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     The Shifting Bottleneck procedure is an intuitive and reasonably good approximation
algorithm for the notoriously difficult classical job shop scheduling problem. The principle
of decomposing a classical job shop problem into a series of single-machine problems can
also easily be applied to job shop problems with practical features, such as transportation
times, simultaneous resource requirements, setup times, and many minor but important other
characteristics. We report on the continuous research in the area of extending the Shifting
Bottleneck procedure to deal with those practical features. We call job shops with such
additional features practical job shops. We discuss experiences with the Shifting Bottleneck
procedure in a number of practical cases.

1. Introduction

Manufacturing processes have become increasingly complex, and so have their
planning and control. The market requires high product variety, high quality, short
leadtimes, and an accurate delivery performance. Timely delivery is now a major
competitive edge; cf. Blackburn [5]. The market requirements force manufacturing
companies to be flexible: They need to engineer and produce a large variety of products
efficiently with short leadtimes and reliable due dates. Technological progress and
information technology made this, in principle, possible. Setup time reduction, for
example, enables companies to produce in smaller batches and therefore to be more
flexible.

Technological progress, however, has led to more complex planning and control
problems. In the past, each machine had its own operator, its own tools, and so on.
Nowadays, tools are more versatile, hence can be used by various different machining
centres. These tools are, however, at the same time more expensive. Therefore, a
company often decides to cut its tool investments. Similarly, operators are expensive,
but often they only need to tend a machine during part of the operations, e.g., to
position a job on the machine. This enables the operators to tend more than one machine;
therefore, the number of operators is often smaller than the number of machines. Such
an operator and tool sharing clearly increases the interdependency of the machines,
because a unique tool can only be used by one machine at a time and an operator can
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only tend one machine at a time. The planning and control must take these depend-
encies into account and the machines must be planned and controlled simultaneously
to realize short leadtimes and a good delivery performance.

In the operations research literature, machine scheduling problems, such as the
job shop problem, are a popular area of research and a high level of algorithmic design
and analysis has been achieved. These problems are, however, “clean” in that they
ignore the nasty side constraints that often occur in practice. In contrast, the production
literature addresses such practical scheduling problems, but the emphasis is mainly
on problem formulation and giving practical solutions. The algorithms that are
proposed are usually myopic: Often, a number of priority rules is tested and the best
one is proposed.

This paper tries to fill the gap between the operations research literature and the
production literature by extending the Shifting Bottleneck (SB) procedure of Adams
et al. [1] for the classical job shop to deal with practical features, such as transportation
times and convergent job routings. These practical features usually prohibit a good
theoretical analysis of the problem. The SB procedure decomposes the problem of
scheduling a classical job shop into a series of single-machine scheduling subproblems.
For practical applications, computation time is very important. In general, the SB
procedure produces good solutions for job shop problems in relatively short com-
putation time; cf. Vaessens et al. [21]. This is why we use the SB procedure, instead
of randomized local search methods like tabu search and simulated annealing that
take more computation time.

The original paper by Adams et al. has prompted quite some research on the SB
procedure, which has taken two directions. The first concerns algorithmic improve-
ments of the procedure; see, for instance, Dauzère-Pérès and Lasserre [11], Balas
et al. [2], and Balas and Vazacopoulos [3]. The second direction concerns the adjust-
ment of the SB procedure to more practical job shops, i.e., job shops with practical
side features such as simultaneous resource requirements and setup times. Ovacik
and Uzsoy [16] use an adapted SB procedure for scheduling semiconductor testing
facilities. Their computational experiments with real-life data show that this procedure
significantly outperforms dispatching rules both in terms of solution quality and
robustness. Ivens and Lambrecht [13] discuss some practical extensions of the SB
procedure, such as release and due dates, setup times, and convergent job routings.

