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Abstract

Recently, the development of machine learning (ML) potentials has made it pos-

sible to perform large-scale and long-time molecular simulations with the accuracy

of quantum mechanical (QM) models. However, for high-level QM methods, such as
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density functional theory (DFT) at the meta-GGA level and/or with exact exchange,

quantum Monte Carlo, etc., generating a sufficient amount of data for training a ML

potential has remained computationally challenging due to their high cost. In this

work, we demonstrate that this issue can be largely alleviated with Deep Kohn-Sham

(DeePKS), a ML-based DFT model. DeePKS employs a computationally efficient neu-

ral network-based functional model to construct a correction term added upon a cheap

DFT model. Upon training, DeePKS offers closely-matched energies and forces com-

pared with high-level QM method, but the number of training data required is orders

of magnitude less than that required for training a reliable ML potential. As such,

DeePKS can serve as a bridge between expensive QM models and ML potentials: one

can generate a decent amount of high-accuracy QM data to train a DeePKS model, and

then use the DeePKS model to label a much larger amount of configurations to train

a ML potential. This scheme for periodic systems is implemented in a DFT package

ABACUS, which is open-source and ready for use in various applications.

Introduction

Over the past few decades, rapid developments of high speed and massively parallel com-

puting have boosted the exploration of tremendous microscopic phenomena in condensed

phases. For such investigations, one of the most widely applied tools is molecular dynamics

(MD), which models atomic and molecular systems by numerically solving the Newtonian

equations of motion subject to specific boundary conditions.1,2 The interatomic energies and

forces involved in the Newtonian equations can be either obtained via an empirical force

field (EFF),3–5 or computed from ab initio calculations, known as ab initio MD (AIMD).6–10

Despite the high efficiency of EFF-based MD, its applications are sometimes inhibited due

to less satisfying modeled results compared to experiments as well as the presumably ques-

tionable transferability when employed to a new system.11,12

AIMD simulation generates trajectories by performing quantum mechanical (QM) calcu-
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lations “on-the-fly” as the simulation proceeds. For condensed systems, density functional

theory (DFT)13 is usually the QM method of choice for AIMD owing to its relatively bal-

anced treatment for the trade-off between efficiency and accuracy. In the framework of DFT,

the performance of AIMD simulations rests on the selection of the DFT exchange-correlation

(XC) functionals. Liquid water, for example, cannot be quantitatively modeled by AIMD

with normal general gradient approximation (GGA) functionals,14 which lacks proper de-

scription of van der Waals (vdW) interactions.15,16 Going beyond GGA, meta-GGA or even

hybrid meta-GGA functionals that lie on higher rungs of Perdew’s metaphorical Jacob’s

ladder offer significantly more accurate predictions, albeit with manifold increased com-

putational cost.16,17 Therefore, AIMD simulations with those higher-rung functionals are

inevitably limited to fairly small systems with a short simulation time scale (tens of picosec-

onds), which prevents the quantitative investigation on macroscopic properties of which the

converged predictions require much longer simulation time and larger system size. In cases

where the nuclear quantum effect is non-negligible, more sophisticated approaches like path-

integral MD would be needed for properly describing relevant phenomena, which typically

require one or two orders of magnitude more computational resources than classical MD.17,18

Moreover, for systems involving strongly-correlated electronic interactions, methods beyond

DFT, such as quantum Monte Carlo,19 will have a more satisfactory accuracy at the price of

larger computational cost. See, e.g., Ref. 20, for discussions on the properties of hydrogen

and helium under extreme conditions and the influence of different simulation methods.

In the last few years, machine-learning (ML) based potentials have been advanced to

circumvent the high computational cost of AIMD without loss of accuracy.21–25 One of the

representatives is the Deep Potential Molecular Dynamics (DeePMD) scheme,25,26 of which

the potential energy surface is fitted via a deep neural network to expensive ab initio data.

Studies have demonstrated that for a wide variety of systems, DeePMD simulations possess

accuracy comparable to that of AIMD and efficiency competitive to classical MD simulations.

We refer to Ref. 27 for a thorough review of some recent development of DeePMD for
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materials science. Notwithstanding the successes achieved via ML-based potentials, obstacles

still remain in the scenario that requires comprehensive description offered by high-level QM

methods. The training of DeePMD model usually demands thousands of QM-labeled frames,

which might become a bottleneck when the QM method of choice is expensive. As shown

in Table S1, for example, for a 64-water-molecule system, within the DFT framework, the

computational costs using different functionals can differ by nearly three orders of magnitude.

