Skip to main content
Log in

A review of mathematical models in economic environmental problems

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

The paper presents a review of mathematical models used in economic analysis of environmental problems. This area of research combines macroeconomic models of growth, as dependent on capital, labour, resources, etc., with environmental models describing such phenomena like natural resources exhaustion or pollution accumulation and degradation. In simpler cases the models can be treated analytically and the utility function can be optimized using, e.g., such tools as the maximum principle. In more complicated cases calculation of the optimal environmental policies requires a computer solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T.J. Allen, Managing the Flow of Technology. Technology Transfer and the Dissemination of Technological Information within R & D Organization (MIT Press, Cambridge, 1977).

    Google Scholar 

  2. K.J. Arrow and M. Kurtz, Public Investment, the Rate of Return, and Optimal Fiscal Policy(John Hopkins Press, Baltimore, 1970).

    Google Scholar 

  3. J. Barro, Goverment spending in a simple model of endogenous growth, J. Political Economy 98 (1990) 103–125.

    Article  Google Scholar 

  4. R.J. Barro and X. Sala-i-Martin, Economic Growth(McGraw-Hill, New York, 1995).

    Google Scholar 

  5. T. Basar and G. Olsder, Dynamic Noncooperrative Game Theory(Academic Press, New York, 1982).

    Google Scholar 

  6. W.J. Baumol and W.E. Oates, The Theory of Environmental Policy(Cambridge University Press, Cambridge, MA, 1988).

    Google Scholar 

  7. G.S. Becker, K.M. Murphy and R. Tamura, Human capital, fertility, and economic growth, J. Political Economy 98(5) (1990) 12–37.

    Article  Google Scholar 

  8. K.E. Boulding, The economics of the coming spaceship earth, in: Environmental Quality in a Growing Economy, ed. H. Jarret (John Hopkins Press, Baltimore, 1966) pp. 3–14.

    Google Scholar 

  9. A.L. Bovenberg and R.A. de Mooij, Environmental levies and distortionary taxation, Amer. Econ. Review 84(4) (1994) 1085–1089.

    Google Scholar 

  10. G. Chichilnisky, Economic development and efficiency criteria in the satisfaction of basic needs, Appl. Math. Modeling 1(6) (1977) 290–297.

    Article  Google Scholar 

  11. G. Chichilnisky, An axiomatic approach to sustainable development, Social Choice and Welfare 13 (1996) 231–257. Z. Nahorski, H.F. Ravn / Mathematical models in economic environmental problems199

    Google Scholar 

  12. C.W. Clark, Mathematical Bioeconomics: The Optimal Management of Renewable Resources(Wiley, New York, 1976).

    Google Scholar 

  13. R.H. Coase, The problem of social cost, J. Law Econ. 3 (1960) 1–44.

    Article  Google Scholar 

  14. J.M. Conrad and C.W. Clark, Natural Resource Economics(Cambridge University Press, New York, 1987).

    Google Scholar 

  15. T.D. Crocker, Structuring of atmosferic pollution control systems, in: The Economics of Air Pollution, ed. H. Wolozin (Norton, New York, 1966).

    Google Scholar 

  16. M.L. Cropper and W.E. Oates, Environmental economics: a survey, Journal of Economic Literature 30 (1992) 675–740.

    Google Scholar 

  17. R.C. D'Arge and K.C. Kogiku, Economic growth and the environment, Review of Economic Studies 40 (1973) 61–77.

    Article  Google Scholar 

  18. P.S. Dasgupta, The Control of Resources(Basil Blackwell, Oxford, 1982).

    Google Scholar 

  19. P.S. Dasgupta and G.M. Heal, The optimal depletion of exhaustible resources, in: Review of Economic Studies (1974) pp. 3–28.

  20. P.S. Dasgupta and G.M. Heal, Natural Resource Economics(Cambridge University Press, Cambridge, 1979).

    Google Scholar 

  21. R. Davison, Optimal depletion of an exhaustible resource with research and development towards an alternative technology, Review of Economic Studies 45 (1978) 355–367.

    Article  Google Scholar 

  22. P.B. Dixon, B.R. Parmenter, J. Sutton and D.P. Vincent, Notes and Problems in Applied General Equilibrium Economics (North-Holland, 1992).