In this paper, we report on the research in the area of extending the SB procedure
with practical features. This paper is partly based on the work of Meester [14], who
focuses on simultaneous resource requirements, and on the work of Schutten [19]
who focuses on problems with setup times and convergent job routings. Also, part of
this paper is based on graduation projects at the University of Twente. The main goal
is always to deliver the jobs in time, i.e., before their due date. The SB procedure with
extensions is part of a commercial shop floor control system called JOBPLANNER .

The plan of this paper is as follows. In the next section, we discuss the classical
job shop problem. In section 3, the SB procedure will be discussed, while possible

J.M.J. Schutten y Practical job shop scheduling162



extensions of this procedure are outlined in section 4. In section 5, we report on some
algorithmic improvements of the SB procedure. Finally, in section 6, we end with
some conclusions.

2. Classical job shop problem

The problem of scheduling jobs in a machine shop is often modeled as a classical
job shop problem, which is described as follows. Given is a shop consisting of m
machines M1, M2,…, Mm. On these machines, a set of n jobs J1, J2,…, Jn needs to be
scheduled. Each machine is available from time 0 onwards and can process at most
one job at a time. Each job Jj consists of a chain of operations O1j , O2j ,…,Onj, j , where
nj denotes the number of operations of job  Jj . Operation Oij  can only be processed
after the completion of operation Oi –1, j (i = 2,…, nj); operation O1j  is available from
time 0 onwards. Oij needs uninterrupted processing on machine µ ij during a given
non-negative time pij . The objective is usually to find a schedule that minimizes the
makespan, that is, to find a schedule in which the time to process all jobs is minimal.

The classical job shop problem is one of the hardest combinatorial optimization
problems. For example, a problem with only 10 jobs and 10 machines, proposed by
Fisher and Thompson [12], remained unsolved for more than 25 years, in spite of the
research effort spent on it. Due to its intractibility, several authors develop branch and
bound algorithms to solve the problem; cf. Carlier and Pinson [9] and Brucker et al. [6].
Most algorithms for the classical job shop problem of minimizing makespan use a
disjunctive graph G to represent an instance. For each operation Oij , G has a node υij

with weight pij . G also has two auxiliary nodes s and t, both with weight 0. For each
pair of consecutive operations Oij  and Oi +1, j , G has a conjunctive arc (υij , υi+1, j)
(i = 1,…, nj – 1). Also, there are arcs from s to υ1j and arcs from υnj, j to t ( j = 1,…, n).
Between every pair of operations Oij and Okl that must be processed on the same
machine, G has a disjunctive edge. The operations that are connected by disjunctive
edges form a conflict set: They cannot be processed simultaneously. The weights of
all arcs and edges are 0. The crux is now that each orientation of all disjunctive edges
such that G contains no directed cycle results in a feasible schedule. The makespan of
this schedule equals the length of the longest weighted path from s to t in the resulting
graph. Accordingly, minimizing makespan comes down to finding an orientation of
the edges such that the length of the longest weighted path from s to t is minimal.

Table 2 shows the data of an instance with 3 machines and 3 jobs, where each job
consists of 3 operations. Figure 1 shows the graph representing this instance. Figure 2
gives a representation of the feasible schedule with O11 – O22 – O33 the sequence on
machine M1, O12 – O23 – O31 the sequence on machine M2, and O13 – O21 – O32 the
sequence on machine M3. For convenience, we left out the arcs that are induced by
transitivity; for example, we left out the arc (υ11, υ33). Note that in the resulting graph
each node υij  has indegree and outdegree of at most 2. The longest weighted path
from s to t is the path s – υ11 – υ21 – υ32 – t with length 19.
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3. Shifting Bottleneck procedure

Due to its intractability, various approximation algorithms have been proposed
for the job shop problem, including tabu search, simulated annealing, and genetic
algorithms. We refer to Vaessens et al. [21] for a computational study of the perform-
ance of the most prominent. One of them is the Shifting Bottleneck (SB) procedure of

Table 1

Data for example instance.