Indeed, the bridge that efficiently connects time-consuming QM calculations and ML-based

potential energy models is yet to be assembled so as to alleviate or even eliminate such

computational bottleneck.

Proposed in 2020, the Deep Kohn-Sham (DeePKS) approach introduces a general frame-

work for generating highly accurate self-consistent energy functionals with remarkably re-

duced computational cost,28,29 which makes it an ideal “bridge” between expensive QM mod-

els and DeePMD. While the DeePKS model has been comprehensively tested for isolated

molecular systems, we implement it here for periodic systems in an open-source software

ABACUS30,31 and demonstrate that trained by a considerably small number of data, the

DeePKS model reproduces the target energies and forces given by strongly constrained and

appropriately normed (SCAN) meta-GGA functional32 for salt water and hybrid SCAN0

furnctional33 for pure water at only a few times more expensive computational cost as

compared to the Perdew-Burke-Ernzerhof (PBE) GGA functional.14 The trained DeePKS

model is applied in SCF calculations to generate labels for the DeePMD model, with an

estimated two orders of magnitude saving in computational time for labeling. The resulting

DeePMD model is then employed for MD simulations to compute various structural and

dynamical properties of pure and salt water. Excellent agreement is found between the

DeePKS-DeePMD predicted results and the previously reported data from SCAN/SCAN0-

based DeePMD simulations, which highlights the reliability of the bridging role played by

the DeePKS model.

It should be noted that a variety of ML-assisted functionals other than DeePKS have also
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been developed, such as NeuralXC34 and OrbNet,35 which share a similar goal as DeePKS,

i.e., to lift the accuracy of baseline functionals towards that provided by more accurate meth-

ods via a ML-based model while maintaining their efficiency. Other ML-based functionals,

including DM2136 and SCAN-L,37 are developed to pave the way toward exact universal

functional. Here we apply DeePKS in this work to demonstrate the capability of such ML-

based functional in connection with ML-based potentials. From a practical point of view,

we see this work as a timely contribution to this rapidly developing field, and we stress that

with a series of open-source implementations of the methodology, including DeePKS-kit38

for the training and generation of the DeePKS model, ABACUS for DeePKS-based DFT

calculations for periodic systems, as well as DeePMD-kit39 and DP-GEN40 for the training

and generation of DeePMD models, various applications demanding QM accuracy at a higher

level will be made computationally feasible.

Method

DeePKS for isolated systems

Before introducing the DeePKS formalism for periodic systems, we briefly review the case

of isolated systems. We consider the many-body Schrödinger equation of N electrons:

(T̂ + V̂ee + V̂ext)Ψ0 = EΨ0, (1)

where T̂ , V̂ee, and V̂ext are the operators for kinetic, electron-electron interaction, and external

potential, respectively, E is the ground-state energy of the system, and Ψ0 represents the

ground-state N -electron wavefunction.

In the standard Kohn-Sham scheme,13,41 one employs an auxiliary non-interacting system

under an effective external potential V̂KS, which yields the same ground-state electron density

as the original interacting system. The auxiliary system can thus be represented by a single
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Slater determinant of a set of one-particle eigenstates {φi}, obtained by self-consistently

solving the single particle Hamiltonian:

ĥiφi = εiφi, (2)

where ĥi = T̂ + V̂KS.

Conventionally, the effective potential V̂KS is partitioned into three components:

V̂KS = V̂ext + V̂H + V̂XC, (3)

namely, the external potential of the original interacting systems V̂ext, the Hartree potential,

namely the static Coulomb potential produced by the electron density of the system V̂H,

and the exchange-correlation potential V̂XC, which captures the remaining electron-electron

interactions.

The exact form of the exchange-correlation potential still remains elusive. The major

task in Kohn-Sham DFT is thus to devise better approximations of the exchange-correlation

functional. In the traditional Kohn-Sham scheme,13,41 V̂XC is spatially local, while in the

generalized Kohn-Sham scheme,42 V̂XC includes non-local contributions.

The DeePKS scheme seeks a Hamiltonian in the generalized Kohn-Sham framework by

connecting a baseline method and a reference method through a neural network model.

Typically, baseline methods are chosen to be lower level methods that are computationally

efficient but lack the desired level of accuracy for the problem under consideration; while the

reference methods are high level methods that are accurate but computationally expensive.

