Skip to main content
Log in

A Class of Composite Codes with Minimum Distance 8

  • Published:
Problems of Information Transmission Aims and scope Submit manuscript

Abstract

We consider linear composite codes based on the |a+x|b+x|a+b+x| construction. For m ≥ 3 and r ≤ 4m + 3, we propose a class of linear composite [3 · 2m, 3 · 2mr, 8] codes, which includes the [24,12,8] extended Golay code. We describe an algebraic decoding algorithm, which is valid for any odd m, and a simplified version of this algorithm, which can be applied for decoding the Golay code. We give an estimate for the combinational-circuit decoding complexity of the Golay code. We show that, along with correction of triple independent errors, composite codes with minimum distance 8 can also correct single cyclic error bursts and two-dimensional error bytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. MacWilliams, F.J. and Sloane, N.J.A., The Theory of Error-Correcting Codes, Amsterdam: North-Holland, 1977. Translated under the title Teoriya kodov, ispravlyayuschikh oshibki, Moscow: Svyaz, 1979.

  2. Sloane, N.J.A., Reddy, S.M., and Chen C.-L., New Binary Codes, IEEE Trans. Inf. Theory, 1972, vol. 18, no. 4, pp. 503–510.

    Google Scholar 

  3. Fossorier, M.P.C. and Lin, S., Some Decomposable Codes: The |a + x | b + x | a + b + x| Construction, IEEE Trans. Inf. Theory, 1997, vol. 43, no. 5, pp. 1663–1667.

    Google Scholar 

  4. Forney, G.D., Coset Codes II: Binary Lattices and Related Codes, IEEE Trans. Inf. Theory, 1988, vol. 34, no. 6, pp. 1152–1187.

    Google Scholar 

  5. Zinoviev, V.A. and Zyablov, V.V., Correction of Error Bursts and Independent Errors using Generalized Concatenated Codes, Probl. Peredachi Inf., 1979, vol. 15, no. 2, pp. 58–70 [Probl. Inf. Trans. (Engl. Transl.), 1979, vol. 15, no. 2, pp. 125–134].

    Google Scholar 

  6. Boyarinov, I.M., Method of Decoding Direct Sums of Products of Codes and Its Applications, Probl. Peredachi Inf., 1981, vol. 17, no. 2, pp. 39–51 [Probl. Inf. Trans. (Engl. Transl.), 1981, vol. 17, no. 2, pp. 104–113].

    Google Scholar 

  7. Honary, B., Markarian, G., and Farrell, P., Generalized Array Codes and Their Trellis Structure, Electronics Letters, 1993, vol. 29, no. 6, pp. 541–542.

    Google Scholar 

  8. MacWilliams, F.J., Permutation Decoding of Systematic Codes, Bell. Syst. Tech. J., 1964, vol. 43, no. 4, pp. 485–505.

    Google Scholar 

  9. Gordon, D.M., Minimal Permutation Sets for Decoding the Binary Golay Codes, IEEE Trans. Inf. Theory, 1982, vol. 28, no. 3, pp. 541–543.

    Google Scholar 

  10. Wolfman, J., A Permutation Decoding of the (24; 12; 8) Golay Code, IEEE Trans. Inf. Theory, 1983, vol. 29, no. 5, pp. 748–750.

    Google Scholar 

  11. Kasami, T., A Decoding Procedure for Multiple-Error-Correcting Cyclic Codes IEEE Trans. Inf. Theory, 1964, vol. 10, no. 1, pp. 134–139.

    Google Scholar 

  12. Reed, I.S., Yin, X., Truong, T.K., and Holmes, J.K., Decoding the (24, 12, 8) Golay Code, IEE Proc., 1990, vol. 137, no. 3, pp. 202–206.

    Google Scholar 

  13. Pless, V., Decoding the Golay Codes, IEEE Trans. Inf. Theory, 1986, vol. 32, no. 4, pp. 561–567.

    Google Scholar 

  14. Vardy, A., Even More Efficient Bounded Distance Decoding of the Hexacode, the Golay Code, and the Leech Lattice, IEEE Trans. Inf. Theory, 1995, vol. 41, no. 5, pp. 1495–1499.

    Google Scholar 

  15. Dodunekov, S.M., Zinoviev, V.A., and Nilsson, J.E.M., On Algebraic Decoding of Some Maximal Quaternary Codes and the Binary Golay Code, Probl. Peredachi Inf., 1999, vol. 35, no. 4, pp. 59–67 [Probl. Inf. Trans. (Engl. Transl.), 1999, vol. 35, no. 4, pp. 338–345].

    Google Scholar 

  16. Goethals, J.-M., On the Golay Perfect Binary Code, J. Combinat. Theory, 1971, vol. 11, no. 1, pp. 178–186.

    Google Scholar 

  17. Elia, M., Algebraic Decoding of the (23; 12; 7) Golay Code, IEEE Trans. Inf. Theory, 1987, vol. 33, no. 1, pp. 150–151.

    Google Scholar 

  18. Blaum, M. and Bruck, J., Decoding the Golay Code with Venn Diagrams, IEEE Trans. Inf. Theory, 1990, vol. 36, no. 4, pp. 906–910.

    Google Scholar 

  19. Boyarinov, I., Martin, I., and Honary, B., A Simple Decoding Algorithm for the [24, 12, 8] Extended Golay Code, Proc. 2000 IEEE Int. Sympos. on Information Theory, Sorrento, Italy, 2000, p. 334.

    Google Scholar 

  20. Boyarinov, I., Martin, I., and Honary, B., High-Speed Decoding of Extended Golay Code, IEE Proc. Commun., 2000, vol. 147, no. 6, pp. 333–336.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boyarinov, I.M., Martin, I. & Honary, B. A Class of Composite Codes with Minimum Distance 8. Problems of Information Transmission 37, 353–364 (2001). https://doi.org/10.1023/A:1013827518409

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013827518409

Keywords

Navigation