Jj µ1j µ2j µ3j p1j p2j p3j

J1 M1 M3 M2  4  7  6
J2 M2 M1 M3  3  5  8
J3 M3 M2 M1  2  6  7
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Figure 1. Graph representing example instance.
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Figure 2. Graph representing a feasible solution.
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Adams et al. [1]. The SB procedure is an intuitive algorithm that decomposes the job
shop problem into a series of single-machine subproblems. It schedules the machines
one by one and focuses on bottleneck machines. The method heavily relies on com-
putation of longest weighted paths in the graph G discussed above:

• the longest weighted path from node s to node υij , not including the weight of
υij , defines the earliest possible starting time of operation Oij , that is, it defines
a release date rij for operation Oij ;

• the length of the longest weighted path from node υij  to node t, not including the
weight of υij , equals the minimum time the shop needs to process all jobs after
the completion of operation Oij , that is, it defines a run-out time qij for operation
Oij ;

• if all machines are scheduled, then the longest weighted path from s to t equals
the makespan of this schedule.

The procedure starts by removing all disjunctive edges from G, labeling all
machines as non-bottleneck machines, and computing the longest paths. The longest
path computations take O(N) time, where N = ∑n

j =1 nj , since each node υij  has out-
degree at most two. Next, all machines are scheduled separately. We then need to
solve m single-machine scheduling problems of minimizing makespan where the
operations have release dates and run-out times. If we give operation Oij  a due date
dij = – qij , then these problems are equivalent to the single-machine scheduling prob-
lems of minimizing maximum lateness Lmax, which measures the maximum difference
between the completion times and the due dates of the operations. The release dates
and run-out times of the operations follow from the longest path computations. Adams
et al. use Carlier’s [7] optimization algorithm to solve these single-machine scheduling
problems. The machine with the largest resulting makespan is labeled as a bottleneck
machine. The schedule of this machine is fixed by adding to G the arcs representing
the sequence on this machine. Now, longest paths are recomputed and the non-bottle-
neck machines are scheduled subject to the updated release dates and run-out times.
The machine with the largest resulting makespan is also labeled as a bottleneck machine.
The bottleneck machines are now rescheduled in a special bottleneck optimization
step. G is changed, such that the machine arcs represent the, possibly changed,
sequences on the bottleneck machines. Longest paths are again computed, the non-
bottleneck machines are scheduled separately, and so on. This process continues until
all machines have been labeled as bottleneck machines.

4. Extensions of the SB procedure

The SB procedure consists of some generic steps, such as the computation of
longest paths in G. Apart from the condition that G may not contain directed cycles,
we imposed no properties on G. The decomposition of a job shop problem results for
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the classical job shops in single-machine scheduling subproblems. In this section, we
show that by changing the properties of G, by redefining the conflict sets, and by
changing the algorithms for the machine scheduling subproblems, we can deal with
various extensions of the classical job shop problem.

Practical instances may be very large and the machine scheduling subproblems
can then often not be solved to optimality in reasonable time. In the SB procedure, it
is possible to use a heuristic for the machine scheduling subproblems. Below, we
discuss possible extensions of the classical job shop problem and how we model them.
Although all possible combinations of those extensions are allowed, we only consider
one extension at a time. We stress that the decomposition principle proceeds along the
lines Adams et al. proposed; we only adjust G, specify the resulting conflict sets, and
characterize the resulting machine scheduling subproblems.

4.1. Release and due dates

In the classical job shop problem, all jobs become available for processing at the
same time. This is seldom true in practice, where jobs may have different release
dates. Suppose now that job Jj has release date rj. If we give the arc (s, υ1j) weight  rj,
then the longest weighted path from s to υ1j is at least rj . Thus, we ensure that r1j ≥ rj

and that operation O1j does not start before time rj. Also, it is possible that we cannot
process operation Oij before some point in time tij (i = 1,…, nj) because some tool or
material is not available before that time, with tij > rj + pk j.k = 1

i −1∑  We model this by
adding an arc from s to υij  with weight tij .