The basic idea is to partition the Hamiltonian into two parts:

ĥDeePKS = ĥbaseline + V̂ δ. (4)

The first part is the Hamiltonian of the baseline method, while the second part is the
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correction potential provided by the neural network model. As a result, the total energy is

also partitioned into two parts:

EDeePKS = Ebaseline + Eδ. (5)

In this work, we solve the Hamiltonian in the basis of numerical atomic orbitals {χµ},31,43–46

and the neural network contribution term Vδ is constructed based on projected density ma-

trices:

DI
nlmm′ =

∑
µν

ρµν〈χµ|αInlm〉〈αInlm′ |χν〉, (6)

where ρµν is the density matrix of the system, and {|α〉} is a set of localized orbitals centered

on atoms, labeled by atomic index I, and quantum numbers nlm.

To preserve the rotational invariance, we further take the eigenvalues of blocks of pro-

jected density matrices with the same indices I, n and l to obtain a series of descriptors:

dInlm = Eig(DI
nlmm′). (7)

In some cases, this eigenvalue decomposition step introduces discontinuities due to the

sorting of eigenvalues, and may cause convergence problems when applying the model in

SCF calculations. To circumvent this issue, there is an option to further symmetrize the

descriptors:

dI,symmnlm = gsymm(dInlm). (8)

where gsymm is a symmetrization function which is invariant under the permutation of its

arguments. In our current implementation, gsymm is chosen to be thermal averaging, and

details of the symmetrization step as well as the neural network structure can be found in

the Appendix of Ref. 38.

The descriptors are then grouped into vectors according to the atomic index I, and the
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correction energy term becomes a summation of atomic contributions:

Eδ =
∑
I

FNN(dI |ω), (9)

where ω is the vector of parameters for the deep neural network FNN. By calculating a set of

reference systems, we have the target energies Etarget, the baseline energies Ebaseline, as well

as the descriptors generated by the baseline method dI . The training of FNN is then carried

out by using the energy difference Etarget − Ebaseline as the label.

With the expression for Eδ, the corresponding matrix elements of the correction potential

are given by:

V̂ δ
µν =

∂Eδ
∂ρµν

=
∑

Inlmm′

∂Eδ
∂DI

nlmm′

∂DI
nlmm′

∂ρµν

=
∑

Inlmm′

∂Eδ
∂DI

nlmm′
〈χµ|αInlm〉〈αInlm′ |χν〉. (10)

Solving the Hamiltonian ĥDeePKS = ĥbaseline+ V̂ δ gives a set of ground state wavefunctions

{φi|ω} and ground state energy EDeePKS = Ebaseline[{φi|ω}] + Eδ[{φi|ω}, ω]. However, in

general there is a discrepancy between the EDeePKS here and the target energy Etarget. The

origin of this discrepancy comes from the fact that the ground state of ĥDeePKS is different

from that of the initial baseline method ĥbaseline.

As a result, the training of DeePKS adopts an iterative strategy, where the vector of

model parameters ω is updated through training, followed by solving the new ĥDeePKS to get

a new set of descriptors and labels. The process is repeated until convergence is achieved.
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For later iterations, we can also calculate the total force under ĥDeePKS, given by:

FDeePKS[{φi|ω}] =Fbaseline[{φi|ω}]−
∂Eδ[{φi|ω}]

∂X

=Fbaseline[{φi|ω}]−
∑

Inlmm′

∂Eδ
∂DI

nlmm′

∑
i

d

dX
[fi〈φi|αInlm〉〈αInlm′|φi〉]. (11)

where fi is the occupation number of orbital φi. As our goal is to reproduce the total energies

and forces of the target method, we also include force term in the loss function L(ω), and

the optimization problem now becomes:

min
ω
L(ω), L(ω) = |Etarget − EDeePKS[{φi|ω}]|2 + λ|Ftarget − FDeePKS[{φi|ω}]|2, (12)

where the weighting factor λ is adjusted in the iterative training process to balance the error

in energy and force. Its value typically falls in the range of 1 to 50. Here the notation {φi|ω} is

used to emphasize that the eigenstates φi of the DeePKS Hamiltonian ĥDeePKS = ĥbaseline+V̂
δ

depend on the expression of V̂ δ, hence on the neural network parameters ω.

We refer to Ref. 29 and Ref. 38 for more details of the DeePKS formalism and the

training strategy, including the treatment of force labels, as well as the construction of the

neural network.

DeePKS for Periodic Systems

For periodic systems, the external potential possesses the translational symmetry:

V̂ext(r−R) = V̂ext(r), (13)

where R is the lattice vector used to label the unit cells in the periodic lattice. According

to the Bloch theorem, the Kohn Sham eigenstates of the system are expressed as:

φik(r) = eikruik(r), (14)
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where k is the reciprocal space lattice vector and the quantum number i labels the band

index. The Bloch wavefunction uik(r) has the same periodicity of the external potential V̂ext

and can be solved by diagonalization of the Hamiltonian H(k).

