
Annals of Operations Research 96 (2000) 17–38 17

Solving a chemical batch scheduling problem by local
search

Peter Brucker a,∗ and Johann Hurink b

a Department of Mathematics, University of Osnabrück, D-49069, Osnabrück, Germany
b University of Twente, Enschede, The Netherlands

In this paper the following chemical batch scheduling problem is considered: a set of
orders has to be processed on a set of facilities. For each order a given amount of a product
must be produced by means of chemical reactions before a given deadline. The production
consists of a sequence of processes whereby each process has to be performed by one facility
out of a given subset of facilities allowed for this process. The processing times depend on
the choice of the facility and the processing is done in batch mode with given minimum
and maximum sizes. The problem is to assign the processes to the facilities, splitting them
into batches, and scheduling these batches in order to produce the demands within the given
deadlines.

For the scheduling part of the problem we present an approach based on the following
steps. First, a procedure to calculate the minimum number of batches needed to satisfy the
demands is presented. Based on this, the given problem is modeled in two different ways: as
a general shop scheduling problem with set-up times or as scheduling problem with positive
time-lags. Finally, a two-phase tabu search method is presented which is based on the two
different formulations of the problem. The method is tested on some real world data.

Keywords: case study, batch production, tabu search, general shop problem, time-lags,
mixed graph scheduling

1. Introduction

In this case study we consider a multi-product batch processing problem which
models a special situation in the chemical processing industry. The problem may be
formulated as follows.

q orders A1, . . . ,Aq must be executed. For order Ai a chemical process must
provide ai units of a product before a given deadline di. The process starts with a set of
raw materials from which the product is derived by a sequence of chemical processing
tasks Pi1, . . . ,Pini . The production process can be represented by an acyclic network
connecting the processing tasks according to the material flows. The predecessors of a
processing task Pij provide different inputs which are transformed by Pij into outputs
serving as inputs for successors of Pij . Part of the output of Pij may also be used

∗ Supported by the Deutsche Forschungsgemeinschaft, Project “Komplexe Maschinen-Schedulingprob-
leme”.

 J.C. Baltzer AG, Science Publishers



18 P. Brucker, J. Hurink / Chemical batch scheduling problem

again as the input of Pij . In this case Pij is called a loop processing task.
Processing tasks are assigned to processors. We have m facilities (processors)

M1, . . . ,Mm. Not all processors can perform all processing tasks, i.e., associated with
each Pij there is a subset Mij ⊆ {M1, . . . ,Mm} of the set of processors which are
suitable for performing the corresponding chemical process. The processing tasks Pij
are performed in batch mode on processor Mk, i.e., we have a batch production with
a minimum and maximum batch size bijk and bijk, which depend on the chemical
reactions involved and the capacity of the reactors used. Thus, it is usually necessary
to split a task into several batches which are processed one after the other on the
assigned facility. A batch is processed without interruption in time pijk, which only
depends on the reactions performed and on the facility used.

The costs Cijk(x) of producing a Pij-batch of bijk 6 x 6 bijk units on facility
Mk are given by

Cijk(x) =

{
C1
ijkx+ C2

ijk if x > 0,
0 if x = 0.

(1.1)

(C1
ijk denotes the variable costs of producing one unit and C2

ijk the fixed costs of
producing one batch of Pij on Mk.)

Besides the production costs, there are constant set-up costs Cset if a facility
moves from the production of one order to the production of another order. In addition
to the set-up costs, the movement from the production of one order to the production
of another order on a facility leads to a constant set-up time Pset during which the
facility cannot be used for processing.

The objective is to

• assign the processing tasks to the facilities,

• split the tasks into batches, and

• schedule the batches

in such a way that

• the demands are satisfied in time and

• the total costs are minimized.

The above defined batching problem can be solved in principle by a two-phase ap-
proach. In the first phase the processing tasks of all orders are assigned to processors.
Based on this assignment, the minimal number and sizes of the batches necessary
to satisfy the demands are calculated and time constraints between batches are fixed.
Since the production costs only depend on the machine assignment and the sizes of
batches, the decisions in this first phase completely determine the production costs.
Furthermore, after phase 1 it is ensured that the demands are satisfied. In the second
phase the problem of scheduling the given batches on the facilities while respecting
the time constraints is solved. In this phase the set-up costs and the given deadlines
are crucial.



P. Brucker, J. Hurink / Chemical batch scheduling problem 19

In this work we will not consider the assignment of tasks to machines, but
assume that this assignment is already given (our industrial partner provided us with its
preferred machine assignment). Thus, we will mainly concentrate on the construction
of batches and on the scheduling problem given in the second phase. First, in section 2
we describe how for a given machine assignment the processing tasks of an order can be
split into batches and give the precedence relations between these batches. Afterwards,
in section 3 we present two different models for the batch scheduling problem derived
in the previous section. Based on these two models, in section 4 we give tabu search
methods to solve the batch scheduling problem. Finally, some computational results
on a real world instance and concluding remarks are presented.

A number of articles deal with scheduling problems for chemical batch processes.
For comprehensive literature reviews we refer to Rippui [10] and Reklaitis [9]. In
Blömer and Günther [2], Burkard et al. [5] and Kondili et al. [7] mixed integer linear
programming formulations for batching problems related to our problems are given.
In these formulations deadlines for the demands and set-up times and set-up costs for
the facilities are not taken into account. On the other hand, we do not consider the
batch sizes as variables and do not introduce capacity constraints on storage. Storage
was never a bottleneck in our type of application.

One previous work on an application of local search to a batch problem is due
to Löhl et al. [8]. However, in this paper a specific problem arising in polymerization
processes has been solved using a genetic algorithm. Finally, an approach proposed
by Burkard et al. [4] should be mentioned which shows some similarities with ours.

