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By including a fraction of exact exchange (EXX), hybrid functionals reduce the self-interaction
error in semi-local density functional theory (DFT), and thereby furnish a more accurate and reliable
description of the underlying electronic structure in systems throughout biology, chemistry, physics,
and materials science. However, the high computational cost associated with the evaluation of
all required EXX quantities has limited the applicability of hybrid DFT in the treatment of large
molecules and complex condensed-phase materials. To overcome this limitation, we describe a
linear-scaling approach that utilizes a local representation of the occupied orbitals (e.g., maximally
localized Wannier functions (MLWFs)) to exploit the sparsity in the real-space evaluation of the
quantum mechanical exchange interaction in finite-gap systems. In this work, we present a detailed
description of the theoretical and algorithmic advances required to perform MLWF-based ab initio
molecular dynamics (AIMD) simulations of large-scale condensed-phase systems of interest at the
hybrid DFT level. We focus our theoretical discussion on the integration of this approach into the
framework of Car-Parrinello AIMD, and highlight the central role played by the MLWF-product
potential (i.e., the solution of Poisson’s equation for each corresponding MLWF-product density)
in the evaluation of the EXX energy and wavefunction forces. We then provide a comprehensive
description of the exx algorithm implemented in the open-source Quantum ESPRESSO program,
which employs a hybrid MPI/OpenMP parallelization scheme to efficiently utilize the high-performance
computing (HPC) resources available on current- and next-generation supercomputer architectures.
This is followed by a critical assessment of the accuracy and parallel performance (e.g., strong and
weak scaling) of this approach when performing AIMD simulations of liquid water in the canonical
(NV T ) ensemble. With access to HPC resources, we demonstrate that exx enables hybrid DFT
based AIMD simulations of condensed-phase systems containing 500−1000 atoms (e.g., (H2O)256)
with a walltime cost that is comparable to semi-local DFT. In doing so, exx takes us one step closer
to routinely performing AIMD simulations of complex and large-scale condensed-phase systems for
sufficiently long timescales at the hybrid DFT level of theory.

I. INTRODUCTION

In view of its quite favorable balance of accuracy and
computational cost, Kohn-Sham (KS) density functional
theory1–4 (DFT) has become the most widely used elec-
tronic structure method for ab initio molecular dynam-
ics (AIMD) simulations of large molecules and complex
condensed-phase materials.5–7 Within the framework of
KS-DFT, the total ground-state energy (E) is given as
the sum of the following contributions:

E = Ekin + Eext + EH + Exc, (1)

in which Ekin is the KS kinetic energy, Eext is the external
potential which accounts for the nuclear-electronic and
nuclear-nuclear potential energies (as well as any exter-
nal fields), EH is the Hartree energy, i.e., the average
(classical) Coulomb interaction energy of the electrons,
and Exc is the electronic exchange-correlation (xc) energy.
Explicit forms for all of the energy contributions in Eq. (1)
are known except Exc, the approximation of which is still
the subject of active research to date.

Functional approximations to Exc are often described as
the rungs of “Jacob’s Ladder,” which connect the Hartree
world to the exact solution of the time-independent

Schrödinger equation.8 In this hierarchical classification
of DFT, the first rung is given by the local (spin) density
approximation (LDA),4,9 in which the form of ELDA

xc is
obtained from the solution to the homogeneous electron
gas. As such, LDA works particularly well for systems
with a (nearly) uniform electron density (ρ(r)), e.g., the
valence electrons in metallic solids. The next rung in-
cludes xc functionals based on the semi-local generalized
gradient approximation (GGA),10–12 which utilize the gra-
dient of the electron density (∇ρ(r)) to correct the LDA
description of systems with spatially varying ρ(r), e.g.,
molecules and heterogeneous materials. At the current
time, GGAs such as the non-empirical Perdew-Burke-
Ernzerhof (PBE) xc functional12 are the computational
workhorses for AIMD simulations of condensed-phase sys-
tems containing 100s–1000s of atoms. In this size regime,
GGA-based approaches provide a favorable compromise
between accuracy and computational cost, and have been
quite successful in qualitatively (and sometimes even quan-
titatively) describing a number of systems and processes
of interest throughout chemistry, physics, and materials
science.

Despite such widespread success, GGA functionals are
unable to account for non-local electron correlation effects,
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which are responsible for the ubiquitous class of disper-
sion (or van der Waals) interactions. As such, several
approaches have been devised to incorporate these long-
range forces into the framework of DFT,13–16 and include
effective pairwise models,17–21 methods that account for
many-body dispersion interactions,22–26 as well as non-
local xc functionals.27–29 We note in passing that third-
rung meta-GGA functionals, which incorporate second-
derivative information via the Laplacian (∇2ρ(r)) or the
kinetic-energy density (τ(r)), are able to account for
intermediate-range correlation effects.30–36 As such, these
approaches have experienced a resurgence with the recent
introduction of the SCAN functional,35 which has shown
promising results for bulk water systems37–39,41,42 and
interfacial water.40,43

Another significant shortcoming associated with GGA
(as well as meta-GGA) functionals is their propensity
to suffer from self-interaction error (SIE), an artifact in
approximate xc functionals that manifests as a spurious
interaction between an electron and itself.44,45 In the pres-
ence of SIE, ρ(r) is too delocalized, which in turn often
leads to deleterious effects such as inadequate descriptions
of transition states and charge transfer complexes,46–48
underestimation of band gaps,49 overestimation of lat-
tice parameters in a wide variety of solids,50 as well as
excessive proton delocalization in liquid water,51–53 to
name a few. While SIE can be largely eliminated by
self-interaction correction (SIC) based methods,44,54–56
the most commonly adopted approach for ameliorating
the SIE present in semi-local KS-DFT is through the
admixture of a fraction of exact exchange (EXX) in the
underlying GGA (or meta-GGA) xc functional.57 These
so-called hybrid (or hyper-GGA) xc functionals constitute
the fourth rung in the DFT hierarchy, and can be written
as (shown here as a correction to a GGA xc functional):

Ehybrid
xc = axExx + (1− ax)EGGA

x + EGGA
c , (2)

in which Exx is the EXX energy, EGGA
x is the GGA

exchange energy, and EGGA
c is the GGA correlation energy.

The mixing parameter (ax) in this expression depends on
the hybrid xc functional approximation,57–59 the optimal
value of which (for a given system) can be determined
from a self-consistent GW calculation.60 By reducing the
SIE, hybrid xc functionals are typically more accurate
than GGA (or meta-GGA) approaches, in particular for
the prediction of lattice parameters,50 reaction energy
barriers,46–48 and band gaps.61 In this work, we limit our
focus to the non-empirical PBE058 hybrid xc functional,
in which ax = 1/4 and the PBE GGA functional12 is used
for EGGA

x and EGGA
c . Application of our approach (which

is described below) to other popular hybrid xc functionals
such as B3LYP11,57 is straightforward.
For a closed-shell system with No doubly occupied

orbitals (bands), Exx can be written as:

Exx = −
∑
ij

∫
dr

∫
dr′

φ∗i (r)φ∗j (r
′)φj(r)φi(r

′)

|r − r′| , (3)

in which φi and φj represent the occupied KS orbitals
and the sum extends over all No states. Defining the
orbital-product density as

ρij(r) ≡ φ∗i (r)φj(r), (4)

and the corresponding orbital-product potential (i.e., the
Coulomb potential felt by a test charge located at r
originating from the ρij(r′) charge distribution) as

vij(r) ≡
∫

dr′
ρij(r

′)

|r − r′| , (5)

allows one to express Eq. (3) in the following compact
form:

Exx = −
∑
ij

∫
dr ρij(r)vji(r). (6)

Evaluation of vji(r) is therefore of central importance in
EXX calculations. For periodic systems, this quantity
is usually computed through the convolution theorem
(shown here at the Γ-point only),

ρji(r)
fwdFFT−−−−→ ρji(G)

vji(G) = 4π
ρji(G)

|G|2
invFFT−−−−→ vji(r), (7)

in which ρji(G) and vji(G) are the Fourier coefficients of
ρji(r) and vji(r), respectively. We note in passing that
the divergence of vji(G) when G = 0 needs to be treated
with care when evaluating Exx using reciprocal-space
methods. In the real-space algorithm described herein,
we sidestep this divergence as vji(G = 0) is implicitly de-
termined by the boundary conditions imposed during the
solution of Poisson’s equation (i.e., vji(r →∞) = 0). The
computational scaling associated with both the forward
(fwdFFT) and inverse (invFFT) fast Fourier transforms
is O(NFFT logNFFT), where NFFT is the size of the recip-
rocal space (planewave) grid, which grows linearly with
system size. Since the evaluation of Exx in Eq. (6) re-
quires a sum over the contributions from all No(No+1)/2
unique pairs of occupied orbitals, the overall computa-
tional scaling becomes O(N2

oNFFT logNFFT). Neglecting
the logarithmic dependence, the resulting cubic-scaling
cost makes this reciprocal-space EXX algorithm quite com-
putationally demanding and limits routine performance
of hybrid DFT based AIMD simulations on large-scale
condensed-phase systems. Hence, most condensed-phase
calculations with hybrid DFT still remain limited to pre-
dicting energetic and structural properties in the absence
of thermal effects.
Significant progress has been made to accelerate

condensed-phase EXX calculations by employing the
following theoretical and numerical techniques: range-
separation62 or truncation63 of the underlying Coulomb
operator, implementation of massively parallel algo-
rithms,64–67 employment of auxiliary atom-centered (lo-
calized) basis sets,68–70 adaptive compression (low-rank
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decomposition) of the EXX operator (ACE),71–73 use of
the projected commutator direct inversion of the iterative
subspace (PC-DIIS) method to reduce the number of self-
consistent field (SCF) iterations,74 utilization of sparsity
through localization methods (e.g., maximally localized
Wannier functions (MLWFs),75–78 recursive subspace bi-
section (RSB),79,80 selected columns of the density matrix
(SCDM),81–83 and other localized representations84), as
well as combinations thereof.63,68,85–87

To enable large-scale hybrid DFT based AIMD simula-
tions in the condensed phase, the most promising methods
for reducing the intrinsic computational cost and scaling
associated with EXX exploit sparsity via localized repre-
sentations of the occupied space or density matrix. For
example, the RSB method of Gygi and coworkers79,80 uses
a non-iterative algebraic decomposition of the wavefunc-
tion coefficients, which provides a transformation from the
occupied KS eigenstates to a set of localized orbitals that
are contained within prescribed domains in real space.
This method has already enabled a number of AIMD sim-
ulations using hybrid xc functionals (e.g., computational
investigations into the density of ice at finite tempera-
ture,88 ion solvation,89,90 as well as the structural and
vibrational properties of liquid water51–53) and is partic-
ularly convenient for simulating heterogeneous systems
such as solid-liquid interfaces91 due to the ease of selecting
the prescribed localization domains. The SCDM method
by Damle, Lin, and Ying exploits the sparsity of the off-
diagonal elements of the density matrix,81–83 and does not
rely on an initial guess to iteratively localize the occupied
space. As such, this approach sidesteps issues related to
gauge invariance and can furnish more robust (i.e., non-
iterative) localized orbitals than other optimization-based
schemes.92 The MLWF formalism introduced by Marzari
and Vanderbilt75 uses an iterative scheme to obtain a lo-
calized representation of the occupied KS orbitals by min-
imizing the total spread functional (e.g., the sum of the
spreads of the individual localized orbitals) and therefore
extends the well-known Boys orbital localization scheme93
used in quantum chemistry into the condensed phase. ML-
WFs have shown great promise as both qualitative and
quantitative analysis tools due to their similarity to the
orbitals encountered in molecular orbital (MO) theory
(i.e., bonding and lone pairs) and the fact that they allow
one to obtain molecular multipole moments,94–96 parti-
tion the charge density97 and/or electrostatic potential,98
and even compute non-bonded dispersion interactions99
in complex condensed-phase environments. Numerous al-
gorithms (such as wannier90100) for obtaining MLWFs
have been incorporated into a number of existing com-
munity codes such as Quantum ESPRESSO (QE),101,102
SIESTA,103 ABINIT,104 NWChem,105 GPAW,106 CP2K,107
and VASP,108 which makes this localization scheme read-
ily available and quite practical for a posteriori analyses
of DFT-based calculations and AIMD simulations. Fur-
thermore, the MLWF localization scheme is particularly
suitable for large-scale hybrid DFT based AIMD sim-
ulations since a Car-Parrinello-like propagation of the

MLWFs has already been demonstrated,109–111 making
the computational cost associated with orbital localiza-
tion negligible between AIMD steps. In light of this
computationally efficient orbital localization scheme, the
wide availability of MLWFs, and the promise of a ro-
bust tool for on-the-fly analytics, we will now focus our
discussion on the development and implementation of a
linear-scaling (order(N)) MLWF-based EXX algorithm
which can be used to perform large-scale condensed-phase
AIMD simulations at the hybrid DFT level of theory.

In this work, we will focus on Car-Parrinello molecular
dynamics (CPMD)112 simulations of sufficiently large and
finite-gap condensed-phase systems such that the first
Brillouin zone can be accurately sampled at the Γ-point.
Extensions to Born-Oppenheimer molecular dynamics
(BOMD) and metallic systems113,114 are possible and will
be discussed in future work. Working at the Γ-point allows
us to consider real-valued orbitals only, i.e., φi(r) = φ∗i (r),
from which it follows that ρij(r) = ρji(r) and vij(r) =
vji(r) in Eqs. (4)–(6). Without loss of generality, we
will also assume that the total wavefunction is closed
shell (spin-unpolarized). Under these conditions, one can
show that the set of MLWFs, which are obtained via an
orthogonal (unitary) transformation of the occupied KS
eigenstates, i.e.,

φ̃i(r) =
∑
j

Uijφj(r), (8)

have a significantly smaller support (or compact domain)
than the entire simulation cell, and are in fact exponen-
tially localized in real space.75,115–119 These features of
the MLWF representation of the occupied space provide
a theoretical and computational framework for exploit-
ing the natural sparsity in the real-space evaluation of
the EXX energy (and wavefunction forces) that we will
explore in this work.

To demonstrate that the use of MLWFs leads to a linear-
scaling EXX approach, consider the expression for Exx

in Eq. (6). Since this quantity is invariant to orthogonal
transformations of the occupied orbitals (see Sec. II C),
evaluation of Exx can be performed exactly within the
MLWF representation. The first level of computational
savings originates from the fact that a given MLWF only
appreciably overlaps with a subset of neighboring ML-
WFs. This makes the number of non-vanishing EXX pair
interactions per orbital independent of the system size,
and thereby reduces the total number of orbital pairs
required in the summation over i and j in Eq. (6). In
addition, one can further exploit the fact that a numeri-
cally exact evaluation of Exx only requires that the spatial
integral in Eq. (6) be performed on the support of the
orbital-product density. Since this quantity is sparse in
the MLWF representation, this integration can be re-
stricted to a real-space domain that is also independent of
the system size. Taken together, these observations can
be leveraged to construct a computationally efficient and
linear-scaling MLWF-based algorithm for computing Exx.
For a more detailed description of the theoretical under-
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pinnings of this approach and the associated algorithmic
implementation, see Secs. II C and III, respectively.

The initial concept and several pilot algorithms for this
MLWF-based EXX approach76,78 have already been suc-
cessfully used to enable a number of large-scale hybrid
DFT based applications, e.g., computational investiga-
tions into the electronic structure of semi-conducting
solids,120,121 the structural properties of ambient liquid
water,78,122,123 the structure and dynamics of aqueous
ionic solutions,124,125 as well as the thermal properties of
the pyridine-I molecular crystal.126 In this manuscript,
we build upon our earlier work by presenting a detailed
description of the theoretical and algorithmic advances
that are required to perform accurate and efficient MLWF-
based AIMD simulations of large-scale condensed-phase
systems at the hybrid DFT level. We focus our theoretical
discussion on the integration of this approach into the
CPMD framework by providing a detailed derivation of
the EXX contributions to the equations of motion under-
lying fixed-cell CPMD simulations in the microcanonical
(NV E) and canonical (NV T ) ensembles. In particular,
we include an in-depth discussion of a dual-level strategy
which describes how the use of localized orbitals (like
MLWFs) can lead to a linear-scaling EXX algorithm by
exploiting the underlying sparsity in the real-space eval-
uation of the exchange interaction. Influenced by the
work of Gygi and co-workers,79,80,91 we also introduce the
concepts of MLWF-orbital and MLWF-product domains,
which can be used to design an algorithmic framework
that has the potential to enable accurate and efficient
hybrid DFT simulations of condensed-phase systems with
widely varying MLWF spreads.

In addition to this theoretical discussion, we also pro-
vide a comprehensive description of a massively paral-
lel algorithm that extends well beyond our earlier pi-
lot algorithms and uses this MLWF-based approach to
compute all of the EXX contributions needed during
hybrid DFT simulations of large-scale condensed-phase
systems in the NV E and NV T ensembles. Recently im-
plemented in the pseudopotential- and planewave-based
open-source QE package,102 the so-called exx module
exploits this dual-level linear-scaling strategy and em-
ploys a hybrid message-passing interface (MPI) and open
multi-processing (OpenMP) parallelization scheme to ef-
ficiently utilize high-performance computing (HPC) re-
sources. Compared with earlier pilot versions, exx signif-
icantly improves the applicability of our MLWF-based ap-
proach to large-scale AIMD (i.e., the strong-scaling limit)
by introducing a hybrid parallelization scheme (which al-
lows users to exploit both internode and intranode compu-
tational resources), a completely revised algorithm (which
balances computation and communication, and reduces
the overall memory footprint), as well as a more flexible
and general-purpose implementation (which accommo-
dates a wide range of users, including those with limited
computational resources as well as those working at the
massively parallel HPC limit).

This is followed by a critical assessment of the accuracy

and parallel performance (e.g., strong and weak scaling)
of our implementation when performing AIMD simula-
tions of liquid water in the NV T ensemble on multiple
different HPC architectures. In doing so, we demon-
strate that exx enables hybrid DFT based AIMD simula-
tions of (H2O)256—a condensed-phase system containing
> 750 atoms—with a walltime cost that is comparable
to semi-local DFT and minimal errors in the EXX con-
tribution to the total energy, wavefunction forces, ionic
forces, and binding energetics. As such, the work de-
scribed herein will further enable us to utilize the fourth
rung of DFT in the study of the structure, properties,
and dynamics of a number of important condensed-phase
systems, as well as perform hybrid DFT based AIMD
simulations across extended length and time scales which
have been prohibitively difficult to access to date.
Although the current version of exx is restricted to

condensed-phase systems in fixed orthorhombic simula-
tion cells, an extension of this approach that treats gen-
eral Bravais lattices and allows for hybrid DFT based
AIMD simulations in the isobaric-isoenthalpic (NpH) and
isobaric-isothermal (NpT ) ensembles will be discussed in
the next paper in this series. Since exx is quite mod-
ular, this algorithm can also be incorporated into any
planewave-based DFT code; when combined with linear-
scaling GGA codes such as PARSEC,127,128 BigDFT,129
ONETEP,130 or CONQUEST,131 exx could also be leveraged
to achieve a fully (overall) linear-scaling hybrid DFT ap-
proach. We note in passing that the MLWF-based EXX
approach described herein also sets the stage for per-
forming large-scale condensed-phase AIMD simulations
based on quantum chemical (i.e., wavefunction theory)
methodologies. Since a majority of the theoretical and al-
gorithmic developments presented in this work are directly
applicable to the iterative solution of the Hartree-Fock
(HF) equations, this approach can be extended to enable
a hierarchy of post-HF local electron correlation meth-
ods. Additional directions also include range-separated
hybrids (RSH)132–136 as well as fifth-rung xc functionals
(e.g., MLWF-based GW approaches137,138).