To obtain the matrix elements of H(k) in the atomic basis {χµ}, we first calculate:

Hµν(R) = 〈χµR|ĥ|χν0〉, (15)

where χµR is the periodic image of atomic basis χµ in the unit cell R, namely χµR(r) =

χµ(r−R).

The Hamiltonian for single k-point H(k) is then given by:

H(k) =
∑
R

e−ikRH(R). (16)

All physical quantities are obtained as an average over single k points. For example, the

electron density is given by:

ρ(r) =
1

Nk

∑
ik

fikφ
∗
ik(r)φik(r)

=
1

Nk

∑
µν

∑
R

∑
k

ρµν(k)χ∗
µR(r)χν0(r)e−ikR

=
∑
µν

∑
R

ρµν(R)χ∗
µR(r)χν0(r), (17)

where we define the real-space density matrix as:

ρµν(R) =
1

Nk

∑
k

ρµν(k)e−ikR. (18)
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Similarly, the projected density matrix used to construct descriptors is calculated as:

DI
nlmm′ =

1

Nk

∑
µν

∑
k

∑
R′

ρµν(k)〈χµR|αInlmR′〉〈αInlm′R′|χν0〉e−ikR

=
∑
RR′

∑
µν

ρµν(R)〈χµR|αInlmR′〉〈αInlm′R′ |χν0〉. (19)

Then, the contribution of V̂δ to the real-space Hamiltonian is derived as:

V̂ δ
µν(R) =

∑
Inlmm′

∂Eδ
∂DI

nlmm′

∂DI
nlmm′

∂ρµν(R)
(20)

=
∑

Inlmm′

∑
R′

∂Eδ
∂DI

nlmm′
〈χµR|αInlmR′〉〈αInlm′R′ |χν0〉. (21)

As noted in the previous section, we also include force label in the training process, with

target function given in Eq. 12. The total force in the case of multiple k points is given by:

FDeePKS[{φi|ω}] =Fbaseline[{φi|ω}]−
∂Eδ[{φi|ω}]

∂X

=Fbaseline[{φi|ω}]−
∑

Inlmm′

∂Eδ
∂DI

nlmm′

∑
ik

d

dX
[fik〈φik|αInlm〉〈αInlm′|φik〉]

=Fbaseline[{φi|ω}]−
∑

Inlmm′

∂Eδ
∂DI

nlmm′

∑
RR′

ρµν(R)
d

dX
[〈χµR|αInlmR′〉〈αInlm′R′|χν0〉].

(22)

Computational Details

As mentioned in previous sections, the training of DeePKS adopts an iterative strategy, which

alternates between training the neural network FNN(dI |ω) and solving SCF with ĤDeePKS =

Ĥbaseline + V̂ δ. While the training step is performed within DeePKS-kit,38 the package per

se does not contain the functionality of solving SCF. Instead, an existing SCF software is

invoked for such purpose.

We have implemented the DeePKS method in the ABACUS30,31 package, which supports

both numerical atomic orbitals and plane-wave basis with the periodic boundary conditions.
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)

(𝐝), 𝜔)
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Yes

No

Stop

DeePKS iteration

ABACUS

𝐻 = 𝐻!"#$%&'$ + 𝑉,(𝜔)

Figure 1: Flowchart of the DeePKS iterative training implemented within the ABACUS
density functional theory package.

The ABACUS package can be freely downloaded online.47 For the numerical atomic orbitals

that form the projectors, the radial parts of {|α〉} are chosen to be the spherical bessel

functions, namely:

αnlm(r) = fnl(r)Ylm(θ, φ), (23)

where

fnl(r) =


jnl(qnr) (r ≤ rc)

0 (otherwise).

(24)

Here rc is the radius cutoff, and qn is chosen to ensure jnl(qnrc) = 0. A kinetic energy cutoff

is imposed to determine the upper bound for the value of qn, hence the number of spherical

bessel functions. Typically, the kinetic energy cutoff is set to be the same as the underlying

SCF calculations.

In this work, we used a radius cutoff of 5 Bohr, and the kinetic energy cutoff is set to be

100 Ry, with l = 0, 1, 2. This resulted in a total number of 15 spherical bessel functions per

l channel, giving an overall of 135 descriptors per atom. More details on the spherical bessel
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functions and the evaluation of orbital overlaps 〈αnlm|χµ〉 can be found in Ref. 31 and Ref.

30.

