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Abstract. Time-frequency (t-f) analysis has clearly reached a certain maturity. One can now often provide striking
visual representations of the joint time-frequency energy representation of signals. However, it has been difficult
to take advantage of this rich source of information concerning the signal, especially for multidimensional signals.
Properly constructed time-frequency distributions enjoy many desirable properties. Attempts to incorporate t-f
analysis results into pattern recognition schemes have not been notably successful to date. Aided by Cohen'’s scale
transform one may construct representations from the t-f results which are highly useful in pattern classification.
Such methods can produce two dimensional representations which are invariant to time-shift, frequency-shift and
scale changes. In addition, two dimensional objects such as images can be represented in a like manner in a
four dimensional form. Even so, remaining extraneous variations often defeat the pattern classification approach.
This paper presents a method based on noise subspace concepts. The noise subspace enhancement allows one
to separate the desired invariant forms from extraneous variations, yielding much improved classification results.
Examples from sound classification are discussed.

Key Words: time-frequency, scale, speech, pattern recognition

1. Introduction

Time-frequency (t-f) analysis is useful for signals which exhibit changes in frequency
content with time. The well-known spectrogram often presents serious difficulties when
it is used to analyze rapidly varying signals, however. If the analysis window is made
short enough to capture rapid changes in the signal it becomes impossible to resolve signal
components which are close in frequency within the analysis window duration. If the
window is made long to resolve the frequencies of sinusoids, the time when sinusoidal
components act becomes difficult to determine.

Supported in part by ONR Grants nos. NO0014-90-J-1654 and N000014-97-1-0072, NSF Grant BCS 9110571
and DOD Contract no. MDA904-95-C-2157
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466 WILLIAM J. WILLIAMS ET AL

Until recently, there was one alternative t-f analysis technique which was widely believed
to avoid some of the problems of the spectrogram. The well known Wigner distribution
(WD) avoids the problems of windowing and enjoys many useful properties, but often
produces an unacceptable amount of interference or cross-term activity between signal
components when the signal consists of many components [3,5]. Despite its shortcomings,
the Wigner distribution has been employed as an alternative to overcome the resolution
shortcomings of the spectrogram. It also provides a high resolution representation in time
and in frequency. The WD has many important and interesting properties.

Both the spectrogram and the WD are members of Cohen’s Class of Distributions [2].
Cohen has provided a consistent set of definitions for a desirable set of t-f distributions
which has been of great value in this area of research. Different members of Cohen’s class
can be obtained by using different kernels. In this framework, the WD has a unity valued
kernel. Choi and Williams introduced the Exponential Distribution (ED), with kernel
¢ep@, 1) = e ?"’/o whereo is a kernel parametgws > 0) [1]. The ED overcomes
several drawbacks of the spectrogram and WD, providing high resolution with suppressed
interferences. A recent comprehensive review by Cohen [3] provides an excellent overview
of TFDs and recent results using them.

The Reduced Interference Distribution (RID), which is a generalization of the ED, shares
many of the desirable properties of the WD, but also has the important reduced interference
property. RID is discussed in a recent book chapter [13] and a design procedure for RID
kernels has been developed [7]. One may start with a primitive fundtigin, which has
certain simple constraints, and evolve a full-fledged RID kernel from it. The RID kernel
retains a unity value along ti#eandr axes in the ambiguity plane, generally providing good
time-frequency resolution and auto-term preservation, but attenuates strongly elsewhere for
good cross-term suppression.

1.1. The Scale Transform

The scale transform has been described by Cohen [4] to be:
e—jclnt

D(c) = i /Oo X(t) ———dt Q)
- V2r Jo N

The scale transform has an analogy to the Fourier transform. The Fourier transform of
a signal x(t) and the Fourier transform of a shifted version of that sigrél— t,) differ
only by a phase factor.

FIX(t = to)] = Xo(w) = X(w)e 1% )
so that

In a like manner, the scale transform.gfa|x(at) differs from the scale transform aft)
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SCALE AND TRANSLATION INVARIANT METHODS 467

only by a phase factor, so that the magnitudes of the scale transfot() @nd./|a|x(at)
are identical.

ID(c)| = |Da(0)| (4)

We have developed discrete forms of the scale transform [14,16] which can be computed
efficiently. One might question the use of the scale transform rather than the more well-
known Mellin transform. There are several reasons for using the scale transform. One
reason is that the standard Mellin transform weights signal components in lower time more
than in higher time. A second reason is the relationship of scale to wavelet concepts and
the insights it brings in this light.

2. Acoustic Signals

Two types of acoustic signals were used to test the effectiveness of these methods. These
were human speech and marine mammal sounds.