  23. C.C. Duarte, Renewable resource market obeying difference equations: stable points, stable cycles, and chaos, Environmental and Resource Economics 4 (1994) 353–381.

    Article  Google Scholar 

  24. G.C. Evans, The dynamics of monopoly, American Math. Monthly 31 (1924) 77–83.

    Article  Google Scholar 

  25. G. Feichtinger and R.F. Hartl, Optimale Kontrolle ¨okonomischer Prozesse(De Gruyter, Berlin, 1986).

    Google Scholar 

  26. A.C. Fischer and F.M. Peterson, The environment in economics: a survey, Economic Literature 14 (1976) 1–31.

    Google Scholar 

  27. H. Folmer and C. Howe, Environmental problems and policy in the single european market, Environmental and Resource Economics 1(1) (1991) 17–41.

    Google Scholar 

  28. H. Folmer and I. Musu, eds., Environmental cooperation and policy in the single European market, Environmental and Resource Economics 2(2) (1992).

  29. B.A. Forster, A note on the optimal control of pollution, Journal of Economic Theory 5 (1972) 537–539.

    Article  Google Scholar 

  30. B.A. Forster, On a one state variable optimal control problem-consumption-pollution trade-off, in: Applications of Control Theory to Economic Analysis, eds. J.D. Pitchford and S.J. Turnovsky (North-Holland, 1977) pp. 35–56.

  31. V. Ginsburgh and M. Keyzer, Structure of Applied General Equilibrium Models(MIT Press, 1997).

  32. B. Gompertz, On the nature of the function expressive of the law of human mortality, Philos. Trans. R. Soc. 115 (1825) 513–585.

    Google Scholar 

  33. H. Gordon, Economic theory of a common-property resource: the fishery, Journal of Political Economy 62 (1954) 124–142.

    Article  Google Scholar 

  34. H. Gordon, A reinterpretation of the pure theory of exhaustion, Journal of Political Economy 75 (1967) 274–286.

    Article  Google Scholar 

  35. D. Gottwald, Die dynamische Theorie der Allokation ersch¨opfbarer Ressourcen(Vandenhoek and Ruprecht, G¨ottingen, 1981).

    Google Scholar 

  36. L.H. Goulder, Environmental taxation in a second-best world, in: The International Yearbook of Environmental and Resource Economics 1997/1998, eds. H. Folmer and T. Tietenberg (Edward Elgar, Chelthenham, 1997) pp. 28–54.

    Google Scholar 

  37. H. Halkin, Optimal control for systems described by difference equations, in: Advances in Control Systems, Vol. I, ed. C.T. Leondes (Academic Press, 1964) pp. 173–196.

  38. H. Hotelling, The economics of exhaustible resources, Journal of Political Economy 39 (1931) 137–175.

    Article  Google Scholar 

  39. S.E. Jørgensen, Fundamentals of Ecological Modelling(Elsevier, Amsterdam, 1986).

    Google Scholar 

  40. M.I. Kamien and N.L. Schwartz, Optimal exhaustible resource depletion with endogenous technical changes, Review of Economic Studies 45 (1978) 179–196.

    Article  Google Scholar 

  41. M.I. Kamien and N.L. Schwartz, Dynamic Optimization: The Calculus of Variations and Optimal Control in Economics and Management (North-Holland, New York, 1981).

  42. E. Keeler, M. Spence and R. Zeckhauser, The optimal control of pollution, J. Economic Theory 4 (1972) 19–34.

    Article  Google Scholar 

  43. N. Keyfitz, Introduction to Mathematics of Population(Addison-Wesley, Reading, MA, 1968).

    Google Scholar 

  44. N. Keyfitz, Applied Mathematical Demography(Springer, New York, 1985).

    Google Scholar 

  45. J.V. Krutilla, Conservation reconsidered, American Economic Review 57 (1967) 777–786.

    Google Scholar 

  46. G. Leitmann, Cooperative and Non-Cooperative Many Players Differential Games(Springer, Vienna, 1974).

    Google Scholar 

  47. A.J. Lotka, Elements of Physical Biology(Williams and Wilkins, Baltimore, 1925).

    Google Scholar 

  48. R.E. Lucas, On the mechanics of economic development, J. Monetary Development 22 (1988) 3–42.

    Article  Google Scholar 

  49. M. Luptacik and U. Schubert, Optimale investitionspolitik unter ber¨ucksichtigung der umwelt: Eine anwendung der kontrolltheorie, in: Operations Research Verfahren, Vol. 35, eds. W. Orttli and F. Steffens (Athen¨aum/Hain, Meisenheim, 1979) pp. 271–282.