The implemented DeePKS iterative training process is summarized in Fig. 1. The steps

in the grey region are those carried out by ABACUS. In each iteration, ABACUS reads

the neural network model file provided by DeePKS-kit and calculates the desired matrix

elements V̂ δ
µν , then solves the DeePKS Hamiltonian ĤDeePKS and outputs the descriptors and

labels in the format that is readable by DeePKS-kit.

We notice that a practical challenge for testing the performance of the DeePKS+ABACUS

scheme is that we need extensively generated high-level electronic structure data for bench-

mark purposes. As such, we chose two representative datasets that have already been well

benchmarked in recent works and used to train DeePMD potential models for important

applications. The first dataset17 contains water snapshots from both classical and Feynman

path-integral molecular dynamics calculations with energy and force labels at the SCAN0

level. A Deep Potential model was generated from this dataset and used to calculate sev-

eral properties of water, and later used to investigate the many-body effects in the X-ray

absorption spectra of liquid water.48 The second dataset49 was generated via a concurrent

learning approach50 and used to train Deep Potentials for modeling the structural properties

of sodium chloride solutions at different concentrations at the level of the SCAN functional.

Additional computational details for these two datasets can be found in the Supporting

Information.

We used the SCAN0 AIMD trajectories of 64 water molecules to compare the sample

efficiency of the DeePKS model and the DeePMD model. Next, for both datasets, we

chose the PBE functional as the baseline model and used only a small group of samples to

obtain reliable DeePKS models at production level. We tested the validity of the resultant

DeePKS models by relabeling a much larger group of samples from the same datasets with

DeePKS and carried out DeePMD training. The DeePMD models were in turn applied to run

MD simulations using LAMMPS.51 Structural and thermodynamic properties, including the
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radial distribution function (RDF), bulk density, and others, were calculated and compared

with existing results.

Result and Discussion

DeePKS learning curves with respect to training samples
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Figure 2: Learning curves for energy (upper panel) and force (lower panel) given by DeePMD
(orange) and DeePKS (blue) with respect to the number of training frames. Dashed line
with squares indicates train set error; solid line with diamonds indicates test set error.

To explore the capability and generalizability of the DeePKS model, we construct three

training sets by randomly (subject to uniform distribution) picking 18, 54, and 180 frames

from the previously reported SCAN0 AIMD trajectories of 64 water molecules,17 and train

the PBE-based DeePKS model with SCAN0 energy and force labels. Similar uniform sam-

pling from these SCAN0 trajectories, with larger sampling sizes (55, 155, 355, 755, and 955

14



frames), is applied to the training of the DeePMD model so as to make a comparison between

these two models. The learning curves of DeePMD and DeePKS with respect to the size of

the training set are given in Fig. 2. It can be seen that with significantly fewer frames, the

DeePKS model provides more accurate predictions as compared to DeePMD model. The

generalization gap of DeePKS model is also notably smaller than that of DeePMD model.

It is shown in Table S1 that the SCAN0 SCF result for 64 water molecules, which takes

more than a day to be obtained, can be accurately reproduced within a quarter of an hour

by applying the DeePKS model, which corresponds to more than two orders of magnitude

savings in time. The take-home message conveyed by Fig. 2 and Table S1 is that the training

process of the DeePMD potential, which originally demands more than a thousand expen-

sive SCAN0 jobs, can be effectuated with around one hundred SCAN0 jobs plus a thousand

significantly faster DeePKS jobs. In other words, the DeePKS model can serve as a bridge

that connects the expensive ab initio calculations such as SCAN0 DFT and the machine

learning potentials, and remarkably reduces the effort required in the MD simulations at

higher rung of the Jacob’s ladder.

Modelling liquid water

For systems consisting of 64 water molecules, we perform SCF calculations on 1022 unique

structures randomly (subject to uniform distribution) picked from previous DeePMD (with

SCAN0 label) and SCAN0 AIMD modelling results (from Ref. 17) with the DeePKS model

trained via 180 training samples. 1000 out of 1022 SCF calculations reach the convergence

threshold, and these 1000 converged energies and forces are applied as labels for DeePMD

training. The resulting Deep Potential model is then employed in LAMMPS for molecular

dynamics simulation of 512 water molecules. Various structural properties and the diffusion

coefficient are explored and compared with previously reported results. All structural prop-

erties are obtained via 30 ps NpT ensemble simulations at 1 bar and 330 K with a time

step of 0.5 fs with the first 10 ps discarded for equilibrium, while the diffusion coefficient is
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obtained via 300 ps NV E ensemble simulations with the cell size fixed at the value obtained

from the NpT simulation.
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SCAN0-AIMD
SCAN0-DeePMD
DeePKS-DeePMD
PBE-AIMD

Figure 3: RDFs (a) gOO(r), (b) gOH(r), and (c) bond angle distribution POOO(θ) given by
DeePKS-DeePMD (blue dotted line), SCAN0-AIMD (black solid line) from Ref. 17, SCAN0-
DeePMD (orange dashed line) from Ref. 17, and PBE-AIMD (gray dotted-dashed line) from
Ref. 16.