In the classical job shop problem, the objective is usually to minimize makespan.
In practice, jobs for different customers have different due dates. It is then appropriate
to have an objective function that measures the due date performance. Let dj denote
the due date of job Jj . Consider now the objective of minimizing maximum lateness
Lmax with Lmax = max j =1,…, n{Cj – dj} and Cj the completion time of Jj . The objective
minimizing Lmax is represented in G by giving the arcs (υnj, j , t) weight – dj  ( j = 1,…,n).
Note that this objective generalizes minimizing makespan.

Thus, to deal with job release and due dates, we do not change the considered
conflict sets and the machine scheduling subproblems. We only change the weights of
some arcs in G. These changes are made off-line, i.e., before the SB procedure starts.
If also the operations have release dates, then we must add some arcs to G (off-line).

4.2. Setup times

A machine may have to be set up before it can process the next operation. This
happens, for instance, when tools must be switched off-line and when the machine
must be cleaned between two operations. During a setup, the machine cannot process
any operation.

Suppose that a partial schedule on the machine with setup times is Ogh – Oij . The
setup time between Ogh and Oij  is sgh, ij . In G, we model this setup time by giving
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weight sgh, ij  to the machine arc (υgh, υij). The longest weighted path from υgh to υij in
G is then at least sgh, ij . This ensures that there are at least sgh, ij  time units between the
completion of Ogh and the start of Oij , which leaves room for the needed setup. Note
that the incorporation of setup times requires on-line changes of G, i.e., during the
execution of the SB procedure. As soon as we know that Ogh and Oij  are processed
consecutively, we add to G the machine arc (υgh, υij) with weight sgh, ij .

In the standard SB procedure, we need to solve single-machine problems of
minimizing makespan where the jobs have release dates and run-out times. Now, the
needed setup times between the execution of the operations need to be taken into
account. For single-machine scheduling problems with family setup times, Schutten
et al. [20] present a branch and bound algorithm that solves instances with up to 40
jobs to optimality.

Accordingly, the SB procedure can deal with setup times by changing the weights
of the machine arcs in G (on-line), and by having an algorithm for the machine sched-
uling subproblems with setup times. The conflict sets do not change.

In the Sheet Metal Factory of DAF trucks in Eindhoven (The Netherlands), setup
times occur when changing the moulds of the presses. Belderok [4] tests the SB pro-
cedure with setup times in this factory. His computational experiments indicate that
a significant leadtime reduction and a better due date performance is possible, in
particular for the Sheet Metal Press department. For example, Belderok tests the
procedure on a real-life set of jobs that were processed in five days. The makespan of
the schedule generated by the SB procedure is less than three and a half days.

4.3. Parallel machines

In the classical job shop, every operation requires a specific machine. In practice,
an operation may sometimes be performed by any machine from a group of parallel
machines. Parallel machine scheduling reduces to assigning each operation to one of
the machines and sequencing the operations assigned to the same machine.

The decomposition of the job shop scheduling problem results in this case in a
series of parallel-machine scheduling problems where the jobs have release dates and
run-out times. If the machines in a group are identical, then we may use Carlier’s [8]
algorithm to solve these machine scheduling subproblems.

If the machines in the group are not identical, that is, if the processing time of an
operation differs across machines, then the weight of the corresponding node changes
during the execution of the SB procedure. If a parallel-machine group is labeled as a
bottleneck, then the weight of the corresponding node is equal to the processing time
on the machine to which the operation is assigned. Otherwise, the weight is equal to
the smallest processing time of this operation.

In G, we have for each machine in this group a chain of arcs representing the
sequence on this machine. In figure 3, the bold arcs represent the sequences for a
group of two parallel machines with O12 – O21 the sequence on the first machine and
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O14 – O23 – O25 the sequence on the second machine. Note that we do not specify a
sequence for all operations in the conflict set resulting from the parallel-machine
group. In figure 3, e.g., we do not specify a sequence between operations O12 and O14

because they are processed by different machines in the group.
Hence, the incorporation of parallel-machine groups requires an algorithm to

solve the resulting parallel-machine scheduling subproblems. If the processing times
are machine dependent, then this requires on-line changing of node weights.