    Google Scholar 

  50. M. Luptacik and U. Schubert, Optimal investment policy in productive capacity and pollution abatement processes in a growing economy, in: Optimal Control Theory and Economic Analysis, ed. G. Feichtinger (North-Holland, Amsterdam, 1982) pp. 231–243.

    Google Scholar 

  51. K.G. M¨aler, Environmental Economics(John Hopkins Press, Baltimore, 1974).

    Google Scholar 

  52. K.G. M¨aler, The acid rain game, in: Valuation Methods and Policy Making in Environmental Economics, eds. H. Folmer and E. van Ierland (Elsevier, Amsterdam, 1989) pp. 221–252.

    Google Scholar 

  53. K.G. M¨aler, International environmental problems, Oxford Review of Economic Policy 6 (1990) 80–108.

    Google Scholar 

  54. T.R. Malthus, Principle of Population as it affects the Future Improvement of Society, with Remarks on the Speculations of Mr. Godwin, M. Condorcet and other Writers. Reprinted as: Population: The first Essay (The University of Michigan Press, Ann Arbor, 1959). Original edition 1798.

    Google Scholar 

  55. A.S. Manne and R.G. Richels, Buying Greenhouse Insurance(MIT Press, Cambridge, MA, 1992).

    Google Scholar 

  56. A.P. Martins, Human capital and economic growth, Ph.D. thesis, Columbia University (1987).

  57. R.M. May, Biological populations obeying difference equations: stable points, stable cycles, and chaos, J. Theor. Biol. 51 (1975) 511–524.

    Article  Google Scholar 

  58. D.H. Meadows, D.L. Meadows, J. Randers and W.W. Behrens III, The Limit to Growth(Universe Books, New York, 1972).

    Google Scholar 

  59. A. Mehlmann, Applied Differential Games(Plenum Press, New York, 1988).

    Google Scholar 

  60. M. Mesarovic and E. Pestel, Mankind at the Turning Point(Dutton, New York, 1974).

    Google Scholar 

  61. J.S. Mill, Principles of Political Economy(Augustus M. Kelly, New York) reprint of sixth edition, 1965 edition (1848).

    Google Scholar 

  62. S.R. Milliman and R. Prince, Firm incentives to promote technological change in polution control,Journal of Environmental Economics and Management 77 (1989) 247–265.

    Article  Google Scholar 

  63. J. Monod, Recherches sur la Crossance de Culture Bact´eriennes(Hermann, Paris, 1942).

    Google Scholar 

  64. J. Monod, La technique de culture continue: theorie et applications, Annals Institute Pasteur 79 (1950) 390–410.

    Google Scholar 

  65. W.D. Montgomery, Markets in licenses and efficient pollution control programs, Journal of Economic Theory 5 (1972) 395–418.

    Article  Google Scholar 

  66. W.D. Nordhaus, Managing the Global Commons. The Economics of Climate Change(MIT Press, Oxford, MA, 1994).

    Google Scholar 

  67. E.C. Pielou, Mathematical Ecology(Wiley, New York, 1977).

    Google Scholar 

  68. A.C. Pigou, The Economics of Welfare(Macmillan, London, 1932). Z. Nahorski, H.F. Ravn / Mathematical models in economic environmental problems 201

    Google Scholar 

  69. F. van der Ploeg and C. Withagen, Pollution control and the Ramsey problem, Environmental and Resource Economics 1 (1991) 97–118.

    Google Scholar 

  70. F. van der Ploeg and A.J. de Zeeuw, International aspects of pollution control, Environmental and Resource Economics 2(2) (1992) 117–139.