We first analyze the RDFs, which correspond to the probability of finding a given pair

of atoms as a function of distance in real space, with DeePKS-DeePMD simulations. The

resulting oxygen-oxygen and oxygen-hydrogen RDFs, gOO(r) and gOH(r) are shown in Fig.

3(a) and (b), respectively. the previously computed results via SCAN0-AIMD, SCAN0-

DeePMD, and PBE-AIMD are also shown for comparison. It can be seen from Figs. 3(a)

and (b) that the RDFs given by DeePKS-DeePMD simulations are in good agreement with

both the SCAN0-AIMD and the SCAN0-DeePMD results, including the significantly less

overstructured peaks of gOO(r) and the slightly shortened O-H covalent bond length (in-

dicated by the first peak of gOH(r)) as compared to the PBE result. Similar observations

are found in the bond angle distribution (POOO(θ)) analysis as shown in Fig. 3(c), which

quantifies the three-body correlations in water. While PBE predicts a narrower bond an-

gle distribution, DeePKS is able to quantitatively reproduce the distribution predicted by

SCAN0. Overall, for liquid water, the overstructuring issue in PBE functional is remark-

ably alleviated with the trained DeePKS model, which provides almost identical structural

properties as compared to SCAN0 results.

Next, we explore the bulk density and H-bonds of liquid water with DeePKS-DeePMD
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simulations. Note that the diffusion coefficient is computed for both water and deuterated

water so as to provide a more comprehensive comparison with the SCAN0 results from Ref.

17. By including the description of nondirectional van der Waals (vdW) interaction on

intermediate length-scales, SCAN0 predicts a more disordered and compact water structure,

leading to a higher bulk density and weakened H-bond strength. As shown in Table 1, the

bulk density predicted via DeePKS-DeePMD (1.024 g/cm3) is consistent with that predicted

by SCAN0-DeePMD (1.030 g/cm3), and is notably larger than that predicted via PBE-AIMD

(0.850 g/cm3). The average number of H-bonds per water molecule computed with DeePKS-

DeePMD is 3.58, which is identical to that given by SCAN-DeePMD and notably smaller

than the PBE-AIMD result (3.77 according to Ref. 16). The weakened H-bond strength is

also evidenced by the more dominant region between the first peak and the second peak of

gOO(r) predicted by SCAN0 (as shown in Fig. 3(a)), which mainly comprises non-H-bonded

molecules that occupy interstitial space between H-bonded ones.

The dynamic property of liquid water we examine in this work with DeePKS-DeePMD

is the diffusion coefficient, for both normal and deuterated water. The diffusion of liquid

water depends on the formation and breakage of H-bonds through thermal fluctuations.

Weakened H-bond strength predicted by SCAN0 and DeePKS (as illustrated above) escalates

the tendency of H-bond-breaking and consequently increases the diffusion coefficient. It can

be seen in Table 1 that D predicted by DeePKS-DeePMD is in excellent agreement with

the one predicted by SCAN0-DeePMD, which is one order of magnitude larger than the

PBE-AIMD result. The same consistency is also observed for the case of deuterated water.

The good agreement on these structural and dynamical properties highlight the fact that

the intermediate-ranged vdW interactions in liquid water, which are intrinsically missed in

PBE functional, are successfully captured via the trained DeePKS model using the PBE

functional as its baseline, and properties of liquid water with expensive hybrid meta-GGA

(SCAN0) quality can now be much more efficiently predicted within the time comparable to

a few PBE jobs.
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Table 1: Bulk density (ρ), average number of H-bonds per water molecule (NHB), and
diffusion coefficients (D) predicted by DeePKS-DeePMD, SCAN0-DeePMD, and PBE-AIMD
simulations at 330K with 512 water molecules.a

Method ρ/g·cm−3 NHB D/Å·ps−1 deuterated D/Å·ps−1

DeePKS-DeePMD 1.024±0.010 3.58 0.254±0.024 0.234±0.019
SCAN0-DeePMD17 1.030 3.58 0.251 0.223

PBE-AIMD16 0.850±0.016 3.77 0.018±0.002 NA
expb 0.99752 3.5853 0.2454 0.2054

aAll error bars correspond to one standard deviation.
bExperimental values are measured at T=300K.