4.4. Transportation times

In practice, it may be impossible to start operation Oij immediately after the
completion of operation Oi –1, j because the product must first be transported from
machine µ i–1, j  to machine µ ij . If the transportation of a product always starts
immediately after the completion of the operation, then we model this by giving arc
(υi–1, j , υij ) a weight that is equal to the transportation time. This creates enough time
between the completion of Oi –1, j and the start of Oij to transport the product to the
next machine. Note that we only change G off-line to deal with this type of trans-
portation time.

Reesink [17] tests the SB procedure with transportation times at Stork Plastics
Machinery in Hengelo (The Netherlands). He also uses transportation times to model
operations that are subcontracted. These operations are presumed to have a fixed
leadtime. On randomly generated test sets, Reesink tests the influence of transportation
times of different magnitude on the performance of the SB procedure. In his tests,
there are transportation times between any two consecutive operations. His tests indi-
cate that the increase of the leadtimes of the jobs is less than the total increase of the
transportation times. Belderok [4] uses transportation times to make the resulting
schedule more robust, that is, a small deviation in the processing time of an operation
does not necessarily result in a need for rescheduling.

Figure 3. Representation of a parallel machine schedule.
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If transportation capacity is limited, then transportation is an operation that we
need to schedule as well; it is then uncertain when transportation takes place and,
accordingly, when the next operation can start. We model, for example, transportation
with vehicles that can only transport one job at a time as a parallel-machine group
with setup times. Each vehicle is seen as a machine in this group, with the number of
machines being equal to the number of transportation vehicles. Figure 4 shows the

Figure 4. Schedule of transportation vehicle.
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representation of an instance with two transportation operations. The nodes corre-
sponding to these transportation operations are indicated by squares instead of circles.
The figure represents the schedule O21– O32 for the transportation vehicle. This means
that the vehicle must pick up job J1 at machine µ11 and transport it to machine µ 31.
This transportation takes 7 time units; after this, the vehicle must pick up J2 from
machine µ 22. Since the vehicle can only transport one job at a time, it travels empty
from µ31 to µ22. We see this empty travel time for the vehicle as a setup time, and
model it accordingly. An open question is the modeling of congestion and blocking of
vehicles within the SB procedure.

4.5. Unequal transfer and production batches

A job may be an order to produce a batch of b identical products, not just a
single product. An operation Oij  of this job is then actually a series of b identical
operations: Oij =(Oi,1, j , Oi,2, j,…,Oi, b, j). If the b identical products need to be processed
consecutively on each machine, then Oij  is called a production batch. We assume that
a production batch needs to be processed continuously, i.e., without idle time, on
the machines. Suppose now that we may transport Oi, k, j (k = 1,…,b – 1) to the next
machine immediately after its completion. If we do this, then it may result in a smaller
completion time on the next machine for the production batch. We call Oi, k, j a transfer
batch. For problems with pij  > pi +1, j, we shift the batches on the second machine to
the right, such that no idle time between the batches on this machine exists; see figure 5
for an example with b = 4. Note that the difference in time between the completion
of Oij and the start of Oi +1, j is at least (–(b – 1) b) · pi +1, j time units. For problems
with pij  ≤ pi +1, j, the transfer batches may immediately be processed on the next
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machine after transporting it; see figure 6. The difference between the completion of
Oij  and the start of Oi +1, j is now at least (–(b – 1) b) · pij time units. The SB procedure
can therefore deal with unequal transfer and production batches if we give arc
(υij , υi +1, j) weight (–(b – 1) b) · min{ pij , pi +1, j}. Therefore, unequal transfer and
production batches require only an off-line change of the graph G.