2. Batch production of a single order

In this section we will derive the batch scheduling problem which results from
the stated chemical batch problem if a fixed machine assignment is given. To achieve a
solution of the scheduling problem, we may model the batch production of each order
separately. We start with a continuous system consisting of a network of processing
tasks. This model is presented in section 2.1. It is used in section 2.2 to calculate the
inputs and outputs which are necessary to satisfy a given demand, i.e., to produce a
given amount of the ordered product. This is accomplished by a backward calculation.
The next step is to split each processing task into batches. A corresponding algorithm
is presented in section 2.3. Another complication is the existence of loop processes,
which is discussed in section 2.4. Due to loop processes and to the fact that the batch
size is bounded from below the inputs and outputs must be modified appropriately
during the backward calculation. Finally, in section 2.5 precedence relations between
the batches are introduced.

2.1. A continuous model

A chemical production process without batching restrictions can be represented
by an acyclic graph G = (V ,A) in which the nodes V = {1, . . . ,n} represent the



20 P. Brucker, J. Hurink / Chemical batch scheduling problem

different processing tasks and the arcs represent the output/input relations between the
tasks. To describe these relations more precisely, assume that a processing task k
transforms given inputs of altogether Ik units into outputs of altogether

Lk := tkIk (2.1)

units, where the tk are given constants. The input Ik consists of several products
which have to be mixed in some given ratio. These products are provided by preceding
processing tasks and/or raw material. Thus, for each predecessor j of processing task
k, we have a value Mjk which denotes the fraction of input Ik which is provided
by processing task j. Similarly, the output of a processing task splits into several
products which are used as input for succeeding processing tasks or which may be
used to satisfy demands. Again, the ratio between these products is fixed. By Tjk we
denote the fraction of the output Lj which is provided to processing task k. Ideally,
we have LjTjk = MjkIk = MjkLk/tk or

Lk = αjkLj with αjk :=
Tjktk
Mjk

. (2.2)

(2.2) describes how the output of processing task j is transformed into the output of
processing task k. In graph G this is represented by an arc (j, k) with weight αjk.
There is a special terminal vertex (vertex without successors), say vertex n, which
provides the ordered product as the output. The inputs of sources (i.e., of vertices
without predecessors) correspond to the raw materials needed to run the production
process.

2.2. Backward calculation

To satisfy a demand of a units we have to solve the following system of linear
equations:

Ln = a,

Lk =αjkLj for all (j, k) ∈ A. (2.3)

(2.3) has a solution if and only if

αjj1αj1j2 · · ·αjs−1,jsαjsk = αji1αi1i2 · · ·αir−1,irαirk

for any two paths j → j1 → j2 → · · · → js → k and j → i1 → i2 → · · · → ir → k
connecting j and k in G = (V ,A). If (2.3) does not have a solution we relax the
constraints Lk = αjkLj to Lk 6 αjkLj , i.e., we now have to find minimal values
L1, . . . ,Ln satisfying

Ln = a,
1
αjk

Lk 6Lj for all (j, k) ∈ A,



P. Brucker, J. Hurink / Chemical batch scheduling problem 21

or, equivalently,

Ln = a,

Lj = max
(j,k)∈A

1
αjk

Lk for all j = 1, . . . ,n− 1. (2.4)

Values L1, . . . ,Ln satisfying (2.4) can be achieved by considering the nodes of G in
a reverse topological order and calculating for each of them the value Lj due to (2.4).

Since graph G is acyclic and has only one terminal vertex, the above al-
gorithm will always terminate with output amounts Li for all tasks i. For any
source s of G = (V ,A) the necessary input (which will be raw material) is given by
Is = Ls/ts.

Since the amount of output for a task is calculated as the maximum amount
which is used for the successors (see (2.4)), not all the output resulting from this task
will be used by the succeeding tasks. We assume that these excesses are stored in
corresponding buffers and have no further influence.

2.3. Batching

In the previous subsection, for each processing task we calculated an amount L of
output which has to be produced. Due to physical constraints a facility can not produce
arbitrary amounts of output within the production of one batch. More precisely, the
output Lv of each batch v must satisfy the conditions

b 6 Lv 6 b. (2.5)

Thus, to produce L units of output, several batches may be necessary, or it may even
be impossible to produce exactly amount L. In the latter case we have to increase L.
In the following we will determine in dependence of L, b, and b a set of feasible
batches (in the sense of (2.5)) which produces a minimal amount L̃ > L of output. To
accomplish this we create q1 > 0 batches of size b, q2 > 0 batches of size b, and at
most one extra batch of size b with b < b < b. During this process, L is increased by
a minimal amount of ∆L units if necessary.

The numbers q1, q2, size b of a possible extra batch, and the incremental value ∆L
are calculated by the following algorithm. We assume that L is not a multiple of b.
Otherwise we have q1 = L/b, q2 = 0, and ∆L = 0.

Algorithm batching
1. q1 := bL/bc; *current number of large batches*
2. q2 := 0; *current number of small batches*
3. d := L− q1b *remainder*
4. IF d > b THEN b := d *extra batch*

ELSE
BEGIN

5. Calculate the greatest integer l with l(b− b) + d < b;



22 P. Brucker, J. Hurink / Chemical batch scheduling problem

6. If l > q1 THEN *no extra batch*
BEGIN

7. q2 := q1 + 1;
8. ∆L := b− (q1(b− b) + d);
9. L := L+ ∆L;
10. q1 := 0

END;
ELSE

BEGIN
11. q1 := q1 − (l + 1);
12. IF (l + 1)(b− b) + d = b THEN *no extra batch*
13. q2 := l + 1

ELSE *extra batch*
14. BEGIN q2 := l; b := (l + 1)(b − b) + d END

END
END

Note that the number of batches created by this algorithm is minimal. For given b and
b the expression L+ ∆L as a function f (L) of L has a form shown in figure 1 (for the
case b = 3 and b = 4). An explicit description of this function can be derived. Due
to the batching restrictions of a processing task k it may be necessary to increase Lk.
This is done during the backward calculation in the following way (see figure 1):

Figure 1. The function f (L).



