for all individual many-body contributions. This is in contrast to 

MP2, ωB97XD, and SCAN, which exhibit significant deviations from the reference data for 1B 

energies and, in the case of ωB97XD, also for 2B energies. As expected, TTM-nrg is less accurate, 

somewhat comparable to the polarizable AMOEBA force field. 

We also observe that the classical potential describes the 3B energies of trimers extracted from 

molecular dynamics simulations of N2O5 in bulk water quite well, the majority of which is close 

to zero. We conclude that the addition of an explicit representation for 3B short-range interactions 

is unlikely to play an important role in molecular dynamics simulations of N2O5 in bulk water at 

ambient conditions. However, this is not the case for optimized clusters, where an appropriate 

representation of explicit short-range 3B interactions has a significant effect on geometries and 3B 

energies. The 4B and 5B energies of tetramers and pentamers are significantly smaller and well 

described by MB-nrg and TTM-nrg. 

In follow-up publications, we will present results obtained with the MB-nrg model for simulations 

of N2O5 in water clusters, bulk water, and at the water liquid/vapor interface, which are important 

steps to further the understanding of the reactive uptake of N2O5 by aerosol particles. 
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