4.6. Multiple resources

Often, an operation needs two or more resources simultaneously for its process-
ing. Besides a machine, an operation may need a pallet on which it must be fixed,
certain tools, or an operator at the machine. We model this by adding disjunctive edges
to G that connect all operations that need the same resource. In figure 7, operations
O31, O32, and O33 need, besides the machines, the same additional resource. In the SB
procedure, we orient those edges such that they represent the schedules on the addi-
tional resources. We distinguish two approaches to deal with multiple resources.

(1) The centralized approach. In this approach, we see every resource as a machine
that needs to be scheduled. We make no difference between machines and other
resources. Consequently, every resource becomes a bottleneck machine in the
SB procedure. This approach is useful when the number of additional resources

Figure 5. Transfer batches with pij  > pi+1, j  and b = 4.

Figure 6. Transfer batches with pij  ≤ pi+1, j and b = 4.
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Figure 7. Graph with multi-resource aspects.

is limited. In the centralized approach, we have to define a conflict set for each
resource. The resulting machine scheduling subproblems do not change. The
interaction of the different resources is handled by the SB procedure; this is why
we call this approach the centralized approach.

(2) The decentralized approach. If the number of additional resources is large, then
the centralized approach may be time-consuming, since we need to label each
resource as a bottleneck machine. Sometimes, however, a group of resources
may be hardly restrictive. This is, for instance, true for the cutting tools in a
Flexible Manufacturing Cell (FMC). Usually, an FMC consists of a parallel
machine group and a large set of unique tools that can only be used by the
machines of the FMC. If an FMC is part of the job shop, then in the decentralized
approach we need an algorithm to schedule the FMC, that is, we need an
algorithm that minimizes the makespan for a group of parallel machines taking
into account the tool restrictions, while furthermore the operations have release
dates and run-out times. The interaction of the tools and the machines in the
FMC is handled by the algorithm for scheduling the FMC, not the SB procedure.
This is why we call it the decentralized approach.

Meester and Zijm [15] present a hierarchical algorithm to schedule an FMC.
They compare the performance of the algorithm with lower bounds that are found
by relaxing the multi-resource constraints. The gap between these lower bounds
and the objective values of the generated schedules is sometimes quite large.
The authors feel that this is due to the weakness of the lower bounds. In contrast
with the modeling of the centralized approach, the modeling of this approach
affects both the conflict sets and the machine scheduling subproblems.

Meester [14] tests both approaches on real-life instances. In one case, he tests
the centralized approach in the machine shop of Ergon B.V. in Apeldoorn (The Nether-
lands) where the operations need besides a machine an operator during processing.
In another case, Meester tests the decentralized approach in the machine shop of
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El-o-Matic B.V. in Hengelo (The Netherlands). This machine shop consists of conven-
tional and computer-controlled machines, among which one FMC with a large number
of unique tools. Compared with the planning procedure used by the companies so far,
the SB procedure shows in both cases a significant improvement of the due date
performance.

Note that the outdegree of the nodes υij  is not bounded by two any more. This
means that the longest path computations in the graph G take O(N 2) time, instead of
O(N), because there are now O(N 2) arcs in G. If, however, the outdegree of the nodes
υij is bounded by k, e.g., the number of additional tools required for each operation is
bounded by k – 2, then the longest path computations take O(kN) time.

4.7. Down times

The machines in a shop may have different availability times: Some machines
work 24 hours a day, other machines only work 8 hours a day. Also, machines might
be unavailable due to maintenance. We call a period in which a machine is not available
for processing a down time. We distinguish two types of down times: preemptive and
non-preemptive down times. We call a down time preemptive if an operation may
start before and finish after it. A weekend, for example, is often a preemptive down
time: It is often allowed that an operation starts on Friday afternoon and finishes on
Monday morning. We model preemptive down times by increasing the weight of a
node with the length of the down time if the corresponding operation straddles the
down time (an on-line change of G). We also need an algorithm that schedules a
machine with preemptive down times. The objective is to minimize makespan and the
operations have release dates and run-out times. Reesink [17] shows that Carlier’s
algorithm (see [7]) can easily be extended to solve this problem. The key idea is to
increase the processing time of an operation if it straddles a down time.