Modelling salt water and high-pressure water

While the investigation of liquid water with DeePKS DeePMD simulations demonstrates

accurate computational results compared to SCAN0 counterparts, modelling the electrolyte

structure is rather cumbersome due to the sparsity of ions that requires significantly longer

simulation time for statistical convergence. Here, we train a PBE-based DeePKS model

for salt water with previously conducted SCAN SCF calculations on various concentrations

of NaCl solution as labels. The composition of the DeePKS training set can be found in

Table S2. SCF calculations with such DeePKS model are then carried out on 5676 frames

(varying in concentration as shown in Tabel S2), of which 5406 converged results (including

energy and force) are utilized as labels for DeePMD training. With the trained potential,

we investigate structural properties and densities for salt water with different concentrations

as well as pure water under different pressure via DeePKS-DeePMD in LAMMPS.

Comparison with SCAN-AIMD simulations

We first compare the RDFs of 1:62 NaCl solution with previously reported SCAN-AIMD and

SCAN-DeePMD results. A 2-ns DeePKS-DeePMD simulation is carried out with the NV T

ensemble using one cubic cell, which consists of one NaCl ion pair and 62 water molecules at

300 K; the setup is consistent with the SCAN-DeePMD simulation conditions in Ref. 49. Fig.

4 exhibits four RDFs gOO(r), gOH(r), gONa(r), and gOCl(r), predicted by DeePKS-DeePMD,
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(a) (b)

(d)(c)

SCAN-AIMD
SCAN-DeePMD
DeePKS-DeePMD

Figure 4: RDFs (a) gOO(r), (b) gOH(r), (c) gONa(r), and (d) gOCl(r) given by DeePKS-
DeePMD (blue dotted line), and SCAN-AIMD (black solid line) as well as SCAN-DeePMD
(orange dashed line) from Ref. 49. Gray shaded area corresponds to one standard deviation
from DeePKS-DeePMD statistics with 100 ps time interval.

SCAN-AIMD, and SCAN-DeePMD. Note that the SCAN-AIMD simulation only runs for

100 ps due to the highly time-consuming SCF calculations with the SCAN functional. We

therefore compute the statistical deviation with 100 ps time interval based on DeePKS-

DeePMD trajectories (indicated by the gray shaded area in Fig. 4). All RDFs predicted

by DeePKS-DeePMD simulations are in accordance with the SCAN-DeePMD results and

statistically matches with the SCAN-AIMD results, which conceptually proves the reliability

of our trained DeePKS model.

Comparison with SCAN-DeePMD simulations for high-pressure water

Structural differences between the high-pressure water and salt water have been comprehen-

sively illustrated in Ref. 49. Here, with the aforementioned trained Deep Potential based on

DeePKS energies and forces, we first investigate the structural properties of water under high

pressure via DeePMD simulations using the NpT ensemble with 512 water molecules for 2

ns at 333 K and four different pressures (1 bar, 1 kbar, 2 kbar, and 3 kbar). The integration

time step is 0.5 fs, with the first 100 ps of trajectory discarded for equilibrium. As shown in
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(a)

(b)

(c)

SCAN-DeePMD
DeePKS-DeePMD

Figure 5: Oxygen-oxygen RDF [gOO(r)] for pure water at pressure equals (a) 1000 bar, (b)
2000 bar, and (c) 3000 bar given by DeePKS-DeePMD (blue dotted line) from this work
and SCAN-DeePMD (orange dashed line) from Ref. 49.
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Fig. 5, the oxygen-oxygen RDFs predicted SCAN-DeePMD under all three high pressures

are accurately reproduced by DeePKS-DeePMD simulations. (The comparison at 1 bar will

be shown in the following part.) It can be seen in Figure S1(a) that as pressure increases, the

second and the third coordination shells move inwards, leading to a more compact structure.

The diminishing feature of the second shell at 3000 bar is consistent with the fact that the

tetrahedral network inside liquid water is significantly distorted under high pressure. Bulk

densities of liquid water have also been calculated as shown in Fig. 6. Excellent agreement

is again observed between SCAN-DeePMD and DeePKS-DeePMD simulations.
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(a)

(b)

SCAN-DeePMD
DeePKS-DeePMD

Figure 6: Bulk densities for (a) pure water at different pressures and (b) pure water and
NaCl solutions with various concentrations at 1 bar predicted by DeePKS-DeePMD (blue
diamond) from this work and SCAN-DeePMD (orange square) from Ref. 49. The simulation
temperature is 330K. Error bars correspond to one standard deviation.