The remainder of the paper is organized as follows. In
Sec. II, we describe the theoretical framework for perform-
ing CPMD simulations at the hybrid DFT level of theory
within the MLWF representation. Sec. III contains details
of our massively parallel algorithmic implementation in
the open-source QE package. This is followed by a detailed
systematic analysis of the accuracy and computational
performance of the current implementation in Sec. IV.
The paper is then completed in Sec. V, which provides
some brief conclusions as well as the future outlook of
AIMD simulations using hybrid DFT.

II. THEORY

In this section, we describe the theory behind our real-
space MLWF-based framework for performing large-scale
AIMD simulations of finite-gap condensed-phase systems
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at the hybrid DFT level of theory. We will focus the
discussion below on the equations of motion underly-
ing fixed-cell CPMD simulations in the NV E and NV T
ensembles. Extension to constant-pressure CPMD simu-
lations will be discussed in a forthcoming paper in this
series. Although we limit our scope here to CPMD, which
provides a computationally efficient localized orbital prop-
agation scheme,109–111 a cost-effective and competitive
extension to BOMD has been achieved by our group and
will also be addressed in another paper in this series.

A. Index Conventions

We will utilize the following conventions for the various
indices encountered in this work:

• i, j, k: indices for the No occupied orbitals (or
MLWFs)

• a, b, c: indices corresponding to the Cartesian di-
rections x, y, and z

• I, J , K: indices for the NA ions

• q: index for points on the real-space grid

• l,m: indices for spherical harmonics

B. EXX-Based CPMD in the NV E Ensemble

1. Equations of Motion

In CPMD simulations, fictitious dynamics are intro-
duced on the No occupied KS orbitals {φi (r)} via artifi-
cial (fictitious) masses µ. Hence, CPMD simulations in
the NV E ensemble are governed by the following equa-
tions of motion for the electronic and ionic degrees of
freedom:6

µφ̈i(r) = −
(

δE

δφ∗i (r)

)
+
∑
j

Λijφj(r) (9)

MIR̈I = − (∇RI
E) , (10)

in which Newton’s dot notation is used to indicate time
derivatives, E is the total ground-state DFT energy in
Eq. (1), −(δE/δφ∗i (r)) is the force acting on the i-th
occupied KS wavefunction, Λij is a Lagrange multiplier
enforcing orthonormality in {φi(r)}, and −∇RI

E is the
force acting on the I-th ion (which is located at RI with
mass MI). At the hybrid DFT level, the equations of
motion in Eqs. (9) and (10) will only depend on Exx

via the wavefunction forces, −(δE/δφ∗i (r)), which are
discussed in detail below.

2. EXX Contribution to the Wavefunction Forces

In KS-DFT, Exc is a functional of the electron density,
which is given by ρ(r) = 2

∑
i φ
∗
i (r)φi(r). As such, one

can write the Exc contribution to the (negative of the)
wavefunction force for the i-th KS orbital as the action
of the so-called xc potential, vxc(r) ≡ (δExc/δρ(r)), on
the orbital itself, i.e.,(

δExc

δφ∗i (r)

)
=

(
δExc

δρ(r)

)(
δρ(r)

δφ∗i (r)

)
= 2vxc(r)φi(r). (11)

Since the explicit functional dependence of Exx (in
Ehybrid

xc ) on ρ(r) is unknown, one needs special proce-
dures such as the optimized effective potential (OEP)
method139 to derive the EXX contribution to the wave-
function forces within a strict KS-DFT scheme. In this
work, we adopt a generalized KS-DFT scheme (i.e., by
allowing for an orbital-dependent vxc(r)), which requires
significantly less computational effort and yields the same
ground-state energies as the OEP formalism. In this ap-
proach (which is currently the standard practice in the
field), we compute the corresponding orbital-dependent
EXX wavefunction forces, Di

xx(r) = −(∂Exx/∂φ
∗
i (r)), by

taking the functional derivative of Exx in Eq. (6) with
respect to φ∗i (r), yielding:

Di
xx(r) =

∑
j

vij(r)φj(r) ≡
∑
j

Dij
xx(r). (12)

To derive this expression, we have used Eqs. (4) and (5)
for the orbital-product density and potential, ρij(r) and
vij(r), and defined Dij

xx(r) as the action of vij(r) on φj(r).
From Eq. (12), it is again clear that the evaluation of the
orbital-product potential, vij(r), is of central importance
to the calculation of Di

xx(r).

C. Real-Space EXX Calculations: Linear Scaling
via Orbital Localization

The efficient evaluation of vij(r)—which is a required
ingredient for computing Exx and Di

xx(r)—is key to en-
abling large-scale condensed-phase AIMD simulations at
the hybrid DFT level of theory. In this section, we will
describe a linear-scaling EXX method that exploits the
natural sparsity of the quantum mechanical exchange in-
teraction in real space via the use of a localized (MLWF)
representation of the occupied orbitals. Within this frame-
work, ṽij(r) (which is the MLWF analog of vij(r) in
Eq. (5)) only needs to be computed for overlapping pairs
of MLWFs on a real-space domain that is independent of
the system size, thereby paving the way to a linear-scaling
EXX method in the condensed phase (see Sec. III for algo-
rithmic details). As such, the cornerstone of our method
is the efficient real-space evaluation of ṽij(r), which is
accomplished herein via the solution of Poisson’s equation
on a system-size independent real-space domain for each
overlapping MLWF pair.
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For a finite-gap condensed-phase system, the occupied
KS orbitals (or bands) can be mapped via an orthogonal
transformation onto a unique set of MLWFs (see Eq. (8)),
that are exponentially localized in real space75,115–119
and have a significantly smaller support than the entire
simulation cell. As such, the MLWF representation of
the occupied space allows one to exploit the underlying
sparsity in the quantum mechanical exchange interaction,
and provides a theoretical and computational framework
for substantially reducing the computational scaling and
cost associated with EXX-based approaches.

To see how MLWFs can be leveraged to attain a linear-
scaling EXX algorithm, we first transform the canonical
Exx expression in Eq. (3) into the MLWF representation.
Since φj(r) =

∑
i(U
−1)jiφ̃i(r) (cf. Eq. (8)), Exx can be

written as follows:

Exx = −
∑
ij

∑
kk′

k′′k′′′

∫
dr

∫
dr′

φ̃k(r)φ̃k′(r
′)φ̃k′′(r)φ̃k′′′(r

′)

|r − r′|

× (U−1)ik(U−1)jk′(U
−1)jk′′(U

−1)ik′′′ . (13)

Utilizing the fact that UUT = UU−1 = I for an or-
thogonal matrix, summation over i and j in this expres-
sion leads to

∑
ij(U

−1)ik(U−1)jk′(U
−1)jk′′(U

−1)ik′′′ =∑
i Uki(U

−1)ik′′′
∑
j Uk′j(U

−1)jk′′ = δkk′′′ δk′k′′ , from
which we see that

Exx = −
∑
ij

∫
dr

∫
dr′

φ̃i(r)φ̃j(r
′)φ̃j(r)φ̃i(r

′)

|r − r′| (14)

upon dummy variable substitutions of k → i and k′ → j.
This proof demonstrates that the expression for evalu-
ating Exx is invariant to the orthogonal transformation
between the KS and MLWF representations. In fact, this
invariance property of Exx also holds for any arbitrary
orbital representation {ψi(r)} that is derived from an
orthogonal rotation U ′ within the occupied KS subspace
(i.e., ψi(r) =

∑
j U
′
ijφj(r)). In analogy to Eq. (6), the

MLWF expression for Exx in Eq. (14) can also be written
in the following compact form:

Exx = −
∑
ij

∫
dr ρ̃ij(r)ṽij(r), (15)

in terms of the MLWF-product density,

ρ̃ij(r) ≡ φ̃i(r)φ̃j(r) = ρ̃ji(r), (16)

and the corresponding MLWF-product potential,

ṽij(r) ≡
∫

dr′
ρ̃ij(r

′)

|r − r′| = ṽji(r). (17)

We note in passing that while Exx is invariant to any or-
thogonal transformation, the values of ρ̃ij(r) and ṽij(r)—
despite the fact that they have the same expression as
that given in Eqs. (4) and (5)—do in fact depend on the

employed representation. It is this freedom in the choice
of the orthogonal transformation that allows one to se-
lect an appropriate localized orbital representation (e.g.,
MLWF) for exploiting the underlying sparsity in the EXX
interaction. Throughout this work, we will dress each of
the MLWF-specific quantities with a tilde to distinguish
them from their analogous expressions in the canonical
KS representation.

Given the expression for Exx in the MLWF representa-
tion (cf. Eqs. (14)–(15)), the corresponding EXX contri-
butions to the wavefunction forces that are required to
propagate the CPMD equations of motion (Eqs. (9) and
(10)) can be derived following the same procedure given
above in Sec. II B 2. In this regard, the wavefunction force
on the i-th MLWF, D̃i

xx(r) = −(δExx/δφ̃
∗
i (r)), can be

obtained from Eqs. (14)–(17), yielding:

D̃i
xx(r) =

∑
j

ṽij(r)φ̃j(r) ≡
∑
j

D̃ij
xx(r), (18)

where D̃ij
xx(r) has been defined as the action of ṽij(r)

on φ̃j(r). Here, D̃i
xx(r) and D̃ij

xx(r) also depend on the
MLWF representation and therefore take on different val-
ues when compared to their KS analogs in Eq. (12). From
Eqs. (15) and (18), it is again clear that the evaluation of
the MLWF-product potential, ṽij(r), is the cornerstone
of our MLWF-based EXX approach.

With the expressions required for the evaluation of Exx

and D̃i
xx(r) in hand, we will now discuss in detail how

MLWFs lead to a linear-scaling EXX algorithm by exploit-
ing the underlying sparsity in the exchange interaction.
Since the set of MLWFs are exponentially localized in real
space and therefore have a significantly smaller support
than the entire simulation cell, this allows us to exploit
two levels of sparsity during the computational evaluation
of all required EXX-related quantities. The first level
of computational savings originates from the fact that a
given MLWF, φ̃i(r), will only appreciably overlap with a
number, ñi, of neighboring MLWFs. For all other MLWFs,
the product density, ρ̃ij(r) = φ̃i(r)φ̃j(r) (and hence the
corresponding product potential, ṽij(r)), will be vanish-
ingly small. In these cases, the contributions to Exx and
D̃i

xx(r) are numerically zero, and this directly reduces
the number of terms that are required in the summation
over j in Eqs. (15) and (18). As such, the number of
EXX pair interactions per orbital becomes independent
of system size (assuming a fixed system density), which
reduces the total number of orbital pairs, Npair, from
O(N2

o ) to O(No), i.e., Npair = No(No + 1)/2→ ñNo. In
this last expression, ñ = maxi{ñi} < No is independent
of the system size, hence ñNo represents an upper bound
to the number of EXX pair interactions in our approach.
Since the contributions from the omitted MLWF pairs to
Exx and D̃i

xx(r) are vanishingly small, this reduction in
Npair still allows for a numerically exact evaluation of all
EXX-related quantities. Although this leads to significant
computational savings, the overall scaling associated with
evaluating these quantities is still formally quadratic as
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the real-space domain associated with the simulation cell,
Ω, grows linearly with the size of the system.

FIG. 1. Graphical depiction of an overlapping pair of expo-
nentially localized MLWFs, φ̃i(r) (solid) and φ̃j(r) (dashed).
As such, the supports for φ̃i(r) and φ̃j(r) are compact and
labelled by Ωi and Ωj , respectively. The support of the corre-
sponding MLWF-product density, ρ̃ij(r) = φ̃i(r)φ̃j(r) (green),
is also compact and labelled by Ωij = Ωi ∩ Ωj . As described
in the text, a numerically exact evaluation of the EXX contri-
bution to the energy (Exx) requires the solution to Poisson’s
equation for the near-field potential (ṽij(r)) on the Ωij domain
(see Eqs. (19) and (21)), while a numerically exact evaluation
of the EXX contribution to the wave function forces (D̃ij

xx(r)

and D̃ji
xx(r)) requires a converged multipole expansion for the

far-field potential (ṽij(r)) on the Ωj \Ωij and Ωi \Ωij domains
(see Eqs. (20) and (22)).

To achieve linear scaling with system size, one can fur-
ther exploit the fact that the set of exponentially localized
MLWFs have a substantially smaller support than Ω. This
allows us to employ real-space domains that are indepen-
dent of system size and still maintain a numerically exact
evaluation of Exx and D̃i

xx(r). To harness this second
level of computational savings, we follow the work of Gygi
and co-workers79,80,91 by defining an MLWF-orbital do-
main as Ωi = {r ∈ Ω | |φ̃i(r)| > ε}, in which ε is a small
(but finite) positive threshold. For small enough values
of ε, Ωi will encompass the support of φ̃i(r) in real space
(see Fig. 1). This domain is focused around the so-called
MLWF center, C̃i, which is given by the expectation value
(or first moment) of r, i.e., C̃i = 〈φ̃i|r|φ̃i〉 =

∫
dr rρ̃ii(r).

In analogy, we also define an MLWF-product domain
as Ωij ≡ Ωi ∩ Ωj , which (for sufficiently small ε values)
encompasses the support of ρ̃ij(r) (see Fig. 1). Since Ωij
corresponds to the points in real space where φ̃i(r) and
φ̃j(r) are both non-negligible, this domain is even more
sparse than Ωi or Ωj . When i = j, one can straight-
forwardly compute the corresponding center of charge
for ρ̃ii(r) as C̃ii =

∫
dr rρ̃ii(r) /

∫
dr ρ̃ii(r). Since ρ̃ii(r)

integrates to unity, C̃ii = C̃i, which is simply the center
of the i-th MLWF given above. When i 6= j, ρ̃ij(r) now
corresponds to a localized charge distribution with a van-
ishing monopole due to the orthogonality of the MLWFs;

hence, the center of this charge distribution cannot be
analogously defined as

∫
dr rρ̃ij(r) /

∫
dr ρ̃ij(r). As such,

we utilize an analog of the standard gauge in molecular
quantum mechanics for an electrically neutral system,
wherein the “center of charge” is taken as the position at
which the nuclear (ionic) dipole moment vanishes. This
allows us to define C̃ij =

∫
dr r|ρ̃ij(r)| /

∫
dr |ρ̃ij(r)| as

the corresponding center for ρ̃ij(r). By making all sectors
of this charge distribution positive, |ρ̃ij(r)| now has a siz-
able monopole and a well-defined center of charge given
by C̃ij . By construction, this choice of gauge recovers the
correct center of charge when i = j, i.e., C̃ii = C̃i, and
is therefore consistent with the expression used above for
ρ̃ii(r).
Within this framework, both Ωi and Ωij are system-

size independent and substantially smaller than Ω. Fur-
thermore, since Ωij is defined as the overlapping region
between two exponentially decaying MLWFs, φ̃i(r) and
φ̃j(r), the extent of this domain is smaller than both Ωi
and Ωj , which holds true even when i = j. From Eqs. (15)
and (16), one sees that a numerically exact evaluation of
Exx (neglecting self-consistency effects, vide infra) only
requires summation over overlapping ij pairs (denoted by
〈ij〉) and spatial integration over Ωij , i.e.,

Exx = −
∑
〈ij〉

∫
Ωij

dr ρ̃ij(r)ṽij(r). (19)

In the same breath, Eq. (18) shows that a numerically
exact evaluation of D̃ij

xx(r) only requires the action of
ṽij(r) over Ωj , i.e.,

D̃ij
xx(r) = ṽij(r)φ̃j(r) r ∈ Ωj . (20)

This implies that one only needs ṽij(r) on Ωij for a
numerically exact evaluation of Exx, and ṽij(r) on Ωj for
a numerically exact evaluation of D̃ij

xx(r). As such, the
evaluation of ṽij(r) can also be restricted to system-size
independent real-space domains, despite the fact that this
quantity is formally non-zero across Ω, and asymptotically
goes as 1/r for i = j (due to the non-vanishing monopole
associated with ρ̃ii(r)) and 1/r2 (or higher order) for
i 6= j (due to the vanishing monopole associated with
ρ̃ij(r)). This leads to even further computational savings
as ṽij(r) can be obtained exactly by solving Poisson’s
equation (PE) over Ωij in the near field,

∇2ṽij(r) = −4πρ̃ij(r) r ∈ Ωij , (21)

subject to Dirichlet boundary conditions given by an
appropriately converged multipole expansion (ME) of
ρ̃ij(r) in the far field, i.e.,

ṽij(r) = 4π
∑
lm

Qlm
(2l + 1)

Ylm(θ, ϕ)

rl+1
r /∈ Ωij . (22)

In this expression, C̃ij is taken as the origin, r = (r, θ, ϕ)
is given in spherical polar coordinates, Ylm(θ, ϕ) are the
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spherical harmonics, and

Qlm =

∫
Ωij

dr Y ∗lm(θ, ϕ)rlρ̃ij(r), (23)

are the multipole moments corresponding to ρ̃ij(r). For
typical systems, a ME with a maximum value of l = 6 is
sufficiently converged.76,78 We note in passing that the
ME in Eq. (22) serves a dual purpose and will also be
employed during the evaluation of D̃ij

xx(r), which requires
ṽij(r) on Ωj . In other words, D̃ij

xx(r) is computed with
ṽij(r) on Ωij via the solution to the PE in Eq. (21), and
ṽij(r) on the Ωj \ Ωij domain, i.e., for all points in Ωj

that are not contained in Ωij , via the ME in Eq. (22).
This discussion again clearly highlights that an effi-

cient real-space evaluation of ṽij(r)—on compact and
system-size independent domains—is the cornerstone of
our linear-scaling MLWF-based EXX approach. In the
next section, we will focus our discussion on the algorith-
mic implementation of this approach, which can be used
to perform large-scale condensed-phase AIMD simulations
with hybrid DFT.

III. IMPLEMENTATION AND ALGORITHMIC
DETAILS

In this section, we describe the implementation of
our linear-scaling MLWF-based EXX algorithm in the
CP module of QE.101,102 This algorithm has been im-
plemented as a standalone module named exx, which
has been integrated with the MLWF-enabled semi-local
DFT routines in QE via a portable input/output inter-
face (see flowchart in Fig. 2). During each CPMD step,
the main input required for exx includes the current set
of MLWFs, {φ̃i(r)}, while the output produced by this
module includes Exx and {D̃i

xx(r)}. As such, adaptation
of the exx module to other periodic DFT codes should
be straightforward, as long as the capability to produce
MLWFs “on-the-fly” during CPMD simulations is avail-
able (vide infra). In fact, the current exx module only
requires that the input orbitals are sufficiently local and
form an orthonormal set, and can therefore accommodate
(with appropriate modifications) other orbital localiza-
tion schemes such as RSB79,80 and SCDM.81–83 To enable
large-scale EXX-based AIMD using this approach, we
employ a hybrid MPI and OpenMP parallelization scheme
that allows us to differentially exploit both internode and
intranode computational resources provided by massively
parallel supercomputer architectures.