P. Brucker, J. Hurink / Chemical batch scheduling problem 23

if Lk is the current value then we calculate the smallest function value f (L) > Lk and
replace Lk by f (L).

2.4. Loop processing tasks

A loop processing task k is a processing task which uses part of its output Lk as
the input of k. More specifically, this part of the output is a product which consists
of the same mixture of products as the input of this processing task, i.e., this part of
the output of a batch may be used to reduce the amount of input for the next batch
of the same processing task. By Tkk we denote the fraction of the output of a batch
returned as input for the next batch. A corresponding fraction of the last batch cannot
be used by task k. Thus if Lk is the total output of processing task k then the input is
decreased by Tkk(Lk − v) where v is the output of the last batch (we always choose
a batch with the smallest output as the last batch).

Example 1. We consider a processing task k with Lk = 30, bk = 5, bk = 7 and
tk = 0.5. Thus we have five batches with sizes 7, 7, 6, 5, 5. Without loop this would
imply Ik = 60.

If we now change k into a loop processing task with Tkk = 1/2 then 50% of
the output of each batch is returned and we have a situation shown in figure 2. The
modified input is Ik = 60 − (30 − 5)/2 = 47, 5. Furthermore, the total output of 30
units is split into 15 units which are passed to the successors, 12.5 units which are
used as additional input for process k, and 2.5 units stored in a buffer.

Figure 2. A loop processing task.



24 P. Brucker, J. Hurink / Chemical batch scheduling problem

2.5. Precedence relations between batches

As indicated in sections 2.3 and 2.4 each task will be split into several batches
which all have to be processed by the same machine. In principle, the processing
sequence of the batches of one task is arbitrary. However, we will fix this sequence
due to the following two reasons:

• Fixing the sequence of the batches of a task will reduce the number of decisions to
be made and, therefore, will make the problem much easier. Since the processing
times of all the batches belonging to one task are equal, and since there are at
most three different sizes of batches for a task, differences between two sequences
of batches will only occur due to precedence constraints (to start the kth batch of
a task different numbers of batches of predecessors of this task may have to be
finished) and, thus, we expect that fixing the sequences of the batches for a task
will not have much influence on the quality of the solutions achieved by heuristics.

• Without fixing the sequence of the batches of a task it is not possible to a priori
translate the precedences between tasks into precedences between batches, contrary
to the case of fixed sequences (see next paragraph). Thus, again, the problem will
become easier to handle.

We have chosen to sequence the batches of a task in order of nonincreasing size. To
model the sequence we introduce corresponding precedences between the batches, i.e.,
we represent a processing task by a chain of batches in nonincreasing order.

Furthermore, for a precedence relation between a processing task k and a process-
ing task j we can introduce precedences from certain batches of k to certain batches
of j. At every point where enough output has been produced by batches of k for a
new batch of j a corresponding arc is introduced. The example shown in figure 3
demonstrates this procedure. The output of the batches of k are denoted by Lkν and
the inputs of j by Ijν .

3. Two models for the production problem

In this section we consider the production problem of scheduling a given set of
orders. We assume that the tasks have already been assigned to machines and that by
the procedure described in section 2 for each order a model which is defined by an
acyclic graph in which the nodes represent batches has been calculated. In section 3.1
we combine these models in a general shop model with set-up times and introduce
the mixed graph model as a useful tool for the general shop problem. A restricted
version of this model is discussed in section 3.2. The basis of this approach is that
batches belonging to the same processing task are aggregated to a single task and that
the time dependences between the tasks are modeled by generalized precedences (with
non-negative time-lags) between the aggregated tasks.



P. Brucker, J. Hurink / Chemical batch scheduling problem 25

Figure 3. Precedence relations between batches.

3.1. A general shop model

A general shop problem can be described as follows. We have n jobs i = 1, . . . ,n
and m machines (processors, facilities) M1, . . . ,Mm. Each job i consists of a set of
operations Oij (j = 1, . . . ,ni) with processing times pij . Each operation Oij must be
processed on a dedicated machine µij ∈ {M1, . . . ,Mm}. There may be precedence
relation Oij → Okl between operations Oij , Okl of the jobs. Each job can only be
processed by one machine at a time and each machine can only process one job at a
time. Usually the objective is to find a feasible schedule that minimizes some objective
function of the finishing times Ci of the jobs i = 1, . . . ,n.

In a general shop model with set-ups the set of all operations is divided into
disjoint groups G1, . . . ,Gq . If on a machine two operations belonging to different
groups are processed one after the other then a set-up time and also set-up costs are to
be considered. We assume that all set-up times and all the set-up costs are the same,
i.e., they are given by constants Pset and Cset. The multi-product batch processing
problem can be formulated as special general shop problems with set-ups in which the
jobs correspond to the processing tasks of all orders and the operations correspond to
the batches of the processing tasks. Precedences are given by the precedences between
batches of the same orders as defined in section 2.5. Set-up times and set-up costs are
incurred if processing on a machine turns from one order to another, i.e., all operations
belonging to an order l form a group Gl.

In each group Gl there is a terminal job which corresponds to the terminal
processing task of the corresponding order. Let Cl be the completion time of this
terminal task and let Tl = max{0,Cl − dl} be the tardiness for order l. Our objective
is to find a schedule S which minimizes

f (S) = Cset

(
m∑
k=1

zk

)
+W

q∑
l=1

Tl. (3.1)



26 P. Brucker, J. Hurink / Chemical batch scheduling problem

In (3.1) zk denotes the number of set-ups on facility Mk. Furthermore, W is a large
penalty which forces all orders to be produced on time if this is possible. We denote
the problem of finding a schedule which minimizes (3.1) by GS.