2.1. Marine Mammal Sounds

Marine mammal sounds are well characterized using the RID and overcome some of the
shortcomings of the SP as described by Watkins [12]. RID clearly reveals both the tonal
structure in the whistles and the temporal structure of clicks which are simultaneously
produced by these animals. It appears that the clicks of marine mammals such as whales
and dolphins may have a distinctive structure based on the individual animal and may be
useful in nonintrusive tagging and tracking of these animals. Our new TFD methods provide
a powerful means of representing the complex sounds produced by marine mammals.
One can now readily design TFDs which represent the joint energy of a signal as a
function of time and frequency or space-frequency distributions which represent the joint
energy of images as space-spatial frequency distributions (two spatial variables x and y
and two spatial frequency variabl&sx andQ2y ). Furthermore, with careful design, these
joint distributions can exhibit proper covariances with time, frequency or spatial shifts
such that the representation shifts in accordance with these shifts but does not change in
its configuration [14]. The well-known spectrogram has been extensively used in speech
analysis and it has these useful properties. A shift in time or a shift in frequency of the
signal will shift the representation appropriately in time and frequency. However, the
spectrogram does not exhibit the proper characteristics in resposseléchanges in the
signal. That is ifx(t) becomex(at), the Fourier transform of(t) changes fronX (w) to
1X(2). This is illustrated in Figure 1.

2.2. Speech Processing

The spectrogram has long been a widely used tool in speech analysis. Other TFDs have
been investigated in speech analysis, but none have yet provided a strong advance beyond
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Figure 1. TFD results for time shifted, frequency shifted and scaled dolphin click. a. Spectrogram. b. Original click,
scaled and time shifted click, time shifted and frequency shifted click. c. Reduced Interference Distribution (RID)
click results for the same time shifts, scaling and frequency shift. (From: W. J. Williams, Reduced Interference
Distributions: Biological Applications and InterpretatiofiSEE Proc, Vol 84, 1996, pp 1264-1280.)

the level of analysis provided by the spectrogram [9]. It is generally believed that the
potential exists for significant advances in speech analysis using recently developed TFD

tools, however.

3. Classification and Detection of Acoustic Signals

Acoustic signals may vary in time of occurrence, frequency and scale. The Doppler effect
manifests itself as scaling. The “scalogram” [10], which is an analog of the spectrogram
with frequency replaced by scale, might be effective in analyzing scaled signals. However,
it, as does the wavelet transform, lacks the frequency covariance property. One might like to
have invariant representations under time-shift, frequency-shift and scale. The techniques
described in this paper may be assembled to achieve all of these invariances. First, the sound
or a segment of the sound to be analyzed must be isolated. Next, the RID is computed.
Then, the autocorrelatidralong time is performed as

Arip(m. k) = > " RID(, k)RID(MN —m, k) (5)

wherenisthe time sampléis the frequency sample antis the autocorrelation lag sample.
This removes absolute time and produces a centered autocorrelation of each frequency slice.
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Next, one has the choice of also removing absolute frequency by performing a similar
autocorrelation alonds. Finally, one may scale transform the resulting representation
along the time and frequency directions. This serves to produce a representation that is
invariant to time, frequency and scale shifts.

It may not be desirable to remove all variation. These variations may serve to classify or
detect the signal. For example, if frequency shift is an important indicator of the identity of
a signal, one may bypass that step. Itis important to note that even though these techniques
serve to make the representations invariant, true frequency shifts and scale shifts may be
retained in the phases of the requisite transforms.

3.1. Classification and Detection of Images

Recognizing characters or spotting words in bitmapped documents (images) has been of
particular interest to us [14]. One may convert an image into a four dimensional repre-
sentation in a manner analogous to the conversion of a one dimensional signal into a t-f
representation. Here, the two spatial dimensiony) are retained and joined by the spatial
frequencieswy, wy). Four dimensional kernels may be applied in a manner similar to t-f
analysis. We have developed software which accomplishes this and it is clear that these
4-D representations are rich in detail. The 4-D structure does not prevent the application of
the invariance producing transformations along all four dimensions, however. In order to
reduce the complexity of the representations, we have reduced the image computations to
two dimensional autocorrelations along x and y with the idea of expanding to the full four
dimensional forms after working out details in the simplified formulations. Noise subspace
and higher order statistical moments have been gainfully applied to this problem [6].

3.2. Applying the Scale Transform

One of the problems in applying the scale transform is finding the zero reference. Unlike
the Fourier transform, the scale transform exhibits strong non-stationary characteristics.
However, the process of autocorrelation provides an unequivocal zero reference for time.
Likewise, the frequency dimension of the RID has an unequivocal zero frequency reference,
sothatthe scale transform may be easily applied. Due to symmetries, the 2-D scale transform
may only need to be applied to unique quadrants of the autocorrelated RID representation or
the 2-D autocorrelated images. Previous results in using the 2-D scale transform to render
2-D autocorrelated images invariant to displacement and scale are very encouraging [14].