A. MLWF-based EXX-CPMD: Prerequisites

To start a CPMD simulation, one needs to reach the
electronic ground state for a given initial configuration of
the system via a SCF calculation. In the CP module of
QE, the iterative solution of the non-linear KS equations

is accomplished using either conjugate gradient (CG) or
second-order damped dynamics (SODD) to minimize the
fictitious kinetic energy associated with the electronic
degrees of freedom (while keeping the ions fixed).140 Dur-
ing the SODD minimization, the proto-KS orbitals are
evolved according to the following equations of motion
(which are equivalent to Eq. (9) with an additional damp-
ing term):

µϕ̈i(r) = Di(r)− 2µγϕ̇i(r), (24)

in which {ϕi(r)} are the proto-KS orbitals during the
SCF calculation, Di(r) ≡ −(δE/δϕ∗i (r)) +

∑
j Λijϕj(r)

is the force acting on the i-th orbital, and γ is a damping
parameter. To evolve the proto-KS orbitals, Eq. (24) can
be integrated to yield:140

ϕi(r, τ + ∆τ) =
2

1 + Γ
ϕi(r, τ)− 1− Γ

1 + Γ
ϕi(r, τ −∆τ)

+
∆τ2

1 + Γ

Di(r, τ)

µ
, (25)

in which ∆τ is the time step for the fictitious proto-KS dy-
namics and Γ ≡ γ∆τ .141 Upon convergence of the SODD
procedure, {ϕi(r, τ)} becomes a set of ground-state KS
orbitals, which is chosen as the initial condition for the
AIMD simulation (i.e., {φi(r, t = 0)}). In doing so, cubic-
scaling matrix operations such as diagonalization of the
Fock (or effective Hamiltonian) matrix are completely
sidestepped during the SCF procedure; as such, this ap-
proach does not require (nor produce) unoccupied/virtual
states, and provides a solid foundation upon which one
can build a fully linear-scaling DFT (or HF) code base.
In fact, this CP-like approach to the SCF solution

of the KS equations can be combined with the MLWF
localization procedure by performing a nested SODD
optimization of the Marzari-Vanderbilt75,77 functional
to incrementally localize the proto-KS orbitals between
each SCF step.109 In CP, this is accomplished by splitting
Eq. (25) into an extrapolation step,

χj(r, τ + ∆τ) =
2

1 + Γ
ϕ̃j(r, τ)− 1− Γ

1 + Γ
ϕ̃j(r, τ −∆τ)

+
∆τ2

1 + Γ

D̃j(r, τ)

µ
, (26)

followed by a localization step,

ϕ̃i(r, τ + ∆τ) =
∑
j

Uij(τ + ∆τ)χj(r, τ + ∆τ). (27)

In the extrapolation step, an intermediary set of or-
bitals, {χj(r, τ + ∆τ)}, is formed via SODD evolu-
tion of the proto-MLWF orbitals, {ϕ̃j(r)}, according
to D̃j(r, τ) ≡ −(δE/δϕ̃∗j (r, τ)) +

∑
k Λ̃jk(τ)ϕ̃k(r, τ), the

force acting on the j-th proto-MLWF orbital (which in-
cludes {Λ̃jk(τ)}, the set of Lagrange multipliers needed
to preserve orthonormality). In the localization step,
the proto-MLWFs, {ϕ̃j(r, τ + ∆τ)}, are incrementally
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localized via a unitary (orthogonal) transformation over
{χi(r, τ + ∆τ)}, the intermediary set of orbitals obtained
during the extrapolation step in Eq. (26). This unitary
transformation is accomplished via U(τ + ∆τ), a matrix
which is generated from a nested SODD optimization109
of the Marzari-Vanderbilt functional.75,77 During the SCF
procedure, it is computationally unfavorable (and not nec-
essary) to converge the nested SODD minimization for
U at each step, as the current (unconverged) orbitals
do not yet represent the ground electronic state. In this
regard, only a few nested SODD steps (e.g., a maximum
of 20 during the SCF procedure for liquid water) were
used to incrementally localize the proto-MLWF orbitals.
Upon convergence of this combined SCF and localization
procedure, the set of proto-MLWF orbitals, {ϕ̃i(r, τ)},
becomes the set of ground-state MLWF orbitals, which
can now be chosen as the initial condition for an MLWF-
based AIMD simulation (i.e., {φ̃i(r, t = 0)}). As such,
this approach provides a cost-effective alternative to the
standard a posteriori procedure of localizing the canoni-
cal (Bloch) occupied orbitals from a fully converged SCF
calculation.
At the hybrid DFT level, we adopt this CP-like ap-

proach to incrementally localize the occupied orbitals
during the EXX-based SCF procedure, thereby avoiding
a preliminary EXX calculation in reciprocal space. Since
the incrementally localized proto-MLWF orbitals are not
equivalent to the final set of MLWFs at a given SCF step,
the orbital-dependent EXX contributions to vxc(r) are ap-
proximately evaluated via Eq. (20); however, the resulting
errors are inconsequential as the incremental refinement of
the localized orbitals (and therefore D̃i

xx(r)) at each step
leads to the desired set of MLWFs upon SCF convergence.
Since our approach is based on an incremental “on-the-fly”
refinement of the proto-MLWF orbitals during the SCF
procedure, it is therefore unsuitable for standard Fock
matrix diagonalization routines, in which global rotations
between the occupied and virtual orbitals during each
diagonalization step would lead to marked delocalization
of the occupied states. Such delocalization would require
substantial effort (essentially from scratch) to relocalize
the orbitals after each diagonalization step, and would
thereby nullify the computational savings obtained from
a sparse evaluation of all EXX-related quantities.
In practice, EXX-based SCF calculations in CP take

advantage of the incremental nature of the aforemen-
tioned MLWF refinement process by starting with a rela-
tively inexpensive semi-local xc functional (e.g., PBE12 for
PBE058,142), which stabilizes ρ(r) and initiates the orbital
localization procedure. Once the semi-local DFT itera-
tions reach ≈ 10× the target SCF convergence threshold,
the orbitals are typically quite localized and closely resem-
ble the final set of MLWFs corresponding to the chosen
semi-local xc functional. At this point, the exx module
is activated to perform the remaining steps required to
reach SCF convergence at the hybrid DFT level, upon
which one obtains the final set of MLWFs corresponding
to the chosen hybrid xc functional. For all systems tested,

Input MLWFs

Redistribution
of MLWFs

Construction of
Pair List and

Proto-Subdomains

Communication
of MLWFs

Solution of
Poisson’s
Equation

Computation of
Energy and Forces

Redistribution
of Wavefunction

Forces

Output EXX
Energy and Forces

I

II

III

IV

V

VI

φ̃i(r)

φ̃i(r)

φ̃i(r)

ρ̃ij(r)

ṽij(r)

D̃i
xx(r)

D̃i
xx(r)

Exx

FIG. 2. Flowchart of the exx module (dashed green box) in
CP. As described in the main text, the input required by this
module includes the current set of MLWFs, {φ̃i(r)}, at each
CPMD step. The output produced by exx includes the EXX
energy (Exx) and the EXX contribution to the wavefunction
forces ({D̃i

xx(r)}). Purple (brown) circles indicate that a given
quantity is represented according to the GRID (ORBITAL) data
distribution scheme (see Fig. 3 and Sec. III B), while the pale
yellow circles represent data that are globally broadcasted.
The r notation indicates local (relative) Cartesian coordinates
in a given subdomain. For a detailed description of each step
in the exx module, see Secs. III C 1–III C 6.

this approach has a significantly reduced computational
cost when compared to the alternative procedure of: (i)
performing a standard (canonical) PBE calculation, (ii)
localizing the converged PBE orbitals from scratch, and
(iii) using these localized PBE orbitals as input into the
incremental localization procedure described above to
perform a PBE0 SCF calculation to convergence. For
insulating systems with small band gaps (e.g., InN), one
should exercise caution when using GGA orbitals for
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the initial guess in this procedure, as the GGA xc func-
tional might incorrectly predict a metallic system with
the wrong band-index ordering.120 With that caveat in
mind, we also note that the computational cost associated
with this initial SCF procedure is completely negligible
when compared to the overall CPMD simulation, which
is the focus of this work. In future work, we hope to fur-
ther optimize this incremental SCF procedure to enable
high-throughput hybrid DFT-based single-point energy
evaluations on large-scale condensed-phase systems (as
well as linear-scaling EXX-based BOMD).

In analogy to the incremental localization procedure
described above for EXX-based SCF calculations (cf.
Eqs. (26)–(27)), we have also introduced this nested
SODD determination of U into the propagation of the
CPMD equations of motion. This is accomplished by a
CPMD propagation step,

χj(r, t+ ∆t) = 2φ̃j(r, t)− φ̃j(r, t−∆t)

+
∆t2

µ
D̃j(r, t), (28)

in which an intermediary set of orbitals, {χj(r, t+ ∆t)},
is formed via CPMD evolution (with time step ∆t) of the
MLWF orbitals, {φ̃j(r)}. During the CPMD propagation
step, these intermediary orbitals become slightly more
delocalized than the set of MLWFs (yet remain on the
ground state potential energy surface), and are therefore
refined by a subsequent localization step,

φ̃i(r, t+ ∆t) =
∑
j

Uij(t+ ∆t)χj(r, t+ ∆t), (29)

in which the unitary transformation U is generated by
tightly converging the nested SODD optimization of the
Marzari-Vanderbilt functional. By doing so after every
CPMD propagation step, we ensure that the resulting
{φ̃i(r, t)} and {D̃i(r, t)} are indeed the MLWFs and the
forces acting on them. We note in passing that the need
to perform the additional localization step in Eq. (29)
reflects the lack of gauge invariance in the electronic
CPMD equations of motion within the MLWF repre-
sentation.110,111 Nevertheless, the intermediary orbitals
generated by Eq. (28) are typically good approximations
to the MLWFs, and thereby provide a rather good initial
guess to the SODD localization procedure.109 As a result,
the localization procedure typically converges with a small
number of nested SODD iterations (e.g., 3–4 iterations
for the liquid water systems in Sec. IVB1), which re-
sults in minimal computational overhead when compared
to the cost of the EXX calculation. Moving forward,
this incremental localization scheme could be avoided us-
ing the field-theoretic approach proposed by Tuckerman
and coworkers,111 which introduces additional fictitious
dynamics on a set of gauge fields to enable “on-the-fly”
propagation of the MLWF transformation (U) matrix.

B. MLWF-based EXX-CPMD: Data Distribution
Schemes

As mentioned above, we employ a hybrid MPI/OpenMP
parallelization scheme to enable large-scale EXX-based
AIMD on massively parallel supercomputer architectures
containing 1000s of nodes. Our algorithm, which is de-
scribed in Sec. III C below, is primarily based upon the
MPI distributed-memory paradigm, which requires spe-
cific data distribution schemes to minimize communication
overhead and maximize computational efficiency. Dur-
ing a GGA-based CPMD simulation in QE, the orbitals,
charge density, and potential are constantly transformed
between real- and reciprocal-space via the fwdFFT and
invFFT operations. With all real-space quantities nu-
merically represented on a grid (mesh) that is discretized
along the corresponding lattice vectors, QE employs the
GRID data distribution scheme to scatter these quantities
across Nproc MPI processes (ranks). In the GRID data
distribution scheme (see Fig. 3), the real-space grid is
partitioned into Nslab slabs along the z axis. Assuming
Nproc = Nslab for simplicity, each MPI process will hold
the data corresponding to all distributed real-space quan-
tities on a single slab of the real-space grid. In doing so,
this data distribution scheme facilitates efficient parallel
FFT by dividing the 3D FFT into a set of 2D FFTs (each
of which can be executed by a given MPI process within
a given slab) followed by a 1D FFT along the direction
of the slab partition.

As depicted in Fig. 2, the input to the exx module in
QE includes the current set of MLWFs, {φ̃i(r)}, at each
CPMD step. These MLWFs are distributed across MPI
processes according to the GRID data distribution scheme,
in which a given process holds the data corresponding
to all MLWFs on a given slab of the real-space grid. Al-
though the GRID scheme is convenient for efficient parallel
FFT, this data distribution model is far from ideal for an
efficient massively parallel implementation of our MLWF-
based EXX approach. As such, we have introduced an
alternative ORBITAL data distribution scheme in QE (see
Fig. 3), in which a given MPI process now holds quantities
like φ̃i(r) and D̃i

xx(r) for a single MLWF across the en-
tire real-space grid (for the case in which Nproc = No; for
other cases, see the discussion below in Sec. III C 1). The
details behind the transformation between the GRID and
ORBITAL data distribution schemes are provided below
in Secs. III C 1 and III C 6.

The ORBITAL data distribution scheme is particularly
suited for our real-space MLWF-based EXX algorithm,
since this approach is centered around orbital sparsity and
the efficient evaluation of ṽij(r). For one, the ORBITAL
scheme allows us to utilize a significantly larger number of
MPI processes (Nproc � Nslab), as the number of MLWFs
or overlapping MLWF pairs (both of which grow linearly
with system size) quickly exceeds Nslab (which grows with
the cubic root of the system size). The ORBITAL scheme
also allows us to exploit intranode parallelization with
Nthread OpenMP threads during the most computationally
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Input Output

Step I

Steps II-V

Step VI

FIG. 3. Schematic illustration of the GRID and ORBITAL data distribution schemes in QE. For simplicity, we consider a system
consisting of a single water molecule with No = 4 MLWFs (φ̃i(r)), a simulation cell consisting of a real-space simple-cubic
grid that has been partitioned into Nslab = 4 slabs along the z-direction (Zi), and a pool of Nproc = 4 MPI processes (Pi).
As depicted at the top of the figure, each of these MPI processes (and the corresponding data it holds in local memory) is
assigned a color: P1 (red), P2 (green), P3 (blue), and P4 (yellow). As input into the exx module, the φ̃i(r) are provided in
the GRID scheme, in which a given MPI process, Pi, holds the data corresponding to all No MLWFs on one slab, Zi, of the
real-space grid. During Step I of the exx module (Sec. III C 1), the φ̃i(r) are redistributed according to the ORBITAL scheme, in
which a given MPI process, Pi, holds the data corresponding to only one MLWF, φ̃i(r), across all Nslab slabs of the real-space
grid. As described in Secs. III C 2–III C 5, Steps II–V involve selective communication of the φ̃i(r) between MPI processes and
computation of all EXX-related quantities (Exx and {D̃i

xx(r)}). At the end of Step V, the {D̃i
xx(r)} are stored according to the

ORBITAL scheme, and are redistributed back to the GRID scheme during Step VI (Sec. III C 6), the final step of the exx module.

intensive steps in our algorithm, e.g., solving the PE to
obtain ṽij(r) (see Sec. III C 4). As a result, this hybrid
MPI/OpenMP parallelization scheme not only provides us
with access to even more computational resources during
EXX-based simulations, but also allows us to sidestep the
prohibitively large data communication overhead associ-
ated with an MPI-based solution to the PE.

C. MLWF-based EXX-CPMD: Algorithm

In this section, we provide a detailed description for
each of the steps inside the exx module in QE. Our dis-
cussion will follow the flowchart depicted in Fig. 2, in
which the current set of MLWFs in real space ({φ̃i(r)},
distributed according to the GRID scheme) are provided
as input into the exx module. Subsequent output of exx
includes the EXX energy (Exx) as well as the EXX con-
tribution to the wavefunction forces ({D̃i

xx(r)}, which are
again distributed according to the GRID scheme). This
preserves compatibility with the rest of CP, and allows
for a modular exx codebase.

1. Step I: Redistribution of MLWFs

In the exx algorithm, the assignment of MLWFs to
a given MPI process is based on ζ ≡ Nproc/No, i.e., the
ratio of available MPI processes to the number of MLWFs.
When ζ = 1, there is one MPI process per MLWF, and
each process, Pi, is assigned a unique MLWF, φ̃i. With
limited computational resources (Nproc < No), ζ < 1 and
multiple MLWFs are assigned to each process; as such,
a balanced distribution of MLWFs across MPI processes
is only possible when Nproc is a divisor of No. In the
strong-scaling limit, our exx algorithm allows for ζ to
take on integer values greater than one, in which a given
MLWF is assigned to multiple MPI processes. Unless
otherwise specified, we will assume that ζ = 1 throughout
the remainder of Sec. III C.

Given the current set of MLWFs in real space, {φ̃i(r)},
which are distributed among the available Nproc MPI pro-
cesses according to the GRID scheme, the first step in the
exx module is the forward redistribution of these quan-
tities into the ORBITAL data distribution scheme. For
this purpose, each MPI process collects an assigned φ̃i(r)
across the entire real-space grid via an ALL-TO-ALL in-
ternode communication step, as shown in Fig. 3. This
ALL-TO-ALL communication is performed twice per
CPMD step: once here in the forward redistribution
of {φ̃i(r)} from the GRID to the ORBITAL scheme, and
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once in Step VI in the inverse redistribution of {D̃i
xx(r)}

from the ORBITAL to the GRID scheme (see Sec. III C 6).
As discussed in Sec. IV, this communication overhead
represents a substantial fraction of the total cost asso-
ciated with the exx module, and can be significantly
reduced by a more sophisticated communication scheme
over select subsets of the MPI process pool, i.e., those
containing the regions of real space containing the rel-
evant MLWF-orbital domain, Ωi (see Sec. II C). This
algorithmic improvement is currently underway and will
be described in future work.

2. Step II: Construction of Pair List and Proto-Subdomains

With the MLWFs distributed among MPI processes
according to the ORBITAL scheme, we now explain how
the exx module exploits the sparsity of the MLWFs, and
utilizes system-size independent subdomains of Ω during
the computation of all EXX-related quantities. To accom-
plish this goal, we will first describe the construction of
the so-called unique MLWF-pair list, L, which not only
contains the relevant set of overlapping MLWF pairs, but
also determines how the computational workload associ-
ated with these pairs is distributed among the pool of
available MPI processes. This is followed by a detailed
description of the set of “proto-subdomains” employed in
the exx module, which represent computationally effi-
cient alternatives to the formal Ωi and Ωij subdomains
introduced above in Sec. II C.