It is convenient to represent feasible solutions of the general shop problem as
orientations of edges in a mixed graph G = (V ,C,D) where V is the set of all
operations, C = C1 ∪ C2 ∪R is a set of (directed) arcs called conjunctions and D =
D1 ∪D2 is a set of (undirected) edges called disjunctions. The sets C1,C2,R,D1,D2

are defined as follows:

C1 represents the set of all chain precedences between the batches of each processing
task,

C2 represents all other precedences which are defined between batches belonging to
the same order,

R is the set of all arcs of the form (0, i) connecting a dummy start operation 0 ∈ V
with all operations without predecessors. We associate the weights Pset and the
costs Cset with these arcs,

D1 is the set of edges connecting all pairs of operations of the same order which are
to be processed on the same machine and which are not connected by a (directed)
path of conjunctions,

D2 is the set of edges connecting all pairs of operations belonging to different orders
which are to be processed on the same machine. We associate the weights Pset

and the costs Cset with these edges.

We further label the vertices by the processing times of the corresponding oper-
ation.

A set S of arcs constructed by orienting all edges in D is called a selection.
A selection S is feasible if the directed graph (V ,C ∪ S) does not contain a cycle.
A feasible selection provides a semiactive feasible schedule defined by completion
times Cij of operations Oij which are calculated as follows. Set Cij equal to the
length of a longest path from 0 to Oij , where the length of a path is the sum of labels
of operations and of set-up weights of conjunctions and (oriented) disjunctions along
this path. This resulting schedule has minimal completion times for all jobs within the
set of feasible schedules respecting the given selection. On the other hand, it is easy
to see that each feasible schedule leads to a unique feasible selection. Thus, the search
space may be restricted to the set of all feasible selections if the objective function is
monotone increasing in the completion times of the jobs.

3.2. A time-lag model

The general shop model presented in the previous subsection has the disadvantage
that for practical instances the number of operations will become very large since for
each batch we have to introduce a corresponding operation. Thus, it will be difficult
to develop efficient solution methods based on this model only. Therefore we consider



P. Brucker, J. Hurink / Chemical batch scheduling problem 27

a second model in which we will restrict the possible solutions for instances of the
general shop model to such solutions where all operations (batches) belonging to a job
(processing task) are sequenced consecutively without interruption on their machine.
Remember that all operations of a job have to be scheduled on the same machine!
This restriction is motivated from practice (the hand-made solutions are of this type)
and has the effect that the number of possible solutions decreases drastically. Based
on these restrictions on the set of feasible solutions, we may simplify the general shop
problem by considering all operations belonging to a processing task as one job. The
processing time of this job will be equal to the sum of the processing times of the
underlying operations. Since operations which are joined together to a job belong to
the same group we can associate with each job a unique group and the set-ups which
occurred between operations in the former model now occur between jobs. Thus, we
are still looking for a schedule which minimizes the changeover costs.

It remains to adapt the given precedences between the operations in the general
shop model to the new model. Obviously, the chain precedences between the operations
belonging to one processing task become superfluous since these operations now form
one job. The additional precedences between the batches of different processing task
k and j introduced in section 2.5 may be translated into minimal time distances (non-
negative time-lags) lkj between the starting times Sk and Sj of the corresponding new
jobs: Sk + lkj 6 Sj . The value lkj may be achieved as follows. Calculate from the
first batch of the processing task k a longest path (length of a path = sum of weights
of the vertices on the path) to the last batch of the processing task j. The length of this
longest path minus the processing time of job j gives the minimal time-lag lkj between
the starting time Sk of job k and the starting time Sj of job j (see also example 2).

Example 2. Consider 2 processing tasks 1 and 2. Task 1 splits into 3 batches each
with processing time 5, and task 2 splits into 2 batches each with processing time 7.
The precedence relations between the batches are assumed to be as follows:

The length of a longest path from batch 1.1 to batch 2.2 is given by 24 and, since the
processing time of task 2 is 14, the time-lag l12 between the starting time S1 of job 1
and the starting time S2 of job 2 is 10.

Summarizing, we consider a time-lag model in which the jobs are to be scheduled
on dedicated machines with time-lags between the jobs and group-dependent set-up
times. Furthermore, an objective function depending on the lateness of some of the
jobs and on the number of set-ups (see (3.1)) has to be minimized. In analogy to
the previous subsection, we will again use a mixed graph G = (V ,C,D) to represent



28 P. Brucker, J. Hurink / Chemical batch scheduling problem

feasible solutions in the time-lag model. V now is the set of all jobs. The set C of
conjunctions is given by the union of two sets C1 ∪R, where

C1 represents the minimal time-lags which exist between jobs. An arc (i, j) ∈ C1 will
get a weight corresponding to the minimal time-lag between the finishing time of
job i and the start of job j; i.e., the weight of an arc (i, j) is equal to lij−pi, since
lij denotes the minimal time distance between the starting times of the two jobs
i and j (observe, that these time-lags may become negative, since they represent
finish–start relations; e.g., in example 2 job 1 and 2 get a time-lag of length
10 − 15 = −5). If between two jobs which have to be processed on the same
machine a conjunction (or a path of conjunctions) with negative length exists, we
will replace this conjunction by a conjunction with weight 0 (or introduce a new
conjunction with weight 0).

R is the set of all arcs from a dummy starting operation to vertices without pre-
decessors. Again, we associate the weights Pset and the costs Cset with these
arcs.

The set of disjunctions is given by D = D1 ∪D2 where now

D1 is the set of edges connecting all pairs of jobs of the same order which are to be
processed on the same machine and which are not connected by a (directed) path
of conjunctions,

D2 is the set of edges connecting all pairs of jobs belonging to different orders which
are to be processed on the same machine. Again, we associate the weights Pset

and the costs Cset with these edges.

As in the previous case, each feasible selection (orientation of all edges in D without
producing a cycle) provides a feasible schedule and vice versa.