Comparison with SCAN-DeePMD simulations for salt water with various con-

centrations

In this part, we examine our DeePKS model by comparing the structural properties given

by DeePKS-DeePMD with those predicted by SCAN-DeePMD for pure and salt water with
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various concentrations. Simulation conditions for DeePKS-DeePMD are kept the same as

last section and the pressure is fixed at 1 bar. The numbers of NaCl ion pairs and water

molecules contained in the periodic cubic cell for DeePMD simulations for each investigated

concentration are listed in Table S3.
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SCAN-AIMD
SCAN-DeePMD
DeePKS-DeePMD

Figure 7: Oxygen-oxygen RDF [gOO(r)] for (a) pure water and NaCl solutions with concen-
tration (b) 1:83, (c) 1:62, (d) 1:40, (e) 1:24, and (f) 1:17 given by DeePKS-DeePMD (blue
dotted line) from this work and SCAN-DeePMD (orange dashed line) from Ref. 49. SCAN-
AIMD result for pure water reported in Ref. 49 is also displayed for comparison (black solid
line in (a)).

It can be seen in Fig. 7, Fig S2, and Fig S3 that for pure water and each investigated

concentration, the oxygen-oxygen, oxygen-sodium,and oxygen-chloride RDFs predicted by

DeePKS-DeePMD are nearly coincident with the SCAN-DeePMD results. As clearly shown

in Fig S1, as the concentration increases, the population of interstitial water between the first

and second peaks increases and the third coordination shell moves inwards with a diminishing

feature of the second coordination shell, which is evinced by the pressure-like effect of salt
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SCAN-DeePMD
DeePKS-DeePMD

Figure 8: Bond angle distribution [POOO(θ)] for (a) pure water and NaCl solutions with
concentration (b) 1:83, (c) 1:62, (d) 1:40, (e) 1:24, and (f) 1:17 given by DeePKS-DeePMD
(blue dotted line) from this work and SCAN-DeePMD (orange dashed line) from Ref. 49
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water in the reciprocal space. The outward moving trend of the second shell with the

increase of the concentration, which is highlighted in Ref. 49 as the major difference between

the structures of salt and high-pressure water, is also successfully captured via DeePKS-

DeePMD simulation as shown in Fig. S1. The ion-ion RDFs, which require considerably long

simulation time to converge due to rather few ion pairs, are also calculated with the DeePKS-

DeePMD trajectories. According to Fig. S4, gNaNa(r) and gClCl(r) predicted via DeeKS-

DeePMD are qualitatively in line with the SCAN-DeePMD results, with slight deviations

that are presumably caused by the insufficiency of the simulation time. The bond angle

distributions for pure and salt water with various concentrations are also explored (Fig. 8)

and delicate consistency is observed between DeePKS-DeePMD and SCAN-DeePMD results.

With the increase of NaCl concentration, POOO(θ) shifts towards smaller angles from a

tetrahedral distribution, which is mainly induced by the distribution of the first solvation

shells of Na+ as elucidated in Ref. 49. The calculated bulk densities via DeePKS-DeePMD

for NaCl solutions also closely match with those predicted via SCAN-DeePMD as shown in

Fig. 6(b). The slight discrepancies at high concentration are presumably due to the fact

that the SCAN stress is not included as a label during the DeePKS training process. We

shall leave this to our future investigations.

Conclusion and Outlook

In this work, we have bridged expensive high-level ab initio calculations and deep neural

network potentials with the DeePKS model implemented in the open-source DFT software

ABACUS. With less than two hundred frames of the training set labeled by hybrid meta-

GGA or meta-GGA functionals, we have shown that the GGA-based DeePKS model is able

to quantitatively reproduce the target energies and forces for pure and salt water systems

with orders of magnitude savings in time (depending on the choice of the target method).

The trained DeePKS model has then been applied in the DeePMD simulations for pure and
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salt water, i.e., two prototypical systems that are known to be poorly described via GGA

functionals. The resulting structural and dynamical properties are in excellent agreement

with the previously reported data obtained via hybrid meta-GGA or meta-GGA AIMD and

DeePMD methods, which underlines the reliability of the DeePKS model in connection with

the DeePMD simulation.

With the fully open-source implementation of the DeePKS+ABACUS methodology, we

are expecting the spring up of extensive applications that require both high accuracy and

computational efficiency. It is worth mentioning that even though the DeePKS model is

trained on one or two specific periodic systems in this work, its transferability and general-

izability should not be disregarded. Looking forward, it would be intriguing to develop the

DeePKS model that is applicable to a class of systems such as electrolytes and inorganic

semiconductors, enabling a generally accurate description which is hitherto challenging on

such systems due to limited computational resources.
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