Construction of the MLWF-Pair List

To exploit the first level of computational savings, which
originates from the fact that MLWFs are exponentially
localized and only overlap with a limited number of neigh-
bors, two MLWFs, φ̃i(r) and φ̃j(r), are considered an
overlapping pair if |C̃i − C̃j | < Rpair. A judicious choice
for Rpair is required for accurately calculating all EXX-
related quantities, and an analysis of the convergence of
Exx with respect to Rpair will be provided in Sec. IVA1.
At the current point in the algorithm, each φ̃i(r)

is stored according to the ORBITAL data distribution
scheme on one (or more) MPI processes (depending on
the value of ζ employed during runtime, see Sec. III C 1).
For simplicity, we will discuss the ζ = 1 case first, in
which there is only one MPI process per MLWF, and
each process, Pi, is assigned a unique MLWF, φ̃i(r). As
such, Pi lacks direct access to φ̃j(r) for j 6= i, which is
required for the construction of ρ̃ij(r) and the subsequent
computation of ṽij(r) for evaluating the 〈ij〉-pair contri-
bution to Exx, D̃ij

xx(r), and D̃ji
xx(r). Although ρ̃ii(r) can

be constructed locally on Pi to evaluate the 〈ii〉-pair (self
pair) contribution to each of these quantities, all of the
other 〈ij〉-pair contributions will require communication
between MPI processes.
To design an MLWF-based EXX algorithm that

achieves a minimal time to solution while efficiently utiliz-

ing all parallel computational resources, one needs to (i)
minimize the total computational workload, (ii) minimize
the number of interprocess communication events, and
(iii) maintain a balanced workload among the pool of
available MPI processes. To accomplish this goal, we now
describe the procedure employed in the exx module to
construct the so-called unique MLWF-pair list, L, which
defines the computation and communication protocol in
our algorithm. To construct L, the indices corresponding
to all overlapping MLWF pairs (as determined by the
aforementioned criteria based on Rpair) are first assembled
into the non-unique MLWF-pair list, L0, which contains
all possible permutations ij and ji of these overlapping
MLWF pairs. Since the 〈ij〉- and 〈ji〉-pair contributions
to Exx are equivalent (cf. Eqs. (15)–(17)), it is clear that
L0 is redundant and contains twice as many pairs as
needed.

Before discussing the procedure used to determine L, we
first demonstrate that exploiting such redundancy within
the more parallelizable ORBITAL data distribution scheme
leads to the requirement for two interprocess communi-
cation events per unique MLWF pair. To see this more
clearly, one only needs to consider a minimalistic system
which contains a single 〈ij〉-pair of overlapping MLWFs.
Throughout this example, spatial arguments will be sup-
pressed (e.g., φ̃i will be used instead of φ̃i(r)), since all
computation and communication events will be performed
using system-size independent subdomains (vide infra).
With φ̃i located on Pi and φ̃j located on Pj , we will first
consider what happens if the inherent pair redundancy is
not exploited. In this case, φ̃i (φ̃j) is first communicated
to Pj (Pi) for a total of two interprocess communication
events. At this point, each MPI process constructs the
corresponding MLWF-product density, ρ̃ij = ρ̃ji, and
proceeds to compute ṽij = ṽji by solving two equivalent
PEs. Since the solution of the PE is the dominant compu-
tational step in our EXX algorithm, this will count for a
total of two computation events. With ṽij = ṽji available
on both Pi and Pj , each process is now in a position to
compute the 〈ij〉- and 〈ji〉-pair contributions to Exx via
Eq. (15), as well as D̃ij

xx = ṽij φ̃j and D̃ji
xx = ṽjiφ̃i via

Eq. (18). As depicted in Fig. 2, the {D̃i
xx} are needed in

the ORBITAL data distribution scheme before these quan-
tities are finally redistributed back to the GRID scheme
to ensure compatibility with the other modules in QE
(see Fig. 3). As such, the local evaluation of D̃ij

xx on Pi
and D̃ji

xx on Pj directly provides these quantities in the
requisite ORBITAL data distribution scheme without the
need for any additional communication. Hence, the total
cost per unique MLWF pair amounts to two units of com-
munication followed by two units of computation, when
pair redundancy is not exploited.

Since the removal of all MLWF-pair redundancy is cru-
cial for minimizing the total number of computational
events (and hence the overall time to solution), we now
consider the case where this inherent pair redundancy
is exploited. In this case, only φ̃j would be sent to Pi
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with an associated cost of one unit of communication,
and Pi will therefore be solely responsible for computing
all EXX-related quantities. Since the 〈ij〉- and 〈ji〉-pair
contributions to Exx are equivalent, these quantities can
be computed on Pi via a single computation event (i.e.,
the solution to the corresponding PE), and then sent to
any other process with minimal communication (i.e., one
double-precision number for each pair contribution to
Exx). Although D̃ij

xx 6= D̃ji
xx, this also poses no problem as

Pi has direct access to φ̃i and φ̃j , and hence both D̃ij
xx and

D̃ji
xx can be computed locally. With the requirement that

the {D̃i
xx} are stored in the ORBITAL data distribution

scheme, this will incur an additional communication event
as D̃ji

xx is shipped back to Pj . Hence, exploiting the inher-
ent MLWF-pair redundancy reduces the computational
workload by half (as expected), but it does not change
the requirement for two communication events per unique
MLWF pair.

During this non-redundant evaluation of the 〈ij〉- and
〈ji〉-pair contributions, the fact that Pj was idle while
Pi performed all of the required computations creates
an imbalance in the computational workload assigned to
each MPI process. With the freedom to assign the compu-
tational workload associated with the 〈ij〉-pair to either
Pi or Pj , the exx module is now tasked with determining
how the total computational workload will be distributed
among the pool of available MPI processes. Armed with
knowledge of the total number of non-unique MLWF pairs
in the system (via L0) as well as the use of system-size
independent subdomains to regularize the computational
cost associated with the solution to each PE (vide infra),
the process for doing so involves a static load-balancing
algorithm which seeks to minimize the overall time to
solution by reducing the imbalances present in the compu-
tational workload, and hence the number of idle processes.
Although it is certainly possible in the current version
of the algorithm, we chose not to involve a third pro-
cess, Pk, in the evaluation of the 〈ij〉-pair contribution,
as this would introduce two additional communication
events, i.e., φ̃i to Pk and D̃ij

xx back to Pi (in addition
to φ̃j to Pk and D̃ji

xx back to Pj). In this regard, the
local computation of D̃ij

xx on Pi not only avoids additional
unnecessary communication events, but also allows for
reduced storage requirements as this quantity can be cu-
mulatively incremented (over multiple j) within a single
array corresponding to Ωi.

This static load-balancing algorithm can be represented
by the so-called unique MLWF-pair list, L, the construc-
tion of which is described in the left panel of Fig. 4 (for
the illustrative case of a single water molecule) as well
as Algorithm 1 (for the general case). We start with
the L0 array, which contains all possible permutations of
overlapping MLWF pairs, i.e., L0[i] (the i-th row of L0) is
populated with a list of indices, {j}, corresponding to all
φ̃j that overlap with φ̃i. For each i, the indices j ∈ L0[i]
are sorted into ascending order based on their vicinity to
φ̃i via |C̃i − C̃j |. By construction, each L0[i] also con-

tains i (self pair) and will retain this non-redundant index
throughout the refinement of L0 to L in Algorithm 1.
While there are still redundant pairs in L0, this algorithm
will consecutively sweep over MLWFs to locate redundant
pairs such as 〈ij〉 and 〈ji〉; in our approach, this is tan-
tamount to finding both j ∈ L0[i] and i ∈ L0[j]. Once
located, the algorithm eliminates this redundancy from
L0 by removing the index i from L0[j]. At the end of
these sweeps, all of the redundancies in L0 are removed,
and we are left with L, the unique MLWF-pair list. This
list contains the minimum number of computational tasks
required to evaluate all EXX-related quantities, and dic-
tates how this computational workload will be distributed
among the pool of available MPI processes. By virtue of
the ORBITAL data distribution scheme, L also encodes the
communication protocol that will be followed throughout
the remainder of the exx module (see Sec. III C 3). With
ζ = 1, this amounts to sending φ̃j → Pi and D̃ji

xx → Pj
for each unique 〈ij〉 pair, as depicted in the right panel
of Fig. 4.

Algorithm 1 Refinement of L0 to L
any_removal ← TRUE
while any_removal do

any_removal ← FALSE
for i = 1, No do

for j 6= i ∈ L0[i] do
if i ∈ L0[j] then
L0[j]← L0[j] \ {i}
any_removal ← TRUE
break

end if
end for

end for
end while
L ← L0

By construction, static load-balancing algorithms (such
as Algorithm 1) yield fairly well-balanced workload dis-
tributions by mitigating potential imbalances during the
refinement of L0 to L. Here, we note that the distance-
based sorting of the indices in each row of L0 is crucial
for avoiding severe workload imbalances due to sequen-
tial index ordering. In this regard, an equally effective
load-balancing algorithm would be possible by performing
random sweeps over row indices (and completely avoid-
ing the initial distance-based sorting procedure). Since
the number of overlapping pairs per MLWF will often
change throughout an AIMD simulation, this static load-
balancing algorithm is performed during each MD step
in an attempt to determine an optimal workload balance.
For a detailed discussion regarding the performance of this
static load-balancing algorithm during CPMD simulations
of liquid water, as well as future possible improvements
of this approach, see Sec. IVB1.
When computational resources are limited, the exx

module can utilize less MPI processes during runtime (i.e.,
ζ < 1). In this case, multiple MLWFs are contiguously as-
signed to each process, and a balanced distribution of the
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FIG. 4. Graphical depiction of the unique MLWF-pair list construction process and corresponding MLWF communication
scheme in the exx module. For simplicity, we will again consider a single water molecule with No = 4 MLWFs (φ̃i) and a pool
of Nproc = 4 MPI processes (Pi), i.e., ζ = 1. Starting with the non-unique MLWF-pair list, L0, which contains all possible
permutations of overlapping MLWF pairs, the step-by-step procedure employed to transform L0 into the unique MLWF-pair
list, L, is depicted in the left panel. Since all of the MLWFs are mutually overlapping in a single water molecule, L0[i] contains
{j}, the indices corresponding to all MLWFs (including j = i), which have been sorted according to |C̃i − C̃j |. During the
process of reducing L0 to L, i is always selected (bold black font) to remain in L0[i], while the remaining non-unique indices
are shown in gray. In the first sweep (SWEEP01) of Algorithm 1, the next element j ∈ L0[i] is selected to remain in L0[i],
while the now redundant index i is removed (red slash) from L0[j]. During the first sweep in this example, the indices 2, 4, 2, 3
were selected to remain in L0[1],L0[2],L0[3],L0[4], while the corresponding redundant indices, 1, 2, 3, 4, were removed from
L0[2],L0[4],L0[2],L0[3]. This process is repeated until all of the MLWF-pair redundancy is removed from L0, upon which one is
left with the final L. For a single water molecule, only two sweeps are required to reach this stage; at that point, all of the unique
MLWF pairs have been assigned to a given L[i], and no redundant indices remain. With each MLWF stored according to the
ORBITAL data distribution scheme (in which φ̃i is assigned to Pi), the final L determines how the computational workload will
be distributed among the pool of available MPI processes. Even in this simple example, there exists a mismatch in the number
of pairs assigned to each process, with three MLWF pairs assigned to P1 and P3, and only two MLWF pairs assigned to P2 and
P4. Such discrepancies are expected (even for the most homogeneous systems) and lead to an imbalance in the computational
workload. By virtue of the ORBITAL data distribution scheme, L also determines the corresponding MLWF communication
protocol, which is depicted in the right panel for the single water molecule. After a given φ̃j is directly communicated to Pi,
this MPI process forms ρ̃ij , solves the corresponding PE for ṽij (depicted by the blue dashed line), and computes the 〈ij〉-pair
contribution to Exx, D̃ij

xx, and D̃ji
xx (which is sent back to Pj). As an example, consider L[2], which contains two indices (2, 4).

Since P2 already holds φ̃2, ρ̃22 (required for computing ṽ22) can be constructed locally without the need for any interprocess
communication. To construct ρ̃24 (and hence ṽ24), φ̃4 is sent from P4 to P2 (solid arrow). After the corresponding D̃42

xx is formed,
it is shipped back to P4 (dashed arrow). Besides this straightforward dependency between receiving an MLWF and computing
the corresponding EXX contributions to the wavefunction forces, the communication in the exx module has no discernible time
axis in the figure above.

workload (within the framework defined by Algorithm 1)
is more likely when Nproc is a divisor of No; as such, this
is the current recommended setting whenever applicable
(see Sec. III C 1). In the isolated water molecule example
in Fig. 4, the use of ζ = 1/2 would start with P1 holding
φ̃1 and φ̃2, and P2 holding φ̃3 and φ̃4. After running
Algorithm 1 to generate L, the workload associated with
a given MLWF is mapped onto the process holding this
orbital. This results in five units of computation assigned
to each MPI process: two self pairs, one local pair (in
which both MLWFs are held on the same process), and
two non-local pairs (in which one of the MLWFs is held
on a different process), e.g., P1 would be responsible for
〈ii〉 = 〈11〉 and 〈ii〉 = 〈22〉 (two self pairs), 〈ij〉 = 〈12〉
(one local pair), and 〈ij〉 = 〈14〉 and 〈ij〉 = 〈24〉 (two
non-local pairs). In this case, the workload is optimally
balanced and the maximum number of computation events
per process is only 5/3× (instead of 2×) larger than ζ = 1.

This allows for a more computationally efficient means to
performing an EXX calculation, albeit with a longer time
to solution.

With access to massively parallel resources (ζ > 1 ∈ N),
each φ̃i is now replicated and stored in memory on the
Pi, Pi+No , . . . , Pi+(ζ−1)No

processes. After running Algo-
rithm 1 to generate L, the workload associated with a
given MLWF is split into ζ parts, each of which is as-
signed to one of the processes holding this orbital. For the
isolated water molecule, the use of ζ = 2 (ζ = 1) results in
processes assigned with 1−2 (2−3) computational tasks.
This reduces the maximum number of computation events
per process from 3 to 2, and hence lowers the overall time
to solution. However, this gain comes at the expense of in-
creasing the workload imbalance from 1/3 (i.e., processes
with the lightest workload idling for ≈ 1/3 of the time)
to 1/2, and is therefore a less efficient use of the available
computational resources.
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Construction of Proto-Subdomains

As discussed throughout this work, the efficient evalua-
tion of ṽij(r) is the cornerstone of our MLWF-based EXX
approach. To exploit the sparsity of the MLWFs and still
retain a numerically exact evaluation of ṽij(r), this quan-
tity is computed via the solution to the corresponding PE
for all points in Ω that are contained in Ωij (see Eq. (21)).
Since the PE is a boundary-value problem, the required
boundary conditions are provided by the ME of ρ̃ij(r)

about C̃ij on the thin shell of the real-space grid surround-
ing Ωij (see Eqs. (22)–(23)). By computing ṽij(r) for all
r ∈ Ωij , Exx can be computed in a numerically exact
fashion (cf. Eq. (19)). However, the numerically exact
evaluation of the EXX contribution to the wavefunction
forces, D̃ij

xx(r) and D̃ji
xx(r), requires ṽij(r) for all r ∈ Ωj

and r ∈ Ωi, respectively (see Eq. (20)). Since Ωij ⊂ Ωj

and Ωij ⊂ Ωi, D̃ij
xx(r) and D̃ji

xx(r) are evaluated with
ṽij(r) from the solution to the PE for all r ∈ Ωij . For
r ∈ Ωj \ Ωij and r ∈ Ωi \ Ωij , ṽij(r) can be conveniently
and accurately supplied by a sufficiently converged ME
of ρ̃ij(r). As such, the ME serves the dual purpose of
providing the necessary boundary conditions for the PE
as well as the far-field ṽij(r) required for a numerically
exact computation of both D̃ij

xx(r) and D̃ji
xx(r).

To exploit this second level of computational savings,
which originates from the fact that a numerically exact
evaluation of all EXX-related quantities can be restricted
to real-space domains that are system-size independent
and significantly smaller than Ω, the exx module in-
troduces an alternative formulation of the Ωi and Ωij

subdomains described above in Sec. II C. To begin, we
first note that subdomains like Ωi and Ωij = Ωi ∩ Ωj

are formally defined as the points in Ω for which φ̃i(r)
and ρ̃ij(r) are non-negligible (i.e., larger than some pre-
determined numerical cutoff). As such, both of these
subdomains can have irregular and even disjoint shapes.
However, this is a cumbersome and computationally de-
manding definition that would require screening substan-
tial sectors of Ω for each pair of MLWFs during every
CPMD step. To combat this issue and still maintain a
numerically exact evaluation of all required quantities,
one could simply utilize two concentric spherical subdo-
mains per 〈ij〉 pair, i.e., Θ(C̃ij , R

ij
PE) and Θ(C̃ij , R

ij
ME),

which are spheres centered at C̃ij with radii RijPE and
RijME chosen to be large enough to encompass Ωij and
Ωi ∪ Ωj , respectively. In doing so, the corresponding PE,
∇2ṽij(r) = −4πρ̃ij(r), could then be solved without any
domain truncation error on Θ(C̃ij , R

ij
PE), which is signifi-

cantly smaller than Ω. Computing the ME of ρ̃ij(r) on
the Θ(C̃ij , R

ij
ME) \Θ(C̃ij , R

ij
PE) shell would again provide

the necessary boundary conditions for the PE as well as
the far-field ṽij(r) needed for evaluating both D̃ij

xx(r) on
Ωj and D̃ji

xx(r) on Ωi. Since both of these subdomains are
contained in Θ(C̃ij , R

ij
ME), D̃ij

xx(r) and D̃ji
xx(r) can also

be computed in a numerically exact fashion on a subset
of points contained in Ω.

FIG. 5. Graphical depiction of the proto-subdomains used in
the exx module. Dots are used to denote the MLWF centers,
C̃i, which are approximated by the closest points, Ci, on the
real-space grid, Ω. The dashed blue and red circles bound
the two concentric spherical proto-subdomains, Θ(C0, RPE)
and Θ(C0, RME), which are assembled around C0 (purple
star) with radii RPE and RME, respectively. Pair-exchange
interactions involving φ̃i(r) include all overlapping MLWFs
(yellow dots), whose centers are located within a distance,
Rpair, of C̃i ≈ Ci (black dot) that is large enough to account
for all φ̃k(r) with Ωik 6= ∅. For the overlapping 〈ij〉 pair, the
Θ(C0, RPE) and Θ(C0, RME) proto-subdomains are translated
across Ω via a rigid grid offset, τij , to form Θ(Cij , RPE) and
Θ(Cij , RME), which are centered at Cij ≈ C̃ij (purple square).
To evaluate the 〈ij〉 contribution to all EXX-related quantities,
the corresponding PE, ∇2ṽij(r) = −4πρ̃ij(r), is solved for
ṽij(r) on the Θ(Cij , RPE) subdomain, which encompasses
Ωij , the support of ρ̃ij(r) (shaded in dark green). Boundary
conditions for the PE (as well as the far-field ṽij(r)) are
computed via a ME of ρ̃ij(r) on the Θ(Cij , RME)\Θ(Cij , RPE)
shell surrounding Θ(Cij , RPE).