4. A two-phase local search approach

In this section we will present a heuristic solution procedure for the considered
batch scheduling problem. The basic goal of designing this method was to develop a
solution method which could solve instances for our industrial partner (≈ 50 orders, 30
machines, 200 processing tasks, and 1700 batches) in reasonable time (6 10 minutes
for order acceptance and 6 one hour for process planning). Based on the good results
achieved for many other optimization problems (see, e.g., Aarts and Lenstra [1]), we
have chosen a tabu search-based method.

After our first experiences, it emerged that the general shop model presented in
section 3.1 was too detailed to allow tabu search to build up a good solution from
scratch in reasonable time. Therefore, we developed a two-phase approach, where
in the first phase the “rough” time-lag model is used to change an initial solution to
a good solution and in the second phase the general shop model is used to further
improve the solution reached after the first phase.



P. Brucker, J. Hurink / Chemical batch scheduling problem 29

In subsection 4.1 we will present the neighborhood structures which are used as
the basis of the two tabu search approaches and in subsection 4.2 we will sketch the
complete two-phase method.

4.1. Neighborhood structures

The basic idea of local search methods is to iteratively move through the set of
feasible solutions. In each step a new solution is chosen from a subset of solutions near
the current solution, the so-called neighborhood of the current solution. Obviously,
the neighborhood structure used has a large impact on the way in which the search
process will behave. Therefore, the definition of suitable neighborhoods is crucial for
the success of local search. In the following we will introduce neighborhoods for
the considered batch scheduling problem. Since we have two different models for this
problem (the general shop model and the time-lag model) in principle we have to define
two neighborhoods. However, since for both models solutions can be represented by
selections in a mixed graph, and since for both models the objective function is the
same, we can present the neighborhoods jointly. The basic idea is to get a neighbored
solution by changing the order of operations (jobs) on one machine slightly, i.e., to
orient a few disjunctive edges in D in a different way. Therefore, in the following if
we speak about the selection of a mixed graph these results may be adapted to both
of the models presented in the previous section. To obtain a unique terminology, we
will always call the operation or job belonging to a vertex of the mixed graph an
operation. Since the goal is to decrease the objective function (3.1), we will use this
function to determine disjunctive edges which will be changed. As already mentioned,
the second part

∑q
l=1 Tl is the most important part of (3.1). In the following we will

derive necessary conditions for changing disjunctive edges in order to improve the
sum of tardiness

∑q
l=1 Tl of a given solution. First we need some definitions.

For a given selection S of a mixed graph G = (V ,C,D), a critical tree T
corresponding to S is a spanning subtree of longest paths connecting the dummy root
0 to all other vertices in the directed graph (V ,C ∪ S). A sequence u1, . . . ,ub of
vertices, which form a path in a critical tree T , are called a block if the sequence
contains at least two vertices and if it has one of the two following properties:

1. All operations represented by nodes in the sequence are processed on the same
machine and enlarging the sequence would yield a sequence violating this condi-
tion.

2. The sequence is achieved from a block (according to 1 or 2) by deleting the first
and last vertex of this block.

These definitions are a generalization of the definition of blocks and critical paths
for the general shop scheduling problem with sequence-dependent set-up times used
by Brucker and Thiele [3]. The main difference is that we replace the critical path by
a critical tree since we are considering a sum objective and not a bottleneck objective.

The following theorem will be the basis for constructing neighborhoods.



30 P. Brucker, J. Hurink / Chemical batch scheduling problem

Theorem 1. Let S and S′ be two feasible selections for a mixed graph G = (V ,C,D)
and let the sum of tardiness

∑l
l=1 Tl of the solution S′ be smaller than that of S. Then

for each critical tree T corresponding to S at least one block B of T exists, such that
one of the following conditions holds:

• in S′ one operation which is not equal to the first operation of block B has to be
processed before the first operation of B or

• in S′ one operation which is not equal to the last operation of block B has to be
processed after the last operation of B.

Proof. In principle, the theorem follows from the fact that a decrease of the sum of
tardiness

∑l
l=1 Tl is only possible if at least for one terminal operation the completion

time will decrease. Furthermore, as mentioned in Brucker and Thiele [3] a decrease
of the completion time of a terminal operation is only possible if at least one block on
the path from 0 to this vertex in T is destroyed in the way mentioned in the theorem.
The base of this proof is, that there are two different possibilities to decrease the
completion time of a terminal operation. The first is to destroy a block on the longest
path to this terminal operation resulting from property 1 of the definition of a block.
This can be achieved by shifting an operation of this block before the first or after the
last operation of the block. However, since also set-up times have an influence on the
length of a path, a second possibility is to reorder operations within a block resulting
from property 1. It is easy to see that each reordering will result in a change of a
first or a last operations for at least one of the blocks resulting from property 2 of the
definition of a block (details of the proof are given in Thiele [12]). �

Based on this theorem we will define two neighborhoods. Consider a feasible
selection S for a mixed graph G = (V ,C,D) and a corresponding critical tree T .
Then each feasible selection S′ belongs

• to the neighborhood Nexchange of S if it is achieved from S via exchanging the
order of the first two or last two operations of a block in T ;

• to the neighborhood Nshift of S if it is achieved from S via shifting an operations
of a block which is not equal to the first (last) operation of the block directly before
(after) its block.

These neighborhoods are somehow related to the most commonly used neighborhoods
for the job-shop problem (see Aarts and Lenstra [1]).

First numerical tests indicated that for these neighborhoods the number of neigh-
bors was often very large, which led to long computational times for the tabu search
approaches. The main reason is that many blocks defined by condition 1 contain
several “inner” blocks achieved via condition 2 of the block definition. On the other
hand, changes related to these “inner” blocks only may reduce the completion times
of a terminal operation by saving a set-up time.

