Skip to main content
Log in

Optimal Wavelength Assignment Algorithms for Permutation Traffic in Multi-Fiber WDM Ring Networks*

  • Published:
Photonic Network Communications Aims and scope Submit manuscript

Abstract

Permutation traffic occurs in a number of networking applications. In this paper, the problem of wavelength assignment for permutation traffic in multi-fiber WDM rings with and without wavelength conversion is considered. We focus on a special class of permutation traffic and analyze the bounds on the number of wavelengths required to establish the connections. Lower bounds and optimal algorithms are presented for all the cases. The results indicate that a small number of fibers is sufficient to provide most of the benefits that wavelength conversion provides for this class of permutation traffic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Choi, S. Subramaniam, H.–A. Choi, Optimal off–line wavelength assignment for permutation traffic in multifiber wdm rings, in: Terabit Optical Networking: Architecture, Control, and Management Issues, Proc. of SPIE, vol. 4213, (Nov. 2000), pp. 92–100.

    Google Scholar 

  2. B. Mukherjee, Optical Communication Networks. McGraw Hill, 1997.

  3. K. C. Lee, V. O. K. Li, A wavelength–convertible optical network, IEEE/OSA J. Lightwave Tech., vol. 11,no. 5/6, (May/June 1993), pp. 962–970.

    Google Scholar 

  4. R. A. Barry, P. A. Humblet, Models of blocking probability in all–optical networks with and without wavelength changers, IEEE J. Sel. Areas Comm., vol. 14,no. 5, (June 1996) pp. 858–867.

    Google Scholar 

  5. M. Kovačević, A. S. Acampora, Benefits of wavelength translation in all–optical clear–channel networks, IEEE J. Sel. Areas Comm., vol. 14,no. 5, (June 1996), pp. 868–880.

    Google Scholar 

  6. A Birman, Computing approximate blocking probabilities for a class of all–optical networks, IEEE J. Sel. Areas Comm., vol. 14,no. 5, (June 1996), pp. 852–857.

    Google Scholar 

  7. S. Subramaniam, M. Azizo\(\tilde g\)lu, A. K. Somani, All–optical networks with sparse wavelength conversion, IEEE/ACM Trans. Networking, vol. 4,no. 4, (Aug. 1996), pp. 544–557.

    Google Scholar 

  8. J. Yates, J. Lacey, D. Everitt, M. Summerfield, Limited–range wavelength translation in all–optical networks, in: Proc. IEEE INFOCOM'96, vol. 3, (San Francisco, CA, March 1996), pp. 954–961.

    Google Scholar 

  9. C. Qiao, R. Melhem, Reducing communication latency with path multiplexing in optically interconnected multiprocessor systems, IEEE Trans. Parallel and Dist. Systems, vol. 8,no. 2, (Feb. 1997), pp. 97–108.

    Google Scholar 

  10. R. Ramaswami, G. H. Sasaki, Multiwavelength optical networks with limited wavelength conversion, in: Proc. IEEE INFOCOM'97, vol. 2, (Kobe, Japan, April 1997), pp. 489–498.

    Google Scholar 

  11. S. Subramaniam, A. K. Somani, M. Azizo\(\tilde g\)lu, R. A. Barry, The benefits of wavelength conversion in WDM networks with non–Poisson traffic, IEEE Communications Letters, vol. 3,no. 3, (March 1999), pp. 81–83.

    Google Scholar 

  12. Y. Zhu, G. N. Rouskas, H. Perros, Blocking in wavelength routing networks. Part I: The single path case, in: Proc. IEEE INFOCOM'99, vol. 1, (New York, NY, March 1999), pp. 321–328.

    Google Scholar 

  13. T. Tripathi, K. N. Sivarajan, Computing approximate blocking probabilities in wavelength routed all–optical networks with limited–range wavelength conversion, in: Proc. IEEE INFOCOM'99, vol. 1, (New York, NY, March 1999), pp. 329–336.

    Google Scholar 

  14. A. Sridharan, K. N. Sivarajan, Blocking in all–optical networks, in: Proc. IEEE INFOCOM'00, vol. 2, (Tel Aviv, Israel, March 2000), pp. 990–999.

    Google Scholar 

  15. L. Li, A. K. Somani, A new analytical model for multifiber WDM networks, IEEE J. Sel. Areas Comm., vol. 18,no. 10, (Oct. 2000), pp. 2138–2145.

    Google Scholar 

  16. S. Subramaniam, H. Choi, H.–A. Choi, On the effects of switching in multi–fiber wdm networks, in: Proc. 38th Annual Allerton Conference on Communications, Control, and Computing, (Oct. 2000), pp. 1314–1323.

  17. S. B. Choi, A. K. Somani, Rearrangeable circuit–switched hypercube architecture for routing permutations, J. Parallel and Distrib. Computing, vol. 19,no. 2, (Oct. 1993), pp. 125–133.

    Google Scholar 

  18. C. Qiao, Y. Mei, Off–line permutation embedding and scheduling in multiplexed optical networks with regular topologies, IEEE/ACM Trans. Networking, vol. 7,no. 2, (April 1999), pp. 241–250.

    Google Scholar 

  19. M. Garey, D. Johnson, G. Miller, C. Papadimitriou, The complexity of coloring circular arcs and chords, SIAM J. Disc. Math., vol. 1,no. 2, (June 1980), pp. 216–227.

    Google Scholar 

  20. M. Gondran, M. Minoux, Graphs and Algorithms. Wiley, 1986.

  21. A. Tucker, Coloring a family of circular arcs, SIAM J. Appl. Math., vol. 29,no. 3, (Nov. 1975), pp. 493–502.

    Google Scholar 

  22. R. Ramaswami, K. N. Sivarajan, Optical Networks: A Practical Perspective (Morgan Kaufmann, 1998).

  23. R. Ramaswami, G. H. Sasaki, Multiwavelength optical networks with limited wavelength conversion, IEEE/ACM Trans. Networking, vol. 6,no. 6, (Dec. 1998), pp. 744–754.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongsik Choi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, H., Subramaniam, S. & Choi, HA. Optimal Wavelength Assignment Algorithms for Permutation Traffic in Multi-Fiber WDM Ring Networks*. Photonic Network Communications 4, 37–46 (2002). https://doi.org/10.1023/A:1012998604387

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012998604387

Navigation