To efficiently utilize this concept of concentric spherical
subdomains in the exx module, we assemble two fixed-
size proto-subdomains, Θ(C0, RPE) and Θ(C0, RME), cen-
tered around a predetermined origin, C0, which is cho-
sen to be one of the grid points in Ω. When dealing
with all computations involving a given 〈ij〉 pair, these
proto-subdomains are simply translated to C̃ij , which
will be approximated (with no discernible error) by Cij ,
the closest grid point in Ω (see Fig. 5 and Sec. III C 3).
Since these fixed-size proto-subdomains will be used for
all 〈ij〉 pairs, their radii should be chosen such that
RPE = maxij{RijPE} and RME = maxij{RijME}. With
judicious choices for RPE and RME (see Secs. IVA1–
IVA2), these proto-subdomains allow for an accurate
evaluation of all EXX-related quantities, and have several
algorithmic advantages that will be described below.
With RPE and RME in hand, we now describe the

construction of these proto-subdomains around C0, an
arbitrary center that is coincident with a grid point in
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Ω. In this work, the grid point closest to the center of
Ω was chosen as the reference C0, since this allows us
to avoid the use of both the minimum image convention
and wrap-around (periodic) boundary conditions during
grid point screening. Assembly of the proto-subdomains
begins by looping over grid points, r ∈ Ω, and determin-
ing whether or not a given grid point is contained within
Θ(C0, RPE) or Θ(C0, RME) \Θ(C0, RPE). For each grid
point contained in either proto-subdomain, we increment
the corresponding counter (q′ or q′′) and store its rela-
tive (local) Cartesian coordinates (in rPE or rME) and
(global) grid point indices (in g0

PE or g0
ME), as depicted in

Algorithm 2.

Algorithm 2 Proto-Subdomain Construction
q′ ← 0; q′′ ← 0
foreach r ∈ Ω do

if |r −C0| ≤ RPE then
q′ ← q′ + 1
rPE[q′]← r −C0

g0
PE[q′]← NINT [Ngrid,ara/|La|] , a = 1, 2, 3

else if RPE < |r −C0| ≤ RME then
q′′ ← q′′ + 1
rME[q′′]← r −C0

g0
ME[q′′]← NINT [Ngrid,ara/|La|] , a = 1, 2, 3

end if
end for
NPE ← q′

NME ← q′ + q′′

Incrementing these counters throughout the loop over
r ∈ Ω yields NPE and NME, the (fixed) number of points
in Θ(C0, RPE) and Θ(C0, RME). By storing the relative
Cartesian coordinates, r −C0, we now have a set of local
coordinates that are invariant to rigid translations of
Θ(C0, RPE) and Θ(C0, RME), thereby avoiding the need
to recompute these coordinates for every 〈ij〉 pair. This
also provides a convenient platform for precomputing a
number of quantities (e.g., r in spherical polar coordinates,
the set of spherical harmonics, etc.) that are required
during the ME of ρ̃ij(r) (cf. Eqs. (22)–(23)). For each
point in the proto-subdomains, we also store its global
grid point indices, which are given by three integer values,
(g0

1 , g
0
2 , g

0
3), representing the position of a given grid point

along the cell (lattice) vectors, L1, L2, and L3 (which are
aligned with the Cartesian directions for the orthorhombic
cells considered in this work). For an orthogonal grid,
which has Ngrid,a equispaced grid points along each of the
La lattice vectors (with grid spacing δξa = |La|/Ngrid,a),
the global grid index along La is given by g0

a = ra/δξa =
Ngrid,ara/|La|. Since r is always coincident with a grid
point in Ω, {g0

a} is formally an array of integers; this is
enforced in a floating-point environment using the nearest
integer function, NINT.

This accumulated data is then concatenated to form
two 3×NME arrays as follows: the local coordinates are

stored in a double-precision array,

r[q] =

{
rPE[q] q = 1, . . . , NPE

rME[q −NPE] q = NPE + 1, . . . , NME

}
, (30)

while the global grid indices are stored in an integer array,

g0[q] =

{
g0

PE[q] q = 1, . . . , NPE

g0
ME[q −NPE] q = NPE + 1, . . . , NME

}
. (31)

By storing all of the subdomain data in this scheme, only
a single local index, q, is required for labeling the ele-
ments in these arrays. This still maintains access to the
Θ(C0, RPE) and Θ(C0, RME) proto-subdomains (as well
as the Θ(C0, RME) \ Θ(C0, RPE) shell) through knowl-
edge of NPE and NME, the number of elements in each
proto-subdomain. As such, this scheme provides us with a
compact representation for the sparse quantities required
in our EXX algorithm, as well as a convenient mapping
between data stored in the proto-subdomain representa-
tion and the real-space grid (Ω) representation. This is
crucial for loading and off-loading data to and from Ω, as
it only requires communication of the relevant sectors of
Ω for sparse quantities like ρ̃ij(r) and ṽij(r).

3. Step III: Communication of MLWFs

By virtue of the ORBITAL data distribution scheme,
the unique MLWF-pair list, L, not only determines the
computational workload associated with each MPI pro-
cess, but also encodes the communication protocol that
will be followed throughout the remainder of the exx
module (see Fig. 4). With a support that is significantly
smaller than Ω, the communication of any given MLWF
on the entire real-space grid is clearly neither efficient
nor necessary in our EXX algorithm. To reduce the com-
munication overhead associated with each overlapping
〈ij〉 pair, the exx module employs the proto-subdomains
(Θ(C0, RPE) and Θ(C0, RME)) introduced in Sec. III C 2.
As discussed above, these system-size-independent proto-
subdomains provide a compact data representation for the
storage and communication of sparse quantities such as
φ̃i, ρ̃ij , ṽij , and D̃ij

xx (or D̃ji
xx). To utilize Θ(C0, RPE) and

Θ(C0, RME) in practice, these proto-subdomins must be
translated across Ω to form the subdomains, Θ(Cij , RPE)
and Θ(Cij , RME), required for evaluating all quantities
associated with a given 〈ij〉 pair, as shown in Fig. 5.
Before describing the translation of these proto-

subdomains, we now discuss the employed convention
used for C̃ij , and remind the reader of the flexibility one
has in defining this quantity for neutral charge distri-
butions like ρ̃ij(r) (see Sec. II C). In the exx module,
C̃ij is defined as the midpoint between the i-th and j-th
MLWF centers, i.e., C̃ij = (C̃i + C̃j)/2, which repre-
sents an excellent approximation to the aforementioned
gauge used in molecular quantum mechanics and an al-
gorithmically convenient choice. By utilizing the MLWF
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centers, this definition for C̃ij accounts for the spatial
distribution of each MLWF through its first moment,
and becomes equivalent to the conventional definition,
C̃ij =

∫
dr r|ρ̃ij(r)| /

∫
dr |ρ̃ij(r)|, for a number of dif-

ferent symmetric cases (e.g., when both φ̃i(r) and φ̃j(r)
have the same spread and are spherically symmetric with
respect to C̃i and C̃j , when ρ̃ij(r) is centrosymmetric
with respect to the midpoint, etc.). Furthermore, this
choice for C̃ij recovers the correct center of charge for
ρ̃ii(r), i.e., C̃ij → C̃ii = C̃i. Algorithmically speaking,
this convention for C̃ij is also quite useful, as it only
requires knowledge of the MLWF centers, which are avail-
able throughout a CPMD simulation.
As mentioned above, the exx module employs one

additional simplification when dealing with MLWF and
MLWF-pair centers: these quantities are approximated
by the closest grid points in Ω and denoted throughout by
either Ci or Cij . This algorithmic simplification leads to
no appreciable error during evaluation of Exx and {D̃i

xx},
and allows us to rigidly translate the proto-subdomains to
the appropriate center, Cij , as needed. For an orthogonal
grid, the component of the required grid translation vector,
τ ij , along a given lattice vector, La, is given by:

τ ija = NINT
[
Ngrid,a (Cij −C0)a /|La|

]
= NINT

[
(Cij −C0)a

δξa

]
. (32)

Application of τ ij to a given proto-subdomain leaves the
radius and local Cartesian coordinates untouched, and
simply offsets the global grid indices as follows:

gija [q] = MOD
[
g0
a[q] + τ ija , Ngrid,a

]
, (33)

thereby resulting in a subdomain centered at Cij . The use
of the remainder function, MOD, in Eq. (33) enforces the
appropriate wrap-around boundary conditions; as such,
this equation is specific to the grid convention used in QE,
in which the grid points (along La) are numbered from
0, 1, . . . , Ngrid,a − 1. For codes that number these grid
points from 1, 2, . . . , Ngrid,a, Eq. (33) should be modified
as follows: gija [q] = MOD[ g0

a[q] + τ ija − 1, Ngrid,a ] + 1.
With each MLWF stored according to the ORBITAL

data distribution scheme, the MPI process (ζ = 1) or
processes (ζ > 1) that are currently storing φ̃i(r) on Ω
are responsible for sending this MLWF to another MPI
process (or processes) according to the computation and
communication protocol outlined by L. In order to do so,
φ̃i(r) is off-loaded onto the appropriately translated sub-
domains, Θ(Cij , RME), corresponding to the overlapping
〈ij〉 pairs that will be handled remotely (i.e., on other
processes); all of the information required to do so is
provided by local access to L and {Cij}, as both of these
arrays have been broadcast to all processes. For each of
these overlapping 〈ij〉 pairs, a sparse quantity like φ̃i(r)
is now stored in the more compact Θ(Cij , RME) repre-
sentation via the use of three relatively small arrays: r,

gij , and φ̃i(r) ≡ φ̃i(r+Cij), with associated sizes (types)
of 3 × NME (double-precision), 3 × NME (integer), and
1×NME (double-precision), respectively. Here, we remind
the reader that all of the data on the Θ(Cij , RPE) subdo-
main and Θ(Cij , RME) \Θ(Cij , RPE) shell are contained
within Θ(Cij , RME), and can easily be accessed using the
local grid indexing scheme outlined in Eqs. (30)–(31). As
mentioned above, the local Cartesian coordinates stored
in the r array are invariant to translations of the proto-
subdomains; as such, this information does not need to
be recomputed for each translated subdomain and can
be broadcast across all processes. Communication of the
MLWFs on these compact subdomains then proceeds ac-
cording to L among the pool of available MPI processes.
Once φ̃i(r) is received by a given process, ρ̃ij(r) is assem-
bled on the Θ(Cij , RPE) subdomain and the exx module
begins the process of solving the corresponding PE.

4. Step IV: Solution of Poisson’s Equation

Based on L, each MPI process, Pi, now holds an
assigned MLWF-product density ρ̃ij(r) as well as the
relevant quantities that map the Θ(Cij , RPE) and
Θ(Cij , RME) subdomains onto Ω (i.e., NPE, NME, {r},
and {gij}). As such, Pi has all of the required in-
formation to compute ṽij(r) on the Θ(Cij , RPE) and
Θ(Cij , RME)\Θ(Cij , RPE) subdomains. On Θ(Cij , RPE),
ṽij(r) is obtained via the solution of the PE in Eq. (21).
On Θ(Cij , RME)\Θ(Cij , RPE), ṽij(r) is obtained via the
ME in Eqs. (22)–(23), which provides the appropriate
boundary conditions for the PE as well as the far-field
potential.

While the ME of ρ̃ij(r) (about Cij) can be straightfor-
wardly computed using the local coordinates, {r}, the PE
requires a discrete representation of the Laplacian opera-
tor for computing numerical second derivatives on these
subdomains. Since the subdomains employed in the exx
module are coincident with the underlying real-space grid
(taken here to be orthogonal), the Laplacian operator can
be expressed as a sum of second partial derivatives along
each of the lattice directions, ∇2 =

∑
a
∂2

∂ξ2a
, in which ξa

is a coordinate of L̂a ≡ La/|La|. At a given grid point,
ξ0, the second partial derivative of a function, f(ξ), along
La was discretized via the standard central-difference
approach:143

∂2f(ξ)

∂ξ2
a

∣∣∣∣
ξ=ξ0

=

n∑
q=−n

wq
f(ξ0 + q δξaL̂a)

δξ2
a

. (34)

In this expression, the associated discretization error de-
pends on the number, n, of (equispaced) neighboring grid
points on each side of ξ0, and wq is the central-difference
coefficient for the q-th grid point. We note in passing
that only w|q| is required due to the central symmetry
(wq = w−q) of the equispaced finite-difference stencil.
Discretization of this derivative results in a (2n + 1)-
point stencil along each grid direction, La; as such, the



18

discrete 3D Laplacian operator corresponds to a finite-
difference stencil covering 3 × 2n + 1 = 6n + 1 grid
points. We note in passing that the choice of n = 3 (with
corresponding central-difference coefficients143 given by
w0 = −49/18, w1 = +3/2 = w−1, w2 = −3/20 = w−2,
and w3 = +1/90 = w−3) yields a second derivative with
an associated discretization error of O

(
δξ6
)
; this choice

is the default option in the exx module as it yields a
well-converged value for Exx.76,78

With this discrete representation of the Laplacian, we
can express the PE in Eq. (21), ∇2ṽij(r) = −4πρ̃ij(r),
as the following set of sparse linear equations on the
Θ(Cij , RPE) subdomain:

∇2
PEṽij = −4π

(
ρ̃ij − ρ̃bij

)
. (35)

In this expression, ∇2
PE is a sparse NPE×NPE matrix con-

taining the discretized Laplacian (whose stencil coverage
has been restricted to Θ(Cij , RPE)), ṽij is a NPE× 1 vec-
tor representing the (currently unknown) MLWF-product
potential, and ρ̃ij is a NPE × 1 vector containing the
MLWF-product density. The final term on the right-
hand side, ρ̃bij ≡ −(1/4π)(∇2 −∇2

PE)ṽij , is the so-called
boundary charge, which accounts for the part(s) of the
Laplacian stencil that extend outside of Θ(Cij , RPE) (and
into the Θ(Cij , RME) \Θ(Cij , RPE) shell) and have been
truncated in the ∇2

PE representation of this operator. In
doing so, ρ̃bij accounts for the Dirichlet boundary condi-
tions provided by the ME form of the potential on the
Θ(Cij , RME)\Θ(Cij , RPE) shell surrounding Θ(Cij , RPE)
(see Eq. (22)), and therefore allows for a numerically exact
solution of the PE using ∇2

PE, a Laplacian whose stencil
coverage has been restricted to the Θ(Cij , RPE) subdo-
main. This restricts the PE to the support of ρ̃ij and
substantially reduces the dimensionality and associated
computational cost of solving the PE for each overlapping
MLWF pair.

The system of sparse linear equations in Eq. (35) is
then solved (for ṽij) using an iterative conjugate-gradient
(CG) approach. Since the solution of the PE is notoriously
difficult to parallelize efficiently over MPI tasks, the CG-
based PE solver in the exx module is largely parallelized
over OpenMP threads to allow for an efficient real-space
evaluation of ṽij . The efficient solution of the PE for
each overlapping MLWF pair is the cornerstone of our
MLWF-based EXX algorithm, and the performance of
the CG-based PE solver will be discussed in Sec. IVB2.
During CPMD simulations, the number of CG iterations
required to solve a given PE can be substantially reduced
by using a polynomial extrapolation144 of the potential
from the previous CPMD steps as the initial guess. More
detailed considerations of this extrapolation scheme as
well as extensions to BOMD will be discussed in future
work.

5. Step V: Computation of Energy and Forces

After a process, Pi, arrives at the solution to the PE for
one of its assigned pairs (i.e., for a given j ∈ L[i]), this
process now holds the corresponding MLWF-product po-
tential ṽij(r) on the entire Θ(Cij , RME) subdomain. With
ṽij(r) on the Θ(Cij , RPE) subdomain (via the solution
of the PE) and ṽij(r) on the Θ(Cij , RME) \Θ(Cij , RPE)
shell (via the ME of ρ̃ij(r)), Pi is now ready to evalu-
ate the 〈ij〉 contribution to the EXX energy (Exx) and
wavefunction forces (D̃ij

xx(r) and D̃ji
xx(r)).

The evaluation of Exx is quite straightforward via
Eq. (19). Here, we remind the reader that a numerically
exact evaluation of this quantity only requires integration
on the Θ(Cij , RPE) subdomain; this integration over the
support of ρ̃ij(r) is also parallelized over OpenMP threads
and is therefore quite computationally efficient. Partial
summations over the assigned 〈ij〉 pairs on each process
are accumulated to form Exx with minimal associated
communication (i.e., one double-precision number for Exx

per MPI process).
With ṽij(r) in hand, Pi is also in position to compute

both D̃ij
xx(r) = ṽij(r)φ̃j(r) and D̃ji

xx(r) = ṽij(r)φ̃i(r) on
the entire Θ(Cij , RME) subdomain. For each D̃ji

xx(r) com-
puted on Pi, this quantity is shipped back to Pj (assuming
ζ = 1 here for simplicity), which requires communica-
tion of NME double-precision numbers for each D̃ji

xx(r);
this array is equivalent in size to φ̃j(r) and represents
the necessary second communication event described in
Sec. III C 2. Since Pi has access to ṽij(r) ∀ j ∈ L[i], this
process accumulates D̃i

xx(r) =
∑
j D̃

ij
xx(r) into a local

temporary array that is the size of the global real-space
grid; as Pi receives a given D̃ij

xx(r) array from Pj , this
quantity is also accumulated into this local temporary ar-
ray. When all D̃ij

xx(r) contributions are accounted for, this
temporary array on Pi holds the final D̃i

xx(r) according
to the ORBITAL data distribution scheme.

6. Step VI: Redistribution of Wavefunction Forces

At this stage, all of the EXX-related quantities have
been evaluated; Exx has been accumulated and broadcast
to all processes, while {D̃i

xx(r)} is stored in the ORBITAL
data distribution scheme. As such, the remaining task for
the exx module is the transformation of {D̃i

xx(r)} to the
GRID data distribution scheme for compliance with the
core functions in QE (see Sec. III B). This redistribution is
essentially the reverse operation of the GRID→ ORBITAL
redistribution of the MLWFs described in Fig. 3 and
Sec. III C 1.

At this stage, the QE executable exits the exx module
with Exx and {D̃i

xx(r)} (in the GRID data distribution
scheme) as output. These EXX-related quantities are
then added to their semi-local exchange analogs with the
appropriate EXX fraction, ax, given in Eq. (2). With the
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EXX contribution to the wavefunction (MLWF) forces,
the CPMD equations of motion are now propagated for-
ward via Eqs. (9)–(10).

IV. ACCURACY AND PERFORMANCE

During the implementation of the exx module, we
have introduced three parameters: Rpair, RPE, and RME

(see Sec. III C 2). Rpair is used to determine whether or
not two MLWFs, φ̃i(r) and φ̃j(r), are considered to be
an overlapping 〈ij〉 pair via |C̃i − C̃j | < Rpair. For all
overlapping 〈ij〉 pairs, RPE and RME are the radii of
the spherical Θ(Cij , RPE) and Θ(Cij , RME) subdomains,
which are centered at Cij and chosen to cover the product
density, ρ̃ij(r), and individual orbitals, φ̃i(r) and φ̃j(r),
respectively. In order to efficiently perform large-scale
hybrid DFT based AIMD simulations, judicious choices
for Rpair, RPE, and RME are required to balance the
performance and accuracy, and are therefore the focus
of this section. In Sec. IVA, we introduce a systematic
selection of these parameters based on user-defined er-
ror thresholds for Exx and {D̃i

xx(r)}. In Sec. IVB, we
discuss the intranode (OpenMP) and internode (MPI) par-
allel scaling performance when simulating liquid water
using our MLWF-based EXX approach on several different
supercomputer architectures.