This led to the definition of two further neighborhoods with a smaller number of
neighbors. They are achieved by applying the above operators only to blocks satisfying



P. Brucker, J. Hurink / Chemical batch scheduling problem 31

condition 1 (machine blocks) in the above definition (resulting in subneighborhoods of
Nexchange and Nshift) and by furthermore adding all selections which are achieved by
shifting an operation of a block before or after an operation of the same block which
belongs to the same group. The latter added neighbors are those neighbors where a
set-up time may be removed. The resulting neighborhoods are denoted by N exchange

and N shift, respectively. Note that in general these neighborhoods are not subneigh-
borhoods of the neighborhoods Nexchange and Nshift since some of the neighbors added
for possibly removing a set-up time may not belong to Nexchange or Nshift.

4.2. The overall heuristic

Based on the two models for the considered batching problem presented in the
previous section, we have developed the following heuristic:

1. Calculate an initial solution for the time-lag model using a priority-based heuristic.

2. Improve this solution by applying a tabu search approach for the time-lag model
using the neighborhoods presented in the previous subsection.

3. Convert the resulting solution of the time-lag model into a solution of the general
shop model.

4. Improve this solution by applying a tabu search approach for the general shop
model using the neighborhoods presented in the previous subsection.

In the following we will describe the four steps of the heuristic in more detail.
The initial solution for the time-lag model is iteratively calculated by a priority-based
heuristic. In each step, first, from the set of admissible jobs (jobs for which all
predecessors have already been scheduled) the job with minimal finishing time (when
scheduled next) is calculated. Afterwards, the set of admissible jobs is restricted to
all jobs which may start (with respect to the time-lags) before this time. From this
reduced set a job with minimal difference between its finishing time plus tail and the
deadline of the corresponding order is chosen to be scheduled next (tail = lower bound
on the distance between the completion time of this job and the completion time of
the corresponding terminal job).

The conversion of a solution of the time-lag model into a solution of the general
shop model in step 3 of the above heuristic is done by splitting each job into its
batches (operations). This process will not change the schedule and, thus, nor the
objective function. However, we applied an additional quick procedure to improve the
solution of the general shop model achieved by this direct transformation. When in the
solution of the time-lag model on a machine more than one job of one order (group)
are scheduled consecutively, we will mix the corresponding operations in the following
way (see also example 3). If more than one operation of the corresponding jobs may
be scheduled according to the precedence constraints, we chose for an operation of
that job which is scheduled last in the time-lag model. This change of the solution
may enable other operations of this order to start earlier on other machines.



32 P. Brucker, J. Hurink / Chemical batch scheduling problem

Example 3. Consider 3 processing tasks 1, 2, and 3 all belonging to the same order.
Task 1 splits into 3 batches and tasks 2 and 3 both split into 2 batches. The precedence
relations between the batches are as follows:

Assuming that both tasks 1 and 2 are processed on machine M1 and that task 3 is
processed on machine M2, a schedule in the time-lag model may look as follows:

After applying the improvement procedure, the schedule for the general shop model
is as follows:

Computational results show that the additional modifications of the converted solution
may improve the objective value considerably (see next section).

It remains to describe the tabu search approaches used in steps 2 and 4. As already
mentioned in the previous subsection, the representation of solutions and, thus, also the
used neighborhoods, are equal for both models. Thus, for both models we basically
used the same tabu search approach. In the remaining part of this section we will
briefly describe the main elements of this tabu search approach:

Neighborhood reduction. To save computational time, we have restricted the neigh-
borhoods to operators which result from blocks lying on paths in the critical tree
from the root to a terminal operation which is late (all other operators will not
reduce the completion time of a late terminal operation and, thus, will not reduce
the lateness). If no due dates are violated (which hardly will occur in real world
applications), we may choose terminal operations of jobs which are closest to their
due dates. By these neighborhood reductions we save computational time.

Tabu conditions. For the neighborhoods which contain shifts (Nshift, N exchange and
N shift) we insert the triple containing the old machine predecessor of the shifted
operation, the shifted operation, and the old machine successor of the shifted oper-
ation, into the tabu list. A neighbor is declared tabu if it results from a shift where
the shifted operation together with its new machine predecessor, or the shifted op-
eration together with its new machine successor, or the old machine predecessor
and successor of the shifted operation occur as neighbors in one triple of the tabu



P. Brucker, J. Hurink / Chemical batch scheduling problem 33

list. This setting ensures that a solution can not be reached again as long as the
corresponding entry stays in the tabu list.

For the neighborhood Nexchange (which only consists of interchanging adjacent
operations) the two interchanged operations are inserted into the tabu list and a
reverse interchange is declared as tabu.

Tabu list management. For the tabu list we have implemented both a fixed length
tabu list and a dynamical tabu list management (see Dell’Amico and Trubian [6]).

Neighbor selection. For selecting a non-tabu neighbor of a given solution, we have
implemented two different strategies. The first is the most commonly used strategy.
It selects the best non-tabu neighbor (best-fit). The second (first-fit) selects the first
non-tabu neighbor which improves the current solution. If no improving solution
exists, it selects the best non-improving.

Termination. The tabu search method stops if for a certain number (kmax) of iterations
the best found solution has not been improved.

5. Computational results

In this section we report on some results of a computational study achieved with
the developed local search approach. We implemented the methods in C and tested
them on a Sun Sparc Station 10/512.

The aim of the study was to give our industrial partner some idea of what quality
of solutions can be achieved with our solution method and how long it takes to generate
them. Furthermore, since until now in the plant all batches of a processing order are
scheduled one after the other (i.e., they produce solution on the base of the time-lag
model), they wanted to get an idea of how much the quality of solutions achieved
for the general shop model differs from the quality of the solutions for the time-lag
model (i.e., whether or not it makes sense to do a more detailed planning). As a
test data set our industrial partner gave us a set containing 54 orders which had to
be produced on 30 machines (orders of 3 months). For each order the precedence
relations between the processing tasks, the amount to be produced, and the deadline
was given. In addition to the set of allowable machines and corresponding process
times (in days), the respective machine preferred by the plant management was also
given for each processing task. The set-up time of a machine is always one day.