If each operation needs to be completely processed either before or after a down
time, then this down time is called a non-preemptive down time. Maintenance, for
example, is usually a non-preemptive down time: During maintenance, no job may be
on the machine. The non-preemptive down times are modeled as operations that need
to be processed in a prespecified interval. For each non-preemptive down time, we
therefore add a node to G.

If the machines in a shop have non-preemptive down times, then the decom-
position of the job shop problem results in machine scheduling subproblems in which
the machines have down times. Westra [22] and Woerlee [23] propose algorithms to
solve this machine scheduling subproblem. Either algorithm sees a down time as an
operation Oij with a release date rij  equal to the start of the down time, a processing
time pij  equal to the length of the down time, and a run-out time qij = Q – rij  – pij ,
with Q an appropriate constant. Let Cmax(Q) denote the optimal value of the resulting
problem; Carlier’s algorithm (see [7]) can be used to find this value. Clearly, Cmax(Q) ≥
rij + pij  + qij  = Q and Cmax(Q) is monotonic non-decreasing in Q. Westra and Woerlee
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show that if Cmax(Q) = Q, then Cmax(Q) ≥ C*
max , with C*

max  the optimal solution value
of the problem in which each operation associated with a down time must start at its
release date. If Cmax(Q) > Q, then Cmax(Q) < C*

max . The problem is then to find the
smallest Q such that Cmax(Q) = Q. This can be done by binary search.

Note that both preemptive and non-preemptive down times require on-line
changes of G and algorithms to solve machine scheduling problems with down times.

A problem with the modeling of both preemptive and non-preemptive down times
is the following: Suppose that Mi is a machine with preemptive down times and that
Mi is the first bottleneck machine. Eventually, Mj ( j ≠ i) will also be labeled as a
bottleneck machine. The schedule of Mj is then fixed by adding to G the machine arcs
representing this schedule, which may delay operations on Mi. It is then possible that
an operation that straddled a down time can now start only after  the down time. So,
the weight of the corresponding node should no longer be increased with the length of
the down time. To resolve this problem, we propose an “intelligent” longest path
procedure: When the longest weighted path to a node is computed, the procedure
checks the down times of the machines and determines whether the weight of this
node should be increased. A similar problem occurs for machines with non-preemptive
down times. In this case, our longest path procedure checks whether an operation Oij

can be processed entirely before the next down time. If not, the procedure inserts an
operation representing the down time just before Oij .

4.8. Convergent and divergent job routings

In the classical job shop problem, each job is a chain of operations. In practice,
the job routings may be convergent or divergent. A convergent job routing occurs
when some components are assembled. Figure 8 shows a representation of an instance

Figure 8. Instance with a convergent job routing.
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with a convergent job routing. An example of a divergent job routing is the routing of
a metal sheet. Before cutting, the sheet needs some operations such as cleaning and
surface treatments. After cutting, the different parts of the sheet have their own routings
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through the shop. We model this by allowing the nodes in G to have more than one
ingoing and outgoing job arc. Note that this modeling of convergent and divergent job
routings only influences the properties of G (off-line), not the machine scheduling
subproblems and the conflict sets. Schutten [18] tests the performance of the SB
procedure for an assembly shop. The influence of setup times and the arrival process
is studied in this shop. Also, the influence of dynamic scheduling instead of static
scheduling is studied. Test results show that the SB procedure outperforms priority
rules on the due date performance indicators maximum lateness and mean tardiness.
The priority rules perform better for the performance indicator number of late jobs.