A. Parameters and Convergence Criteria

In this section, a systematic determination of all re-
quired parameters will be demonstrated using a snapshot
from a liquid water simulation containing (H2O)64 in a
cubic cell with L = 23.52 Bohr. We begin by performing a
reference single-point energy evaluation in QE at the PBE0
level with a planewave kinetic energy cutoff of 85 Ry. In
this reference calculation (which yields Eref

xx ), we use the
largest possible values for all three parameters such that:
(i) all radially overlapping MLWF pairs are included with
|C̃i−C̃j | < Rpair = L/2 = 11.76 Bohr and (ii) both proto-
subdomains (Θ(C0, RPE) and Θ(C0, RME)) are contained
within the simulation cell (i.e., RME = L/2 = 11.76 Bohr
and RPE = L/2− nmaxa{δξa} = 11.11 Bohr). Subtrac-
tion of nmaxa{δξa} (with n = 3) from RPE allows us
to retain a thin shell of the real-space grid surrounding
Θ(C0, RPE); this shell provides the boundary conditions
for the PE and accommodates the part(s) of the dis-
cretized Laplacian stencil that extend beyond Θ(C0, RPE).
We note in passing that the energetic contributions
to Eref

xx from MLWF pairs with |C̃i − C̃j | > Rpair =
L/2 = 11.76 Bohr (within the minimum image conven-
tion) are completely negligible (i.e., 2.0× 10−5 kcal/mol
or ≈ 4.8× 10−6%).

As such, this reference calculation provides an approx-
imately exact evaluation of Exx using the exx module,
albeit at an excessive computational cost. More specif-

ically, the computational cost associated with the CG
solution of the PE in exx scales as O(N

4/3
PE ), with NPE

asymptotically growing as O(R3
PE). In the same breath,

the associated communication and memory footprint in
exx scale as O(NME), with NME asymptotically growing
as O(R3

ME). In addition, both computation and communi-
cation in exx scale as O(Npair), with Npair asymptotically
growing as O(R3

pair) (for homogeneous systems with con-
stant densities). As such, judicious choices for Rpair, RPE,
and RME are required to balance the performance and
accuracy of our algorithm (see Secs. IVA1–IVA2).
Since the number of self pairs (with i = j) is No and

the number of non-self pairs (with i 6= j) is (ñ − 1)No
(see Sec. II C), the computational cost associated with
evaluating the contribution to Exx from non-self pairs will
dominate that from self pairs when performing MLWF-
based EXX calculations. However, the energetic contri-
bution to Exx from the self pairs tends to dominate the
contribution from non-self pairs, which is primarily due to
the fact that the overlap between an MLWF and itself is
substantially larger than the overlap between an MLWF
and any one of its neighbors. In the reference calculation
described above, for example, the energetic contribution
to Eref

xx is dominated (≈ 85%) by the self pairs while
the computational cost to evaluate Eref

xx (≈ 87%) mainly
originates from the non-self pairs. Taken together, these
observations suggest that we can further balance the per-
formance and accuracy of our algorithm by employing
a larger value of RPE for the self pairs (Rs

PE, which de-
fines the Θ(C0, R

s
PE) proto-subdomain) and a smaller

value of RPE for the non-self pairs (Rns
PE, which defines

the Θ(C0, R
ns
PE) proto-subdomain). Since Rs

PE will in
general be larger than Rns

PE, we will employ the same
strategy by using a larger value of RME for the self pairs
(Rs

ME) and a smaller value of RME for the non-self pairs
(Rns

ME), which define the Θ(C0, R
s
ME) and Θ(C0, R

ns
ME)

proto-subdomains, respectively. Physically speaking, the
choice to use larger (smaller) RPE and RME values for the
self (non-self) pairs is also justified by the fact that: (i)
self MLWF-product densities (ρ̃ii(r)) have a larger sup-
port than non-self MLWF-product densities (ρ̃ij(r)) due
to the increased overlap between an MLWF and itself, and
(ii) self MLWF-product potentials (ṽii(r)) are generally
longer-ranged than non-self MLWF-product potentials
(ṽij(r)) due to the absence of a monopolar contribution
in the non-self cases (see Sec. II C).

1. Convergence of the EXX Contribution to the Energy

As an initial test, Exx will be computed using the con-
verged MLWFs obtained during the calculation of Eref

xx .
Since the effects of self-consistency are neglected in this
test (and will be investigated below), we can quickly assess
the convergence of Exx with respect to Eref

xx as a function
of Rpair, Rs

PE, and R
ns
PE (without the need for modifying

Rs
ME and Rns

ME). We do so by independently varying each
of the Rpair, Rs

PE, and Rns
PE parameters, while keeping
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all other parameters fixed at their largest possible values
(see Fig. 6). From this figure, one can immediately see
that the relative (percent) error in Exx rapidly decays as
each of these parameter values is increased. This obser-
vation can be justified by considering the fact that each
MLWF (in finite-gap systems) is exponentially localized,
and hence products of MLWFs (i.e., ρ̃ii(r) or ρ̃ij(r)) are
also exponentially localized. As such, increasing Rs

PE (or
Rns

PE) leads to spherical PE domains that increasingly
cover the exponentially decaying tails of ρ̃ii(r) (or ρ̃ij(r));
as seen in Eq. (19) (and the surrounding discussion), this
results in rapid convergence to the reference value for
Exx. Since Exx converges more quickly with Rns

PE (than
Rs

PE), this finding confirms our physical intuition that
Rs

PE > Rns
PE, and further justifies our use of separate self

and non-self proto-subdomains as a means to improving
the balance between performance and accuracy in this
algorithm. By increasing Rpair, the incremental contri-
bution to Exx from (more) distant MLWF pairs becomes
negligible as ρ̃ij(r) → 0∀ r, which also results in rapid
convergence to the reference value for Exx.
Based on this initial convergence test, we have chosen

Rpair = 8.0 Bohr, Rs
PE = 6.0 Bohr, and Rns

PE = 5.0 Bohr
as the default parameter set in QE; for EXX-based simula-
tions of liquid water, the overall relative error is ≈ 0.02%,
which is essentially additive (in each of these parameters)
and typically rather stringent when obtaining ground-
state energies, binding/cohesive energetics, and ionic
forces in the condensed phase (vide infra). To increase
the convergence of Exx, a general rule of thumb is to
first increase Rs

PE, since the self-pair contribution is the
dominant contribution to Exx, yet requires evaluation
of less terms (and is therefore significantly cheaper to
compute) than the contribution from non-self pairs. In
this example, one can further reduce the relative error in
Exx by an additional factor of two (i.e., to ≈ 0.01%) by
simply increasing Rs

PE from 6.0 Bohr to 7.0 Bohr, with
negligible (< 1%) additional computational cost.

In this convergence test, we have neglected the effects of
orbital self-consistency when determining Exx. To quan-
tify this effect, we first performed a fully self-consistent
EXX calculation using the default parameter values for
Rpair, Rs

PE, and Rns
PE determined above (while keeping

Rs
ME and Rns

ME set to the maximum reference value of
L/2 = 11.76 Bohr). In doing so, we found that the
inclusion of orbital self-consistency leads to a negligible
(< 0.01%) variation in Exx, which indicates that: (i) there
is excellent agreement between the PE and ME evalua-
tions of the far-field (beyond Rs

PE and Rns
PE) contribution

to the wavefunction forces (D̃i
xx(r)), and (ii) the default

value of Rpair is sufficient to capture all relevant overlap-
ping MLWF pairs in this system. In a non-self-consistent
calculation, the ME only provides the boundary condi-
tions for the PE, and therefore has no direct effect on
Exx, provided that Rs

ME (Rns
ME) is larger than R

s
PE (Rns

PE)
by the extent of the Laplacian stencil (i.e., nmaxa{δξa},
see Sec. IVA). In a self-consistent calculation, however,
Rs

ME and Rns
ME govern the accuracy and cost of obtaining

2 4 6 8 10 12
R (bohr)

0.00

0.02

0.04

0.06

0.08

0.10

(E
re

f
x
x
−
E

x
x
)/
E

re
f

x
x

(%
) Rpair

Rs
PE

Rns
PE

FIG. 6. Convergence of Exx as a function of Rpair, Rs
PE, and

Rns
PE on a snapshot of liquid water containing (H2O)64 in a

cubic cell with L = 23.52 Bohr. Relative errors (in %) with
respect to Eref

xx are evaluated individually by varying Rpair

(solid black line), Rs
PE (solid blue line), and Rns

PE (dashed blue
line), while keeping all other parameters set to their maximum
allowed values (see text for more details). An overall relative
error of≈ 0.02% corresponds to the default parameter values in
QE (i.e., Rpair = 8.0 Bohr, Rs

PE = 6.0 Bohr, Rns
PE = 5.0 Bohr),

and is depicted by the solid green line.

Exx via the sparse evaluation of {D̃i
xx(r)} (see Eq. (18),

Eq. (20), and the surrounding discussion); in other words,
larger values for Rs

ME and Rns
ME lead to more accurate

Exx values (via the convergence of the orbitals which is
self-consistently driven by {D̃i

xx(r)}), although this is
accompanied by a higher computational cost (as well as
communication overhead and memory footprint) during
the EXX calculation. To quantify this effect (and deter-
mine the appropriate default values for Rs

ME and Rns
ME),

we now study the convergence of {D̃i
xx(r)} with respect

to these parameters.

2. Convergence of the EXX Contribution to the
Wavefunction Forces

To study the convergence of {D̃i
xx(r)} and determine

the default values for Rs
ME and Rns

ME, use of the reference
calculation performed above (in which all parameters were
set to the largest possible values) is inconvenient as it
lacks the flexibility to vary Rs

ME and Rns
ME (as these pa-

rameters must be larger than Rs
PE and Rns

PE to provide
the boundary conditions for the PE). Since the use of the
default parameter values for Rpair, Rs

PE, and R
ns
PE (with

Rs
ME and Rns

ME each set to the maximum reference value
of L/2 = 11.76 Bohr) reproduces Eref

xx with negligible
error (i.e., to within 0.02%), we will base our convergence
tests on this as our new reference calculation. As an ini-
tial test, {D̃i

xx(r)} will be computed using the converged
MLWFs and {D̃i,ref

xx (r)} obtained during this new refer-
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ence calculation. Since the effects of self-consistency are
neglected in this test (and will be investigated below),
we can quickly assess the convergence of {D̃i

xx(r)} with
respect to {D̃i,ref

xx (r)} as a function of Rs
ME and Rns

ME.
We do so by independently varying the Rs

ME and Rns
ME

parameters, while keeping all other parameters (Rpair,
Rs

PE, and R
ns
PE) fixed at their default values (see Fig. 7).

By employing this new reference calculation, Rs
ME can

now be varied from 7.65 Bohr (i.e., Rs
PE + nmaxa δξa)

to a maximum value of L/2 = 11.76 Bohr, and Rns
ME can

be varied from 5.65 Bohr (i.e., Rns
PE + nmaxa δξa) to a

maximum value of L/2 = 11.76 Bohr. To quantify the
error in {D̃i

xx(r)}, we will utilize the relative L1-norm for
each D̃i

xx(r):

γixx ≡
∫

dr
∣∣∣D̃i,ref

xx (r)− D̃i
xx(r)

∣∣∣∫
dr
∣∣∣D̃i,ref

xx (r)
∣∣∣ , (36)

which can then be averaged over MLWFs to furnish the
following convergence metric:

γxx =
1

No

∑
i

γixx. (37)

From Fig. 7, one can again see that the relative (per-
cent) error in {D̃i

xx(r)} rapidly decays as each of these
parameter values is increased. Since γxx converges more
quickly with Rns

ME (than Rs
ME), this finding also confirms

our physical intuition that Rs
ME > Rns

ME, and further justi-
fies our use of separate self and non-self proto-subdomains
as a means to improving the balance between performance
and accuracy in this algorithm. As discussed above in
Secs. II C and IVA, this results from the fact that self
MLWF-product potentials (ṽii(r)) are generally longer-
ranged than non-self MLWF-product potentials (ṽij(r))
due to the absence of a monopolar contribution in the
non-self cases. Since the cost of our algorithm (i.e., compu-
tation, communication, and memory) is dominated by the
non-self contributions and scales cubically with Rns

ME, it is
preferable to choose the smallest possible value for this pa-
rameter. The plots depicted in Fig. 7 clearly suggest that
Rns

ME is converged for R & 7.0 Bohr and (the noticeably
slower) Rs

ME only begins to plateau for R & 10.0 Bohr.
When used in conjunction with the default parameter val-
ues for Rpair, Rs

PE, and R
ns
PE determined above, parameter

values of Rs
ME = 10.0 Bohr and Rns

ME = 7.0 Bohr lead to
an overall relative error of γxx ≈ 0.2% for this snapshot of
liquid water. To see how this γxx ≈ 0.2% error translates
into the final value of Exx, we again performed a fully self-
consistent EXX calculation on this (H2O)64 snapshot; in
doing so, we found that the use of these parameter values
leads to a completely negligible error (≈ 10−7%) in Exx.
We further note that a number of EXX-based CPMD
simulations of solid and liquid aqueous systems have been
performed by our group using these parameter values; in
all cases, we have found that the appropriate constant of
motion was reasonably maintained. As such, we have set
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FIG. 7. Convergence of {D̃i
xx(r)} (via the γxx metric defined

in Eqs. (36) and (37)) as a function of Rs
ME and Rns

ME on a
snapshot of liquid water containing (H2O)64 in a cubic cell
with L = 23.52 Bohr. Relative errors (in %) with respect to
{D̃i,ref

xx (r)} are evaluated by varying Rs
ME (solid red line) and

Rns
ME (dashed red line), while keeping all other parameters

(Rpair, Rs
PE, Rns

PE) set to their default values in QE (see text
for more details). An overall relative error of ≈ 0.2% (with
a standard deviation of ±0.03%) corresponds to the default
parameter values in QE (Rs

ME = 10.0 Bohr, Rns
ME = 7.0 Bohr),

and is depicted by the solid (dashed) green line.

Rs
ME = 10.0 Bohr and Rns

ME = 7.0 Bohr (in addition to
Rpair = 8.0 Bohr, Rs

PE = 6.0 Bohr, and Rns
PE = 5.0 Bohr)

as the default parameters used in QE.

As seen above for Rs
PE, one can further reduce γxx by

an additional factor of two (i.e., to ≈ 0.1%) by increas-
ing Rs

ME from 10.0 Bohr to 11.0 Bohr, with negligible
(< 1%) additional computational cost; for sufficiently
large simulation cells, increasing Rs

ME is therefore another
efficient way to improve the accuracy of the EXX calcu-
lation. Even with Rs

ME = 11.0 Bohr, however, one can
still observe a finite slope in the tail of the Rs

ME curve in
Fig. 7. This is an artifact of performing this convergence
test on (H2O)64, and a stricter convergence of γxx with
Rs

ME would be observed when using a larger simulation
cell. To estimate the effect of this artifact on γxx, we
performed an exponential fit (with R2 > 0.9999) to the
Rs

ME curve, and found that the residual error in γxx (i.e.,
that was caused by truncating Rs

ME to L/2 = 11.76 Bohr)
is ≈ 0.1%. Based on the self-consistency test described
above, we expect that this residual error in γxx would
only lead to a negligible (≈ 10−7%) error in Exx for our
(H2O)64 test system; when treating similarly sized (or
slightly smaller) systems, we recommend that users quan-
tify this truncation error and potentially set Rs

ME to the
largest possible value (i.e., Rs

ME = L/2).
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3. Transferability of the Default EXX Parameters

To provide an alternative gauge for the 0.02% and 0.2%
error thresholds in Exx and {D̃i

xx(r)}, we also considered
the errors in the binding energy and ionic forces in this
(H2O)64 snapshot by comparing the results obtained with
the default and reference (i.e., Rpair = Rs

ME = Rns
ME =

L/2 = 11.76 Bohr and Rs
PE = Rns

PE = 11.11 Bohr, see
Sec. IVA) parameter sets. For the binding energy (per
H2O molecule), we found an error of 0.04 kcal/mol us-
ing the default parameters in exx, which is comparable
to the typical pseudopotential error. For the 3N ionic
force components (with N being the number of atoms),
the default parameter set leads to a mean absolute er-
ror of 6.2 × 10−5 Ha/Bohr and a maximum absolute
error of 2.5 × 10−4 Ha/Bohr, which is approximately
half of the default convergence criteria used during struc-
tural/geometry optimizations in QE. Taken together, all
of these tests strongly indicate that the default parameter
values in exx are more than adequate when performing
EXX calculations on systems like liquid water.
We note in passing that our choice to treat self (〈ii〉)

and overlapping non-self (〈ij〉) MLWF pairs differently
using the Θ(C0, R

s
PE) and Θ(C0, R

ns
PE) proto-subdomains

is only the first step towards exploiting the concept of
variable-size subdomains during MLWF-based EXX cal-
culations. By using a single set of Rs

PE and Rns
PE values,

this choice is particularly well-suited for condensed-phase
systems characterized by a narrow distribution of MLWF
spreads (e.g., liquid water, wherein each H2O molecule
has a set of four similarly localized MLWFs). As such,
we expect that the chosen default parameter values deter-
mined above for bulk liquid water will yield similar errors
in Exx and {D̃i

xx(r)} for systems with similarly large band
gaps. For systems with smaller gaps (and hence more
diffuse MLWFs), one would need to use more stringent
parameter values to obtain a similar level of accuracy;
as such, a series of test calculations (in analogy to those
above) should be run to determine the optimal Rs

PE and
Rns

PE values prior to performing large-scale production
AIMD simulations. For systems with a wider distribution
of MLWF spreads (due to a smaller band gap and/or a
more heterogeneous environment), our current algorithm
would be forced to sacrifice computational efficiency for
accuracy (vide infra), since Rs

PE and Rns
PE (as well as

Rs
ME and Rns

ME) would need to be large enough to provide
sufficient cover for the most diffuse MLWF in the system
(and would therefore be overkill for MLWFs with substan-
tially smaller spreads). As pointed out by Dawson and
Gygi,91 this issue is particularly important in small-gap
heterogeneous condensed-phase systems, such as solvated
semiconducting nanoparticles and water-semiconductor
interfaces.
Although the current implementation of exx would

sacrifice efficiency when applied to such challenging cases,
we would still argue that the algorithmic framework of
exx is general enough to perform accurate hybrid DFT
based CPMD simulations of finite-gap systems. While

certain hacks can be used to ameliorate the efficiency
degradation in these cases, we have chosen to focus on
a comprehensive revision of our algorithm that will ex-
plicitly account for the MLWF-orbital (Ωi) and MLWF-
product (Ωij) domains introduced in Sec. II C. Inspired
by the work of Gygi and coworkers,79,80,91 we are cur-
rently working on a significantly more efficient (vide infra)
β-version of exx in which each MLWF will have a spread-
dependent Ωi and each overlapping 〈ij〉 pair will have
a overlap-dependent Ωij . As such, MLWFs with larger
spreads will automatically be treated more accurately
without sacrificing computational efficiency for MLWFs
with smaller spreads. In addition, more distant MLWF
pairs will have smaller MLWF-product domains by con-
struction due to the overlap dependence in Ωij = Ωi ∩Ωj .
In doing so, we expect that the β-version of exx will
be a single EXX algorithm that is general enough to ac-
curately and efficiently handle condensed-phase systems
ranging from large-gap homogeneous systems like liquid
water (with a narrow distribution of MLWF spreads) to
small-gap heterogeneous systems like solvated semicon-
ducting nanoparticles (with a wide distribution of MLWF
spreads). When paired with an orbital localization scheme
that can appropriately treat small-to-vanishing band gap
systems,113,114 we expect that the β-version of this al-
gorithm will also be an important step towards treating
large-scale metallic systems with screened and/or range-
separated exchange.49,62,132–136

4. Tight Convergence to the Electronic Ground State

While exx is designed to perform efficient AIMD sim-
ulations, this module can also be adapted to evaluate
precise ground state energetics (e.g., to within an uncer-
tainty of ∆E < 10−8 Ha), which are needed for property
evaluations, numerical phonon calculations, etc. In or-
der to achieve tight convergence to the electronic ground
state using exx, the default convergence criteria used
during the CG solution to the PE (exx_poisson_eps
= 10−6 au) and the nested SODD optimization of the
Marzari-Vanderbilt functional (tolw = 10−8 au) must
be tightened accordingly. Doing so minimizes the noise
in the force acting on {φ̃i(r)} ({D̃i(r)} in Eq. (26)), and
reduces oscillatory behavior in the energy profile during
the SODD-based SCF procedure.