Using these data we constructed three different instances. For the first the prefer-
able machine assignment from practice was used (we call this instance INDUSTRY).
For the second we fixed machines from the sets of allowable machines such that all
machines were as much as possible used equally (EQUAL) and for the third a machine
assignment was generated randomly (RANDOM). The first two of these instances are
more of practical interest, whereas the third leads to unequal loads on the machines.
To specify the objective function we decided to weight the violation of a deadline by
a day 10 times higher than the costs for one set-up; i.e., we defined W = 10 and
Cset = 1.



34 P. Brucker, J. Hurink / Chemical batch scheduling problem

Several versions of the proposed local search approach were applied to the three
instances. The versions differ in the chosen neighborhood, the tabu list management,
the tabu list length, the neighbor selection, and the value of kmax.

In the following we present some results of these tests and draw conclusions from
them. Note, that these conclusions are related to instances of the type which occur at
our industrial partner. For different types of instances or for adaption of the presented
local search method to variations of the problem further tests have to show whether
the given conclusions remain valid.

Firstly, we report on the results using only the time-lag model. As a general
result, we can state that the first-fit neighbor selection outperformed the best fit: the
same or even better results were attained using less computation time. Therefore, we
will only present results for first-fit versions. Furthermore, on average there was almost
no difference between the fixed tabu list length or a dynamical tabu list management.
We have chosen to use a dynamical tabu list management with minimal tabu list
length 0 and different values TLtl for the maximal length of the tabu list (TLtl ∈
{5, 10, 15, 20, 30, 50}). These values were selected on the basis of preliminary tests.
Table 1 gives the average objective values taken over all six different tabu list lengths
(see columns VAL) and the corresponding average computation times in minutes:
seconds (see columns CPU) using the four different neighborhoods and two different
values of kmax (kmax ∈ {100, 1000}). Besides these values also the objective values
of the initial solution calculated by a priority rule-based heuristic (INIT) and a lower
bound for the best objective value for solutions of the time-lag model (LB) are given.
The lower bound is based on a lower bound for the minimal number of set-ups on a
machine (number of different orders on this machine minus 1) and on lower bounds on
the tardiness of the orders which were calculated using some one-machine relaxations.
Due to the decomposition and relaxations applied to obtain the lower bounds, it may
be expected that the lower bounds are not very close to the optimal value. For the
random instance this gap has to be larger since no good decomposition of orders to
machines could be used to calculate the lower bound on the tardiness (for details, see
Schönemann [11]).

Looking at all three instances, one can state that the shift neighborhoods were
most successful in achieving good solutions. For the first two instances (which are
of most interest in practical applications) the gap between the initial solution and the
lower bound was drastically reduced and for the third instance a large improvement
was also achieved (note that we suppose that the LB for this instance is quite bad and
thus the achieved quality also seems to be quite good). Both versions of the exchange
neighborhoods are only able to achieve good results for one instance. Regarding the
computation times for a fixed value of kmax, one observes that the exchange neighbor-
hoods use less time than the shift neighborhoods (as expected). However, comparing
the long runs of the exchange neighborhoods with the short runs of the shift neigh-
borhoods one can conclude that one should prefer the shift neighborhoods, especially
neighborhood Nshift, if one wants to solve the time-lag model.

Now we will report on the improvements which may be achieved by transforming



P. Brucker, J. Hurink / Chemical batch scheduling problem 35

Table 1
Local search for the time-lag model.

Neighborhood kmax INDUSTRY EQUAL RANDOM

VAL CPU VAL CPU VAL CPU

INIT 48148 42514 59018
Nexchange 100 16150 0 : 29 11228 0 : 31 33145 0 : 51
Nexchange 1000 16042 2 : 15 11007 2 : 48 30509 5 : 11
N exchange 100 14841 0 : 33 12208 0 : 37 28713 0 : 43
N exchange 1000 14777 3 : 54 12079 3 : 28 27709 5 : 38
Nshift 100 13915 1 : 31 10989 1 : 33 28191 2 : 50
Nshift 1000 13649 8 : 08 10957 9 : 18 27888 20 : 42
N shift 100 13901 2 : 45 11596 2 : 11 29207 6 : 39
N shift 1000 13639 15 : 51 11426 10 : 59 28435 41 : 08
LB 12147 9133 10653

Table 2
Improvement by the conversion procedure.

Neighborhood INDUSTRY EQUAL RANDOM

tl CONV tl CONV tl CONV

Nexchange 16096 15048 11118 10224 31827 31778
N exchange 14809 14155 12144 11143 28211 28130
Nshift 13782 12711 10973 10126 28039 27989
N shift 13777 12686 11511 10606 28821 28758

LB 12147 9133 10653

the solutions achieved with the time-lag model to general shop solutions as described
in subsection 4.2. In table 2 the average improvement of the final solutions of the
different versions of the tabu search heuristics by this conversion procedure can be
found. In columns tl the average objective values over both kmax values and in columns
CONV the average objective values after conversion are given.

For the two practical instances the conversion procedure improves the time-
lag model solution by approximately 7%. However, for the random instance the
improvement is only very small. The corresponding computation times to achieve the
improvement are only a fraction of a second.

As a final step of the overall heuristic, we apply the tabu search approach to
the general shop model using the converted solutions as an initial solution. Based
on the results for the time-lag model and some preliminary tests we only used the
neighborhood Nshift and we fixed the kmax value to 100 for the general shop model.
The tabu list was managed as a list with fixed length TLgs (TLgs ∈ {5, 10, 15, 20}). For
the neighbor selection we will report on both best-fit and first-fit strategies. As initial
solutions for the second phase we used the solutions of the time-lag model achieved
with kmax = 1000 and values 10, 15, 20, and 30 for TLtl. The corresponding results



36 P. Brucker, J. Hurink / Chemical batch scheduling problem

Table 3
Local search for the general shop model.