4.9. Open shops

In the classical job shop, the sequence in which the operations of a job must be
processed is fixed. In open shop problems, it is not: The operations can be performed
in any order, although the operations of the same job cannot be processed simul-
taneously. We model this by introducing for each job a single artificial machine on
which the operations of this job must be processed. Therefore, open shop problems
can be seen as special cases of multi-resource problems. The schedule on the artificial
machine determines the sequence in which the operations of the corresponding job
are processed. Each operation needs at least two resources: The artificial machine and
the machine on which the actual processing takes place. Also, we need arcs (s, υij )
(j = 1,…, n; i = 1,…, nj) to ensure a path from s to every other node. Analogously, we
need an arc (υij , t) to ensure a path from node υij  to t. Figure 9 shows the disjunctive
graph model of an open shop problem with n = m =2, the data of which are found in
table 2. The solid edges in the figure indicate that O11 and O12 as well as O21 and O22

Figure 9. Representation of an open shop problem.
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Table 2

Open shop problem.

Jj µ1j µ2j p1j p2j

J1 1 2 7 9
J2 1 2 3 5
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need to be processed on the same machine, and can therefore not be processed simul-
taneously. Likewise, O11 and O21 as well as O12 and O22 can not be processed
simultaneously because they are operations of the same job. This is indicated by the
non-solid edges.

5. Improvements of the SB procedure

Recently, some algorithmic improvements of the SB procedure have been
proposed. In this section, we report on three of the improvements that appeared in the
literature.

In the SB procedure, operations to be processed on the same machine are treated
independently. This is not correct. Figure 10 is the graph that we get after fixing
schedule υ13 – υ32 – υ21 on machine M3 for the instance of which the data can be found
in table 1 in section 2. O12 and O31 need to be processed on machine M2. If we want

Figure 10. Graph with delayed precedence constraint.
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to schedule this machine, then we must schedule O12 before O31, because otherwise a
directed cycle would occur in the graph and then the schedule would be infeasible.
Moreover, after the completion of O12, we must first process O22, O32, and O21,
respectively, before we can start the processing of O31. So, there must be a gap of at
least p22 + p32 + p21 time units between the completion of O12 and the start of O31. A
precedence constraint between two operations with the additional constraint that
there is a certain delay between these two operations is called a delayed precedence
constraint. Dauzère-Pérès and Lasserre [11] were the first to incorporate delayed
precedence constraints in the SB procedure. As a result, they ensure a monotonic
decrease of the makespan in the bottleneck reoptimization step. They use approxi-
mation algorithms to solve the machine scheduling subproblems where the operations
have release dates, run-out times, and delayed precedence constraints. Test results
show that the quality of the schedules generated by this modified SB procedure is
generally better than those generated by the standard SB procedure. If we want to
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incorporate delayed precedence constraints in the SB procedure with extensions, then
each algorithm for the machine scheduling subproblems should be changed to deal
with these constraints. The computation of the delayed precedence constraints, how-
ever, takes O(N 2) time, which may be too much for practical instances.

Balas et al. [2] propose an algorithm that solves the single-machine problems
with delayed precedence constraints to optimality. The algorithm solves large instances
that were randomly generated in a way similar to that of Carlier [7]. Balas et al. use
this algorithm in the SB procedure with a modified bottleneck reoptimization step.
Test results show that this variant of the SB procedure finds consistently better results
than the standard SB procedure, but the computation time increases a lot. Another
exact algorithm for the single-machine scheduling problem with delayed precedence
constraints is proposed by Dauzère-Pérès [10].

In the standard SB procedure, the bottleneck reoptimization step consists of
rescheduling the bottleneck machines one by one. Balas and Vazacopoulos [3] propose
to reoptimize partial schedules by applying a variable-depth search algorithm. This
algorithm takes about the same computation time as the algorithm of Balas et al. [2],
but performs better; cf. Vaessens et al. [21].

6. Conclusions

The SB procedure has been proven to be a good method to schedule classical
job shops. Those shops, however, rarely occur in practice. We showed that the SB
procedure can easily be extended to deal with practical features such as transporta-
tion times, multiple resources, and down times. Experiences at a number of Dutch
companies show that the SB procedure with extensions performs well. Recently, some
modifications of the SB procedure have been proposed. Most modifications, however,
result in large computation times and are, therefore, not usable in practical situations.
The SB procedure with extensions is currently part of a commercial shop floor control
system called JOBPLANNER .
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