B. Parallel Scaling and Performance

As demonstrated above in Sec. IVA, judicious choices
for the five parameter values in exx allow one to evaluate
all EXX-related quantities with a high level of accuracy.
To enable large-scale EXX-based AIMD simulations using
this approach, we employ a hybrid MPI/OpenMP paral-
lelization scheme that allows us to minimize the walltime
cost (i.e., time to solution) by exploiting both internode
and intranode computational resources provided by mas-
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sively parallel supercomputer architectures (see Sec. III).
Here, we remind the reader that our massively parallel
implementation of exx seamlessly distributes the major
computational workload across thousands of MPI pro-
cesses. Within each MPI process, the CG-based PE solver
is further parallelized over OpenMP threads. The scal-
ing and performance of the internode (MPI, first level)
and intranode (OpenMP, second level) levels in our hybrid
parallelization scheme were evaluated by performing large-
scale simulations of liquid water with exx on the IBM
Blue Gene/Q platform (Mira), and will be discussed below
in Secs. IVB 1 and IVB2, respectively. In Sec. IVB 3, the
computational performance of exx will also be considered
on the Cori Haswell and KNL architectures.

1. Internode Parallelization via MPI

For the first level of parallelization, the exx module
employs internode MPI communication to distribute the
computational workload associated with a given EXX
calculation across (many) thousands of compute nodes.
To critically assess the computational performance of
this parallelization level, which is at the very heart of
our massively parallel algorithm, we performed a strong-
scaling analysis (i.e., by varying the number of processing
elements for a fixed problem size) and a weak-scaling
analysis (i.e., by varying the problem size for a fixed
ratio of problem size to number of processing elements).
To investigate the strong and weak scaling of exx, we
performed a series of 12 different EXX-based CPMD
simulations of liquid water, in which (i) the problem
(system) size was varied to include Nwater = 64, 128, 256
water molecules (each with No = 4 × Nwater MLWFs),
and (ii) the number of processing elements (Nproc MPI
processes) was varied via ζ = Nproc/No = 1/2, 1, 2, 4. In
these calculations, we used one MPI process per node on
the Mira IBM Blue Gene/Q platform, and used all of
the 64 hyperthreads available per node for the intranode
OpenMP parallelization.

Initial structures for (H2O)64, (H2O)128, and (H2O)256
were systematically generated using the following proce-
dure: (i) randomly packing Nwater = 64, 128, 256 water
molecules into simple cubic unit cells with lattice parame-
ters chosen to match the targeted density of 0.993 g/cm3;
(ii) equilibrating each of these randomly packed struc-
tures via MD simulations in the NV T ensemble us-
ing the TIP4P2005 force field146 at 300 K for 1.0 ns
in GROMACS;147 (iii) further equilibrating each of the
TIP4P2005 structures via CPMD simulations in the NV T
ensemble using the PBE0 hybrid xc functional58,142 at
330 K for ≈ 250 fs (i.e., 500 CPMD steps). The com-
putational timings reported herein are meant to reflect
the walltime spent during EXX-based CPMD simulations
in the NV T ensemble, and were therefore averaged over
50 additional CPMD steps starting from the equilibrated
structures obtained using this three-step procedure. Here
we note that the TIP4P2005 MD simulations performed

in step (ii) were used to equilibrate the intermolecular
degrees of freedom in these systems, and the additional
CPMD simulations performed in step (iii) were used to
ensure that the intramolecular degrees of freedom (i.e.,
the OH bonds and HOH angles) were equilibrated at the
PBE0 level. Since the temperature of these systems will
rapidly increase once the rigid-molecule TIP4P2005 con-
straint is lifted, this additional CPMD equilibration step is
important when determining a representative average for
the walltime cost during EXX-based CPMD simulations
in the NV T ensemble. During the CPMD simulations
(i.e., the 500 equilibration steps and subsequent 50 produc-
tion steps), the temperature (of the ions) was controlled
using massive Nosé-Hoover thermostats, each with a chain
length of 4.148,149 The nuclear and electronic degrees of
freedom were integrated using the standard Verlet algo-
rithm and a time step of 2.0 au (≈ 0.05 fs); to ensure a
clear adiabatic separation between the electronic and nu-
clear degrees of freedom during the CP dynamics, we used
a fictitious electronic mass of 100 au and the nuclear mass
of deuterium for each hydrogen atom. Interactions be-
tween the valence electrons and the ions (consisting of the
nuclei and their corresponding frozen-core electrons) were
treated using the Hamann-Schlüter-Chiang-Vanderbilt
(HSCV) type norm-conserving pseudopotentials150,151 dis-
tributed with the Qbox package.152 The valence electronic
pseudo-wavefunctions were expanded in a planewave basis
set which includes planewaves with a kinetic energy up
to 85 Ry. Mass preconditioning was applied to all Fourier
components of the electronic pseudo-wavefunctions with
a kinetic energy above 25 Ry.140 To enable distributed
storage of all real-space quantities according to the GRID
data distribution scheme in QE (see Fig. 3), the real-space
(and simple-cubic) grids utilized in these calculations
were partitioned into Nslab = 140, 176, 220 slabs along
the z-direction for (H2O)64, (H2O)128, and (H2O)256, re-
spectively. All computational timings were generated
using an in-house development version of QE (based on
v5.0.2).153

Computational timings for each of these 12 CPMD sim-
ulations of liquid water at the hybrid PBE0 level on Mira
are presented in Table I. In this table, all timings have
been averaged over 50 CPMD steps and are reported (in
s/step) for the following four QE modules: (i) the walltime
associated with the underlying GGA calculation (〈tGGA〉);
(ii) the walltime associated with MLWF localization be-
tween each CPMD step via nested SODD optimization of
the Marzari-Vanderbilt functional (〈tMLWF〉, see Eq. (29));
(iii) the walltime spent in the exx module (〈texx〉, see
Fig. 2); and (iv) the total walltime associated with a
given CPMD step (〈tTotal〉).145 To ensure a fair compar-
ison between 〈tGGA〉 and 〈texx〉, the underlying GGA
calculation utilized all MPI processes available to the exx
module. This was accomplished using an existing two-tier
parallelization scheme in QE, which allows for a com-
putationally efficient execution of the fwdFFT/invFFT
operation (i.e., a typical bottleneck during GGA-based
CPMD simulations). The first parallelization tier takes
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TABLE I. Computational timings profile for CPMD simulations of liquid water at the hybrid PBE0 level on the Mira IBM
Blue Gene/Q platform using the exx module in QE. Parameters include: (i) the system size, which was varied to include
Nwater = 64, 128, 256 water molecules (each with No = 4×Nwater MLWFs); (ii) the number of MPI processes (Nproc), which
was varied to cover ζ = Nproc/No = 1/2, 1, 2, 4; and (iii) the level of task-group parallelization in QE, which was varied to include
Ntg = 1, 2, 4, 8, 16 task groups (see below and text for more details). All timings have been averaged over 50 CPMD steps, and
are reported (in s/step) for the following QE modules: 〈tGGA〉, the walltime associated with the underlying GGA calculation;
〈tMLWF〉, the walltime associated with optimizing the Marzari-Vanderbilt functional (i.e., to localize the MLWFs between CPMD
steps as shown in Eq. (29)); 〈texx〉, the walltime spent in the exx module; and 〈tTotal〉, the total walltime associated with a
given CPMD step.145 To gauge the reproducibility of these timings, each CPMD simulation was run in triplicate; the observed
fluctuations were always smaller than the precision reported (i.e., < 10−2 s) and were not included in the table. Also shown is
the ratio, 〈texx〉 / 〈tGGA〉, demonstrating that the walltime required to perform EXX-based CPMD simulations with the exx
module are approximately 1−3× that of the underlying GGA. All 〈texx〉 timings were further broken down into the walltime
dedicated to computation events (〈tcomp

exx 〉), communication overhead (〈tcomm
exx 〉), and processor idling (〈tidleexx 〉); the corresponding

fractions of the 〈texx〉 walltime (fcomp
exx , fcomm

exx , and f idle
exx ) were reported as percentages (in %). All timings reflect the fact that

one MPI process was executed per node on Mira, and all 16 physical cores (up to 64 hyperthreads) per node were used for the
intranode OpenMP parallelization. To utilize all available MPI processes during the underlying GGA calculation, Ntg = 2n ≥ 1
was set to the maximum possible value such that Ntg ×Nslab ≤ Nproc (see text for more details).

Parameters QE Module Timings Breakdown of texx
Nwater No Nproc ζ Ntg 〈tGGA〉 〈tMLWF〉 〈texx〉 〈tTotal〉 〈texx〉

〈tGGA〉
〈tcomp
exx 〉 (fcomp

exx ) 〈tcomm
exx 〉 (fcomm

exx ) 〈tidleexx 〉 (f idle
exx )

64 256 128 1/2 1 2.81 0.16 7.34 10.31 2.6 4.07 (55.4) 0.96 (13.1) 2.31 (31.5)
64 256 256 1 1 1.97 0.17 3.83 5.97 1.9 2.05 (53.4) 0.52 (13.5) 1.27 (33.1)
64 256 512 2 2 1.02 0.16 2.74 3.92 2.7 1.06 (38.9) 0.39 (14.3) 1.28 (46.8)
64 256 1024 4 4 0.63 0.16 1.70 2.49 2.7 0.54 (32.0) 0.37 (21.6) 0.79 (46.5)
128 512 256 1/2 1 5.19 1.43 8.27 14.89 1.6 4.60 (55.6) 1.21 (14.7) 2.46 (29.8)
128 512 512 1 2 2.64 0.43 4.35 7.42 1.7 2.35 (54.1) 0.64 (14.8) 1.36 (31.2)
128 512 1024 2 4 1.57 0.41 3.04 5.02 1.9 1.25 (41.0) 0.51 (16.9) 1.28 (42.1)
128 512 2048 4 8 0.96 0.41 1.96 3.33 2.0 0.67 (34.4) 0.48 (24.8) 0.80 (40.9)
256 1024 512 1/2 2 6.39 2.77 8.34 17.50 1.3 4.19 (50.2) 1.58 (18.9) 2.57 (30.8)
256 1024 1024 1 4 3.59 1.20 4.80 9.59 1.3 2.23 (46.5) 1.11 (23.2) 1.46 (30.4)
256 1024 2048 2 8 2.23 1.13 3.33 6.69 1.5 1.26 (38.0) 0.76 (22.9) 1.30 (39.1)
256 1024 4096 4 16 1.59 1.08 2.41 5.08 1.5 0.77 (31.9) 0.82 (34.2) 0.82 (33.9)

advantage of the fact that the real-space grid has been
partitioned into Nslab slabs along the z-direction (with
each slab distributed to a particular MPI process); this al-
lows one to split the 3D fwdFFT and invFFT operations
into 2D intra-slab FFT operations (which are executed
in parallel without the need for additional communica-
tion) and 1D inter-slab FFT operations (which are also
executed in parallel, but require communication among
the pool of MPI processes). At the first tier, the under-
lying GGA calculation can utilize up to Nproc = Nslab

MPI processes. To enable the use of Nproc > Nslab MPI
processes (when available), the second parallelization tier
(i.e., task-group parallelization) is employed to further
distribute the independent 3D FFT operations associated
with the No orbitals. At the second tier, Ntg = 2n ≥ 1
can be set to the maximum possible value such that
Ntg × Nslab ≤ Nproc, thereby enabling the underlying
GGA calculation to utilize up to Nproc = Ntg × Nslab

MPI processes. We note in passing that the scalability of
task-group parallelization depends on the communication
bandwidth, and will often deteriorate when Ntg � 4. By
using this approach, the underlying GGA calculation is
able to utilize the pool of available MPI processes, thereby
ensuring a reasonably fair comparison between the 〈tGGA〉
and 〈texx〉 timings.

In the QE module timings in Table I, we observed that

the exx module is still the overall bottleneck during
hybrid DFT based CPMD simulations. By exploiting
both the natural sparsity of the exchange interaction
and our massively parallel implementation, the walltime
cost to evaluate all EXX-related quantities is compara-
ble to that of the underlying GGA (i.e., 〈texx〉 / 〈tGGA〉
is now within the range of ≈ 1–3). We further stress
that this ratio steadily decreases with increasing system
size due to the more favorable scaling of the exx mod-
ule (see below). Since the exx module requires ML-
WFs (and the underlying GGA does not), we now dis-
cuss the additional cost needed to perform the nested
SODD optimization of the Marzari-Vanderbilt functional
(〈tMLWF〉) between each CPMD step. In all CPMD simula-
tions performed herein, this MLWF refinement procedure
(see Sec. IIIA) only required 3–4 SODD steps (on aver-
age) per CPMD step. As such, 〈tMLWF〉 only represents
a minor contribution to 〈tTotal〉 for systems containing
< 500 atoms (e.g., (H2O)64 and (H2O)128). For larger
systems (e.g., (H2O)256), 〈tMLWF〉 can become quite sub-
stantial (≈ 10−20% of 〈tTotal〉) as the MLWF procedure
requires cubic-scaling matrix operations. As such, a more
efficient MLWF localization procedure (which takes ad-
vantage of the sparsity of the MLWFs) will be required
to efficiently utilize the exx module for system sizes that
are significantly larger than (H2O)256.
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FIG. 8. Strong-scaling analysis of the MPI internode par-
allelization level in exx during CPMD simulations of liq-
uid water at the hybrid PBE0 level on the Mira IBM Blue
Gene/Q platform. For a fixed system size (i.e., (H2O)64
(red line), (H2O)128 (green line), and (H2O)256 (blue line)),
the walltime spent in the exx module (〈texx〉 in s/step, av-
eraged over 50 CPMD steps) is plotted versus the num-
ber of MPI processes (Nproc), which were varied to include
ζ = Nproc/No = 1/2, 1, 2, 4. For reference, ideal strong-scaling
timings were plotted as dashed lines for each system size, and
were computed with respect to the corresponding ζref = 1/2
timings. Pie plots were used to illustrate the fraction of 〈texx〉
dedicated to computation events (fcomp

exx , colored), communi-
cation overhead (fcomm

exx , black), and processor idling (f idle
exx ,

white).

Based on the timings in Table I, we assessed the strong-
scaling behavior of the exx module by analyzing how
〈texx〉 changes as the number of processing elements was
varied for a fixed problem size. This was accomplished
by changing ζ = Nproc/No = 1/2, 1, 2, 4 when simulating
(H2O)64, (H2O)128, and (H2O)256 (see Fig. 8). For each
system size, we computed the strong-scaling efficiency via

ηstrong
MPI (ζ) ≡

ζref · 〈texx〉ζref
ζ · 〈texx〉ζ

=

1
2 · 〈texx〉ζ=1/2

ζ · 〈texx〉ζ
, (38)

in which ζref = 1/2 was chosen as the reference (or baseline)
ζ value (as this represents a realistic computational setup)
and 〈texx〉ζ is the walltime spent in the exx module for
a given ζ. When averaged over all three systems, we find
that ηstrong

MPI decreases to ≈ 93% (ζ = 1), ≈ 66% (ζ = 2),
and ≈ 50% (ζ = 4) as the number of processing elements
is increased (see below for a more detailed discussion).
For even higher ζ, the number of MPI processes becomes
comparable to the number of overlapping 〈ij〉 pairs; as
such, ηstrong

MPI is expected to deteriorate even further for
ζ � 4.
Based on the timings in Table I, we also assessed the

weak-scaling behavior of the exx module by analyzing
how 〈texx〉 changes as the problem (system) size was
varied for a fixed ratio of problem size to number of
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FIG. 9. Weak-scaling analysis of the MPI internode par-
allelization level in exx during CPMD simulations of liquid
water at the hybrid PBE0 level on the Mira IBM Blue Gene/Q
platform. For a fixed ratio of system size to number of process-
ing elements (i.e., ζ = 1/2 (red line), ζ = 1 (green line), ζ = 2
(blue line), and ζ = 4 (magenta line)), the walltime spent in
the exx module (〈texx〉 in s/step, averaged over 50 CPMD
steps) is plotted versus the system size, which was varied to
include Nwater = 64, 128, 256 water molecules. For reference,
ideal weak-scaling timings were plotted as dashed lines for
each ζ, and were computed with respect to the corresponding
(H2O)64 timings. Pie plots were again used to illustrate the
fraction of 〈texx〉 dedicated to computation events (fcomp

exx , col-
ored), communication overhead (fcomm

exx , black), and processor
idling (f idle

exx , white).

processing elements. This was accomplished by consid-
ering (H2O)64, (H2O)128, and (H2O)256 for fixed values
of ζ = Nproc/No ∈ {1/2, 1, 2, 4} (see Fig. 9). For each ζ
value, we computed the weak-scaling efficiency via

ηweak
MPI (Nwater) ≡

〈texx〉Nref
water

〈texx〉Nwater

=
〈texx〉Nwater=64

〈texx〉Nwater

, (39)

in which N ref
water = 64 was chosen as the reference (or

baseline) system size (as this represents a realistic compu-
tational setup) and 〈texx〉Nwater

is the the walltime spent
in the exx module for a given Nwater. When averaged
over all four ζ values, we find that ηweak

MPI decreases to
≈ 89% (Nwater = 128) and ≈ 81% (Nwater = 256) as the
system size is increased. As shown in Fig. 9, the exx
module is quite scalable as the system size is increased,
and the time-to-solution can be kept (relatively) constant
for systems as large as (H2O)256 provided that a consis-
tent (i.e., fixed ζ) amount of computational resources are
available (see below for a more detailed discussion).
Despite the fact that the strong- and weak-scaling

efficiencies of the exx module are not perfect, our al-
gorithm is still able to furnish all EXX-related quanti-
ties in ≈ 2.4 s for the largest system considered herein,
i.e., (H2O)256 with ζ = 4. As such, the exx module
in QE enables relatively long (e.g., 10–100 ps) CPMD
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simulations for large-scale condensed-phase systems con-
sisting of 500−1000 atoms at the hybrid DFT level of
theory. Quite interestingly, the overall cost of the exx
module in this case (see Table I and Figs. 8–9) can
be decomposed into roughly equal contributions from
computation (f comp

exx ≡ 〈tcomp
exx 〉 / 〈texx〉 ≈ 1/3), commu-

nication (f comm
exx ≡ 〈tcomm

exx 〉 / 〈texx〉 ≈ 1/3), and idling
(f idle

exx ≡ 〈tidle
exx〉 / 〈texx〉 ≈ 1/3). This breakdown of 〈texx〉

demonstrates that the exx algorithm is not computa-
tion bound (as one might expect for the relatively large
number of computation events required for hybrid DFT).
As discussed below, there still remains significant room
for algorithmic improvements which would combat the
relatively high cost associated with the communication
overhead and processor idling, both of which are currently
under development by our group and will be the topic
of future work. When combined with state-of-the-art
preconditioners during the CG solution of the PE (which
are also under intense development by our group), the
computational cost of the current exx algorithm can be
significantly sped up, which would further enable hybrid
DFT-based AIMD simulations of large-scale condensed-
phase systems across sufficiently longer timescales.