    Google Scholar 

  71. C. Plourde, A model of waste accumulation and disposal, Canadian J. Econ. 5 (1972) 119–125.

    Article  Google Scholar 

  72. F.P. Ramsey, A mathematical theory of saving, Economic J. 38 (1928) 543–559.

    Article  Google Scholar 

  73. J. Rawls, A Theory of Justice(Bellknap Press, Cambridge, MA, 1971).

    Google Scholar 

  74. S. Rebelo, Long run policy analysis and long run growth, J. Political Economy 99 (1991) 500–521.

    Article  Google Scholar 

  75. E.G. Roberts, The Dynamics of Research & Development(Harper & Row, 1964).

  76. P.M. Romer, Increasing returns and long run growth, J. Political Economy 94 (1986) 1002–1037.

    Article  Google Scholar 

  77. M.B. Schaefer, Some considerations of population dynamics and economics in relation to the management of marine fisheries,J. Fisheries Res. Board of Canada 14 (1957) 669–681.

    Google Scholar 

  78. W.D. Schultze and R.C. D'Arge, The Coase proposition, information constraints, and long-run equilibrium, American Economic Review 64 (1974) 763–772.

    Google Scholar 

  79. A. Seierstad and K. Sydsæter, Optimal Control Theory with Economic Applications(North-Holland, Amsterdam, 1987).

    Google Scholar 

  80. J. Showen and J. Whalley, Applied general-equilibrium models of taxation and international trade: an introduction and survey, Journal of Economic Literature 22 (1984) 1007–1051.

    Google Scholar 

  81. J. Showen and J. Whalley, Applying General Equilibrium(Cambridge University Press, 1992).

  82. H. Siebert, ¨ Okonomische Theorie nat¨urlicher Ressourcen(Mohr, T¨ubingen, 1983).

  83. H. Siebert, Economics of the Environment(Springer, Heidelberg, 1998).

    Google Scholar 

  84. V.L. Smith, Dynamic of waste accumulation: disposal versus recycling, Quart. J. of Econ. 76 (1972) 600–616.

    Article  Google Scholar 

  85. V.L. Smith, Control theory applied to natural and environmental resources, Journal of Environmental Economics and Management 4 (1977) 1–24.

    Article  Google Scholar 

  86. R.M. Solow, Intergenerational equity and exhaustible resources, in: Review of Economic Studies(1974) pp. 29–45.

  87. J. Stiglitz, Growth with exhaustible resources: efficient and optimal growth paths, in: Review of Economic Studies (1974) pp. 123–137.

  88. J. Stiglitz, Growth with exhaustible resources: the competitive economy, in: Review of Economic Studies (1974) pp. 139–152.

  89. O. Tahvonen, On the dynamics of renewable resource harvesting and pollution control, Environmental and Resource Economics 1 (1991) 97–117.

    Google Scholar 

  90. O. Tahvonen, Dynamics of pollution control when damage is sensitive to the rate of pollution accumulation, Environmental and Resource Economics 5 (1995) 9–27.

    Article  Google Scholar 

  91. R. Tamura, Income convergence in an endogenous growth model, J. Political Economy 99(3) (1991) 522–540.

    Article  Google Scholar 

  92. P.F. Verhulst, Notice sur la loi que la population suit dans son accroissement, Correspondance Math´ematique et Physique 10 (1838) 113–121.

    Google Scholar 

  93. V. Volterra, Lec¸ons sur la Th´eorie Math´ematique de la Lutte pour la Vie(Gauthier-Villars, Paris, 1931).

    Google Scholar 

  94. M. Weinstein and R. Zeckhauser, Use patterns for depletable and recyclable resources, in: Review of Economic Studies (1974) pp. 67–88.

  95. von Weizacker, Lemmas for a theory of approximate optimal growth, Rev. Econ. Studies 34 (1967) 143–151.

    Article  Google Scholar 

  96. C. Withagen, Pollution, abatement and balanced growth, Environmental and Resource Economics 5 (1995) 1–8.

    Article  Google Scholar 

  97. A. Xepapadeas, Advanced Principles in Environmental Policy(Edward Edgar, Cheltenham, 1997).

    Google Scholar 

  98. T. Żylicz, Improving the environment through permit trading: the limits to a market approach, in: International Environmental Economics Theories, Models and Applications to Climate Change, International Trade and Acidification, ed. E.C. van Ierland (Elsevier, 1994) pp. 283–306.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nahorski, Z., Ravn, H.F. A review of mathematical models in economic environmental problems. Annals of Operations Research 97, 165–201 (2000). https://doi.org/10.1023/A:1018913316076

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018913316076

Navigation