Neighb. Neigh. Sel. INDUSTRY EQUAL RANDOM

VAL CPU VAL CPU VAL CPU

Nexchange best-fit 13231 40 : 25 9881 30 : 21 30077 41 : 27
Nexchange first-fit 13185 26 : 34 9802 23 : 35 30217 32 : 40
N exchange best-fit 12775 50 : 15 10040 33 : 40 26266 39 : 14
N exchange first-fit 12720 37 : 11 9819 22 : 07 25899 31 : 13
Nshift best-fit 12493 35 : 18 9817 35 : 02 27492 53 : 11
Nshift first-fit 12602 29 : 31 9842 28 : 51 27533 40 : 22
N shift best-fit 12332 45 : 24 10455 39 : 40 28212 66 : 50
N shift first-fit 12362 40 : 35 10679 29 : 41 28331 57 : 35
LB 12147 9133 10653
BEST 11947 9618 25257

are presented in table 3. Again, the table contains the average values over all possible
combinations of values for TLtl and TLgs. Besides these results, in the last row the
table contains the best objective value which was found within the computational tests
(see column BEST).

Again, we can state that the neighbor selection process has no great influence
on the quality of the solutions, however, for first-fit the corresponding computation
times are shorter. Comparing the results of table 3 with those of the columns CONV
of table 2, we see that the tabu search approach for the general shop model again
reduces the objective values significantly. For the two relevant practical instances the
best found value is below or close to the (not good) lower bound of the time-lag model
(which is used in practice). Comparing the neighborhoods (used to calculate the initial
solutions), we can state that after using the tabu search approach for the general shop
model the differences get smaller and no real winner can be pointed out.

Returning to the questions which were the starting point of the computational
study we can summarize the results as follows:

• For order acceptance (computation times 6 10 minutes) one should use the tabu
search approach on the basis of the time-lag model using the neighborhood Nshift,
and afterwards convert the resulting solution to a solution of the general shop model.

• For process planning the overall heuristic should be applied using the neighborhoods
N exchange or Nshift for the time-lag model, and the neighborhood Nshift for the general
shop model.

• The quality of the solutions achieved is good. Even within the time available
for order acceptance we are able to achieve for the two relevant practical instances
solutions close to the lower bound of the time-lag model. With longer computational
times for one instance we can even beat the lower bound.

• By switching to a more detailed planning (i.e., switching from the time-lag model
to the general shop model), the company can realize better schedules.



P. Brucker, J. Hurink / Chemical batch scheduling problem 37

• The chosen machine assignment at the plant is not the best. It should be investi-
gated whether or not even better assignments than our EQUAL distribution can be
constructed.

6. Conclusion

We have presented a method to model a chemical batch scheduling problem as a
discrete optimization problem and have presented a two-phase tabu search procedure
to solve it. The method has been tested on data provided by our industrial partner.
The computational results which are based on given assignments of processing tasks
to processors are very promising. It seems that these results can still be improved by
considering the assignment as part of the decision process. Research in this direction
is an interesting topic for future work.

Acknowledgements

We acknowledge the fruitful cooperation with Bayer A.G. We also thank Carsten
Schönemann for implementing the proposed procedures. Furthermore, the authors are
grateful to the anonymous referees for their constructive comments.

References

[1] E.H.L. Aarts and J.K. Lenstra, eds., Local Search in Combinatorial Optimization (Wiley, Chichester,
1997).

[2] F. Blömer and H.-O. Günther, LP-based heuristics for scheduling chemical batch processes, Tech-
nical Report 04.98, Department of Industrial Management, Technical University Berlin (1998). To
appear in Computers in Industry.

[3] P. Brucker and O. Thiele, A branch and bound method for the general-shop problem with sequence
dependent setup-times, OR Spektrum 18 (1996) 145–161.

[4] R.E. Burkard, M. Hujter, B. Klinz, R. Rudolf and M. Wennink, A process scheduling problem arising
from chemical production planning, Optimization Methods and Software 10 (1998) 175–196.

[5] R.E. Burkard, M. Kocher and R. Rudolf, Rounding strategies for mixed integer programs arising
from chemical production planning, Yugoslav Journal of Operations Research 8 (1998) 9–23.

[6] M. Dell’Amico and M. Trubian, Applying tabu search to the job-shop scheduling problem, Annals
of Operations Research 41 (1993) 231–252.

[7] E. Kondili, C.C. Pantelidis and R.W.H. Sargent, A general algorithm for short-term scheduling of
batch operations – I. MILP formulation, Computers Chem. Enging. 17 (1993) 211–227.

[8] T. Löhl, C. Schulz and S. Engell, Sequencing of batch operations for a highly coupled production
process: genetic algorithms versus mathematical programming, Computers Chem. Enging. 22 (1998)
579–585.

[9] G.V. Reklaitis, Overview of scheduling and planning of batch process operations, in: Batch Process-
ing Systems Engineering, eds. G.V. Reklaitis et al. (Springer, Berlin, 1996) pp. 660–705.

[10] D.W.T. Rippui, Batch process systems engineering: a retrospective and prospective review, Com-
puters in Industry (1993).

[11] C. Schönemann, Lokale Suche zur Lösung van Batch-Schedulingproblemen in der chemischen
Industrie, Diplomarbeit, Universität Osnabrück (1998).



38 P. Brucker, J. Hurink / Chemical batch scheduling problem

[12] O. Thiele, Ein Branch und Bound-Verfahren für das General-Shop Problem mit gruppenabhängigen
Rüstzeiten, Diplomarbeit, Universität Osnabrück (1994).