Computation Events. When further breaking down
the computation events in the exx module (see Fig. 2)
that contribute to 〈tcomp

exx 〉, we find that the computa-
tional costs associated with Step IV (Solution of
Poisson’s Equation) and Step V (Computation
of Energy and Forces) scale nearly ideally with
Nproc (e.g., ηstrong

MPI > 90%) and Nwater (e.g., ηweak
MPI >

99%). However, the computational effort in Step II
(Construction of Pair List) required for deter-
mining the unique pair list (see Fig. 4 and Sec. III C 2)
was implemented in serial (in the current version of the
exx module) and does not scale with Nproc. In addition,
the computational cost associated with Step II grows
quadratically with system size (O(N2

o )); although this
step is quite cheap for smaller system sizes (e.g., (H2O)64
and (H2O)128), this cost can become more substantial
for larger systems (e.g., (H2O)256). As a result, Step II
(in its current form) leads to some of the deterioration
(particularly for (H2O)256) seen in ηstrong

MPI and ηweak
MPI (see

Figs. 8–9). In future versions of exx, we plan to miti-
gate this unnecessary computational cost by parallelizing
Step II over MPI processes and using a Verlet list (which
will be updated periodically throughout a given CPMD
simulation) to avoid unnecessary consideration of distant
MLWF pairs; as such, these improvements will increase
both the strong- and weak-scaling efficiencies of exx. Al-
though Step IV does scale nearly ideally with Nproc and
Nwater, the computational cost associated with solving
the PE for each overlapping 〈ij〉 pair still remains the
dominant contribution to 〈tcomp

exx 〉. In the near future, we
plan to significantly reduce this primary source of com-
putational effort by using more sophisticated guesses (for
ṽij(r)) in conjunction with novel preconditioners during
the CG solution of the PE. An additional future direction
to overcome this computational hurdle might also involve

offloading all computation events (not necessarily limited
to the solution of the PE) to graphical processing units
(GPUs), which provide significantly higher computational
throughput than CPUs.

Communication Overhead. In addition to the computa-
tion events described above, the communication overhead
in Fig. 2 also contributes to the degradation of ηstrong

MPI and
ηweak
MPI observed in Figs. 8–9. Here, this non-ideal scaling

behavior mainly originates from: (i) the sending/receiving
of MLWFs ({φ̃i(r)}) in Step III (Communication of
MLWFs) and the sending/receiving of wavefunction forces
({D̃i

xx(r)}) at the conclusion of Step V (Computation
of Energy and Forces), as well as (ii) the redis-
tribution of {φ̃i(r)} in Step I (Redistribution of

MLWFs) and the redistribution of {D̃i
xx(r)} in Step VI

(Redistribution of Wavefunction Forces). In
this regard, the former is more important for relatively
smaller systems (e.g., (H2O)64 and (H2O)128) employing
fewer processing elements (e.g., ζ = 1/2 and ζ = 1) due
to the fact that each MPI process needs to send/receive
significantly more MLWFs and wavefunction forces (see
Secs. III C 3 and IIIC 5). In the same breath, the latter
dominates for larger systems (e.g., (H2O)256) employing
more processing elements (e.g., ζ = 2 and ζ = 4) due
to the ALL-TO-ALL communication events in Steps I
and VI (see Fig. 3, and Secs. III C 1 and IIIC 6). As
a result, these communication events lead to a notice-
able upward tilt in the strong- and weak-scaling curves
in Figs. 8–9, which is particularly evident in the large
system and ζ limit. To attack the communication over-
head associated with the sending/receiving of {φ̃i(r)}
and {D̃i

xx(r)}, we plan to implement an asynchronous
(non-blocking) communication protocol that will overlap
with the computation events in Steps IV–V. By doing so,
the serial communication–computation–communication
process in Steps III–V (i.e., communication of {φ̃i(r)},
followed by the solution of the PE for all overlapping
pairs and computation of the 〈ij〉 contribution to Exx

and {D̃i
xx(r)}, followed by communication of {D̃ij

xx(r)})
can be overlapped to effectively mask the communication
overhead (see the right panel of Fig. 4). To attack the com-
munication overhead associated with the redistribution of
{φ̃i(r)} and {D̃i

xx(r)}, we plan to exploit the locality of
the MLWFs by only performing the redistribution based
on the compact supports of each MLWF. By doing so, this
algorithmic improvement has the potential to completely
eliminate the unnecessary ALL-TO-ALL communication
events in Steps I and VI, which would significantly re-
duce the communication overhead in the exx module.
As an added bonus, this approach would also allow for a
more accurate evaluation of {D̃ij

xx(r)} on Ωj via Eq. (20),
thereby eliminating any residual error in the wavefunction
forces (see Fig. 7). In addition to the above strategies,
we also plan to port the exx module to parallel GPU
architectures (e.g., with NVLink technology), which will
allow us to exploit faster peer-to-peer connections and
further reduce the communication overhead.
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Processor Idling. The last and most critical issue that
limits the strong- and weak-scaling efficiency in the exx
algorithm is processor idling due to workload imbalance.
This imbalance mainly originates from: (i) the imperfect
distribution of overlapping 〈ij〉 pairs across the pool of
MPI processes (see Fig. 4 and Sec. III C 2), and (ii) the
variability in the number of CG steps required during the
solution of the PE for each overlapping 〈ij〉 pair. In the
current exx module, these issues are primarily due to the
static load-balancing algorithm described in Sec. III C 2,
which assumes that the computational workload (i.e., the
number of CG steps) associated with the solution of the
PE is equivalent for each 〈ij〉 pair, and limits this com-
putation to the Pi or Pj MPI processes only (and not Pk
for example). To attack the processor idling, we plan to
remove these limitations by employing a task-based load-
balancing algorithm which will account for the workload
imbalance using a dynamic scheduler, and has the flexibil-
ity to assign (and even reassign) a given 〈ij〉 task to any
available MPI process. In addition to the load-balancing
algorithm, we also plan to implement more intelligent
initial guesses for ṽij(r) (to aid in the convergence of the
CG solution to the PE) as well as the aforementioned
asynchronous communication protocol (which will overlap
with the computational events in Step IV), and expect
that both of these algorithmic improvements will also
mitigate the processor idling in the exx module. The
current exx module also faces challenges associated with
processor idling when there is an inherent workload im-
balance (in the number of overlapping pairs per MLWF)
due to the physical nature of the problem, i.e., the (in-
herent and transient) heterogeneity present in systems
containing interfaces as well as disordered systems (like
liquids). To balance the workload in such heterogeneous
systems, one could employ a different parallelization level
for each MLWF (i.e., ζ = ζ(i)), which would allow the
exx module to dynamically adopt the number of process-
ing elements dedicated to a given MLWF based on its
number of overlapping 〈ij〉 pairs.

2. Intranode Parallelization via OpenMP

Within each MPI process, the exxmodule uses OpenMP
threading to further parallelize the following operations
for each overlapping 〈ij〉 pair: (i) the CG solution of
the PE for the near-field ṽij(r) (Step IV in Fig. 2), (ii)
the multipole expansion for the far-field ṽij(r) (Step IV),
and (iii) other (less computationally intensive) operations
(e.g., proto-subdomain construction in Step II, {φ̃i(r)}
loading/off-loading in Step III, and Exx integration in Step
V). To critically assess the strong-scaling performance of
the intranode OpenMP parallelization (in analogy to the
internode MPI parallelization in Sec. IVB1), we ana-
lyzed how 〈tStep IV〉 (the typical computational bottleneck
in the exx module) changes as the number of OpenMP
threads (Nthread) was varied during a CPMD simulation
of (H2O)64 with ζ = 1. To maintain a consistent intern-
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FIG. 10. Strong-scaling analysis of the OpenMP intranode par-
allelization level in exx during CPMD simulations of (H2O)64
at the hybrid PBE0 level on the Mira IBM Blue Gene/Q plat-
form. For a fixed system and basis set size (i.e., (H2O)64 with a
planewave kinetic energy cutoff of 85 Ry (blue line) and 150 Ry
(red line)), the speedup in the walltime spent in Step IV: Solu-
tion of Poisson’s Equation of Fig. 2 (〈tStepIVexx 〉, averaged over
50 CPMD steps) is plotted versus the number of physical cores,
which were varied to include Nthread = Ncore = 1, 2, 4, 8, 16.
Beyond the maximum number of physical cores (Ncore = 16)
per node on Mira, the OpenMP intranode parallelization level
can further utilize hyperthreading technology to access up to
Nthread = 64 (hyper)threads (depicted by the blue and red
triangles). For reference, the ideal strong-scaling performance
(using up to Ncore = 16) was plotted as a dashed line, and
normalized to unity for Ncore = 1.

ode communication pattern, we used one MPI process
per node on the Mira IBM Blue Gene/Q architecture;
since each node contains 16 physical cores, five different
levels of OpenMP parallelization were assessed by varying
Nthread ∈ {1, 2, 4, 8, 16} threads across Ncore = Nthread

physical cores (see Fig. 10). For each Nthread value, we
computed the strong-scaling efficiency via

ηstrong
OpenMP(Nthread) ≡

〈tStep IV
exx 〉Nthread=1

Nthread · 〈tStep IV
exx 〉Nthread

, (40)

in which Nthread = Ncore = 1 was chosen as the reference
(or baseline) OpenMP setting and 〈tStep IV

exx 〉Nthread
is the

walltime spent in Step IV of the exx module for a given
Nthread. Here, we find that the computational costs as-
sociated with Step IV scale very well with Nthread (e.g.,
ηstrong
OpenMP = 84% when using all 16 physical cores) when
using a typical constant-volume (NV T ) planewave ba-
sis setting (i.e., 85 Ry kinetic energy cutoff). With a
heavier workload (i.e., a typical constant-pressure (NpT )
planewave basis setting with a 150 Ry kinetic energy
cutoff), we find that the strong-scaling efficiency of the
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exx module is significantly better and maintains a nearly
ideal efficiency of ηstrong

OpenMP = 92% when using all 16 physi-
cal cores. We note in passing that hyperthreading each
physical core on Mira into four logical cores yields an addi-
tional boost (i.e., 30−40% speedup) in the computational
performance of exx.

3. Performance on Other Supercomputer Architectures

To provide an additional assessment of the performance
of the exx module, we performed an analogous compu-
tational analysis on the Cori Haswell and KNL super-
computer architectures housed at the National Energy
Research Scientific Computing Center (NERSC). For sim-
plicity, we considered the (H2O)128 test case described
above, and limited our analysis to the most common
ζ = 1 case (in which Nproc = No = 512). For the MPI
parallelization level, we employed one MPI process per
node on the Cori Haswell and KNL architectures. For the
OpenMP parallelization level, we used all physical cores on
each node (i.e., 24 and 68 for the Haswell and KNL archi-
tectures, respectively). When specified, we fully activated
hyperthreading on each physical core, which corresponds
to a maximum total of 48 and 272 OpenMP threads for
each Haswell and KNL node, respectively. As shown
in Table II, the exx module behaves quite consistently
across all three architectures considered (i.e., Mira IBM
BlueGene/Q, Cori Haswell, and Cori KNL). Here, we first
not that 〈texx〉 / 〈tGGA〉 is fairly constant and fluctuates
between 1.5−1.7; as such, the exx module enables hybrid
DFT calculations with a walltime cost that is comparable
to semi-local DFT on all three architectures. We further
note that the fractional breakdown of 〈texx〉 into computa-
tion, communication, and processor idling is also similar;
as such, our comprehensive three-pronged strategy (vide
supra) to attack each of these contributions is likely to
lead to a robust exx module with significantly improved
performance across a wide array of HPC architectures.
When comparing 〈texx〉 across these architectures, we
find that Cori Haswell (with 512 × 24 = 12, 288 phys-
ical cores) has a faster turnaround (by ≈ 2.6×) than
Mira IBM BlueGene/Q (with 512 × 16 = 8, 192 phys-
ical cores), while Cori KNL (with 512 × 68 = 34, 816
physical cores) is noticeably slower (by ≈ 0.67×). We
note in passing that hyperthreading introduces noticeable
performance improvements on the IBM BlueGene/Q and
Haswell architectures, but leads to a significant decrease
in the performance of exx on the KNL architecture. For
instance, deactivating the hyperthreading option on KNL
leads to an ≈ 80% speedup in 〈texx〉 and an ≈ 20% slow-
down in 〈tGGA〉; in doing so, 〈texx〉 / 〈tGGA〉 = 0.7 and
the EXX calculation is now faster than the corresponding
GGA calculation.

V. CONCLUSIONS AND FUTURE OUTLOOK

In this work, we presented a detailed discussion of the
theoretical framework, algorithmic implementation, and
computational performance of a linear scaling approach
that exploits sparsity in the real-space evaluation of the
EXX interaction in finite-gap condensed-phase systems
by utilizing a localized (MLWF) representation of the oc-
cupied orbitals. Our theoretical discussion focused on the
integration of this approach into CPMD, and highlighted
the central role played by ṽij(r)—the MLWF-product po-
tential obtained via the CG solution of Poisson’s equation
for the corresponding MLWF-product density ρ̃ij(r)—
in the evaluation of the EXX energy and wavefunction
forces. We then provided a comprehensive description
of the exx algorithm, which has been implemented in
the CP module of the open-source QE package, and em-
ploys a hybrid MPI/OpenMP parallelization scheme to
efficiently utilize the HPC resources available on current-
and next-generation supercomputer architectures. This
was followed by a critical assessment of the accuracy and
parallel performance (e.g., strong and weak scaling) of
this approach when performing large-scale AIMD simu-
lations of liquid water in the canonical (NV T ) ensemble.
With access to HPC resources, we demonstrated that exx
enables us to compute the EXX contribution to the energy
and wavefunction forces for (H2O)256, a condensed-phase
system containing ≈ 750 atoms, in just under 2.4 s. With
a walltime cost that is comparable to semi-local DFT,
the exx module takes us one step closer to routinely
performing AIMD simulations of complex and large-scale
condensed-phase systems for sufficiently long timescales
at the hybrid DFT level of theory.
In its current form, the exx module can also be used

for high-throughput applications such as the generation of
high quality AIMD data for training, developing, and test-
ing next-generation machine-learning and neural-network
based force fields.123,154–156 Despite the favorable scala-
bility and computational performance of exx, however,
we found that this algorithm is not computation-bound
for larger systems (such as (H2O)256)) with an overall
walltime that can be roughly split into three equivalent
contributions: computation events, communication over-
head, and processor idling (due to workload imbalance).
As such, there still exits significant room for improving
the performance of the exx module, and we are cur-
rently in the process of implementing a comprehensive
three-pronged strategy that will attack each of these con-
tributions and significantly reduce the overall walltime
cost. Inspired by the work of Gygi and coworkers,79,80,91
we are also implementing an MLWF-specific domain strat-
egy (as outlined in Secs. II C and IVA3) that will allow
the β-version of exx to perform accurate and efficient
hybrid DFT simulations of condensed-phase systems rang-
ing from large-gap homogeneous systems like liquid wa-
ter (with a narrow distribution of MLWF spreads) to
small-gap heterogeneous systems like solvated semicon-
ducting nanoparticles (with a wide distribution of MLWF



29

TABLE II. Computational timings profile for CPMD simulations of liquid water at the hybrid PBE0 level on the Mira IBM
Blue Gene/Q, Cori Haswell, and Cori KNL platforms using the exx module in QE. All timings (in s/step) correspond to an
average over 50 CPMD steps for (H2O)128 with ζ = 1 and Ntg = 2 (see Table I and the text for more details). All timings reflect
the fact that one MPI process was executed per node on the given architecture, and all available physical cores per node were
used for the intranode OpenMP parallelization; unless otherwise specified, hyperthreading was fully activated on each physical
core.

Architecture QE Module Timings Breakdown of texx
Machine CPU 〈tGGA〉 〈tMLWF〉 〈texx〉 〈tTotal〉 〈texx〉

〈tGGA〉
〈tcomp
exx 〉 (fcomp

exx ) 〈tcomm
exx 〉 (fcomm

exx ) 〈tidleexx 〉 (f idle
exx )

Mira IBM BlueGene/Q 2.64 0.43 4.35 7.42 1.7 2.35 (54.1) 0.64 (14.8) 1.36 (31.2)
Cori Haswell 1.07 0.72 1.66 3.45 1.6 0.84 (50.8) 0.37 (22.2) 0.45 (27.0)
Cori KNL 4.45 1.76 6.53 12.74 1.5 3.51 (53.6) 1.50 (23.0) 1.53 (23.4)
Cori KNL (no hyperthreading) 5.38 1.15 3.57 10.10 0.7 1.84 (51.7) 1.03 (28.8) 0.70 (19.5)

spreads).
In addition to improving the performance and general-

ity of exx, our group is also in the process of extending
this approach to perform BOMD simulations, as well
as generalizing this MLWF-based framework to enable
linear-scaling and highly accurate evaluations of screened
and range-separated exchange.49,62,132–136 Other improve-
ments can also be straightforwardly incorporated into
exx such as alternative localization schemes that are
better suited to treat heterogeneous systems80,91 and met-
als,113,114 or furnish localized orbitals in a non-iterative
fashion to avoid convergence issues.81–83,92 From a wave-
function theory point of view, exx is also a viable ap-
proach for the mean-field HF approximation, and is a
logical starting point for enabling condensed-phase AIMD
with local electron correlation methods.

Interested users can find exx implemented in the most
recent version of QE,102 with additional information (in-
cluding a detailed description of the exx keywords) avail-
able in the QE user’s manual online.157 In the next paper
in this series, we will generalize our MLWF-based EXX ap-
proach to treat arbitrary Bravais lattice based simulation
cells, as well as derive (and implement) the EXX contri-
butions to the cell forces (i.e., the stress tensor). These
extensions to exx are needed for performing constant-
pressure AIMD simulations in the NpH and NpT ensem-
bles, and will enable us to model large condensed-phase
systems under realistic thermodynamic conditions (i.e.,

at finite T and p) at the hybrid DFT level of theory.
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