3.3. Sound Classification using the Invariant Representations

Starting with a suitable TFE) almost all of the undesired variation due to time shift,

frequency shift and scale may be squeezed out of the final invariant form. There may
still be some residual effects due to discretization and computation. The next task is to
design a classifier. Suppose that the invariant form is characterized by a two dimensional
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representatiom\(p, q). This 2-D representation may be decomposed using eigensystem
techniques as

A(p,@) =3B (p,a) (6)
i

where thes; (p, q) are eigenimages and thgare the eigenvalues of the decomposition. The
eigensystem decomposition is carried out on a collectiak(gf, q) examples coming from

the classes of objects (signals or images) that are of interest. The eigensystem decompo-
sition then provides an ordered set of eigenimages ordered according to their eigenvalues.
Although the eventual goal is to use true two dimensional eigenimage analysis, suitable
algorithms to accomplish this have not been identified. One may utilize a simpler one
dimensional approach which lends itself to readily available algorithms.

The 2-DN x M invariant forms may be converted into vectors of lenijtlk M by either
concatenating the rows or columns. Then, readily available Singular Value Decomposition
(SVD) techniques may be applied to the vectorized set of images. Suppose there are
several different extraneous variations in the supposedly invariant representations caused
by a variety of factors. For example, the same person may not say the same word exactly the
same way each time or the same whale or dolphin may click slightly differently each time.
Such extraneous variations often confound the invariant representations so that effective
detection or classification of a specific signal or image is rendered impossible. A new and
very effective method using noise subspace concepts has been developed to overcome these
problems.

4. Noise Subspace Methods

TheN x M vectorized 2-D forms have alarge number of elements. Usually, for classification
methods to work, one wishes to have a considerably greater number of representations of
the signal vectors than there are elements in those representations. Here, we have exactly
the opposite. There are many more elements in the vectorized 2-D forms than there are
vectorized 2-D forms. This is usually a statistical nightmare. However, suppose th&re are
sound example&K << N x M). Thenthe SVD produces x M orthogonal eigenvectors,

the firstK of which form a complete orthonormal basis for the vectorized invariant forms.
The remaining SVD eigenvectors (the noise eigenvectors) must be orthogonal to all of the
original vectorized invariant forms. Suppose that we now obtain a new signal. Convert it
into the TFD, then to the 2-D invariant form and finally, vectorize the 2-D invariant form. If

it belongs to the set of vectorized 2-D invariant forms used to produce the SVD results, then
it should beorthogonal to all of the noise eigenvectors produced by the SVD. Therefore,

its projection on any of the noise eigenvectors should be zero. If we have carried out the
whole process through the SVD for a number of different sets of signals, we should find
the projection of the vectorized 2-D invariant form of the unknown signal on the noise
eigenvectors of each set of signals. The smallest result will be theoretically obtained when
this is done using the noise eigenvectors of the set to which the signal belongs.
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5. Sound Classification Results

Two different experiments were carried out. Invariantforms as described were derived from
the signals. In one experiment the clicks from two sperm whales were considered. In the
second experiment, speaker identification was attempted. Ten speakers said ‘Michigan’ ten
times. Half the data sets were used to develop the classifier and the technique was tested
using the remaining data sets. In both experiments, classification success of individuals was
quite high. Some results are shown in Figure 2. Half of the responses for each individual
were used to develop a classifier and the other half to test it. Only autocorrelation along
time was applied to the RID result in the human speaker study. Itis believed that variations
in the frequency direction should be retained, since they may serve to identify individual
speakers. The methodology reported in this paper is one of two new techniques we have
developed recently. The other (moment-based) method [17] is also quite effective in sound

ROC for Speaker Verification
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Figure 2. Individual ROC results for ten speakers and the average ROC for all speakers.
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pattern recognition. Tacer and Loughlin [11] have had success in untilizing joint TFD
moments in classifying postural sway.

6. Conclusions

The methods outlined in this paper seem to work very well. At this point the ideas have
been applied in a straightforward way with very little “tuning” of the various components

of the technique. At this time the approach appears to be competitive, at least, with alter-
native methods of speaker identification where complex and highly developed alignment
algorithms and time warping algorithms have been applied together with commonly used
pattern recognition engines. Further refinements of our technique may provide significant
improvements over present results. It is believed the technique could be applied to a wide
variety of sounds, other signals and images in terms of specific identification of distinct
classes of signals and images. There are a number of trade-offs to be considered and we
have a number of improvements in mind. The computational burden is high, but with
dedicated hardware and fast algorithms it is believed that very reliable real time detection
and classification of sounds could be achieved. The methods need to be tested with large
databases and the classifications need to be extensively tested using new data sets which
have not participated in the classifier design. Methods based on joint moments also ap-
pear to be promising, but at this writing the methods presented herein appear to have an
advantage.

Notes

1. Within reasonable bounds that do not induce aliasing or some other undesirable effect.

2. One can also carry out this computation in the frequency domain as well, using FFTs alardjrtrension
and obtaining the magnitude of the resulting image.

3. TFDs other than RID may be suitable [8].
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