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Fractal Steady States in

Stochastic Optimal Control Models∗

Luigi Montrucchio
1

and Fabio Privileggi
1

1Dept. of Statistics and Applied Mathematics,
Piazza Arbarello, 8, 10122 Turin, Italy.

The paper is divided into two parts. We first extend the Boldrin and Montrucchio’s
theorem (JET, 1986) on the inverse control problem, to the Markovian stochastic
setting. Given a dynamical system xt+1 = g(xt, zt), we find a discount factor β∗

such that for each 0 < β < β∗ a concave problem exists for which the dynamical
system is an optimal solution. In the second part we use the previous result for
constructing stochastic optimal control systems having fractal attractors. In order
to do this, we rely on some results by Hutchinson on fractals and self-similarities.
A neo-classical three-sector stochastic optimal growth exhibiting the Sierpinski’s
carpet as the unique attractor is provided as an example.

JEL classification: C62, O41
tochastic Dynamic Programming; Chaotic Dynamics; Fractals; Invariant Prob-

abilities

1 Introduction

In the last decade a new emphasis on deterministic optimal control models, espe-
cially in the optimal growth literature, has been given from a different perspective:
the regularity in dynamic behavior of the economy under standard hypothesis of
concavity of the welfare function has been questioned. It has been shown by
Boldrin and Montrucchio (see [5] and [22]) that if the infinitely-lived representa-
tive agent is impatient enough, an economy characterized by decreasing returns
of scale technologies may display optimal dynamics that are very irregular and
chaotic (a recent survey on this subject is [23]).

The first part of this paper is concerned with the extension to a stochastic
context of Boldrin and Montrucchio’s result. In particular, given a policy g, a
lower estimate for the individual discount factor β∗ will be determined such that,

∗This research was partially supported by M.U.R.S.T. National Group on ”Dinamiche Non-
lineari e Applicazioni alle Scienze Economiche e Sociali”. We thank Ami Radunskaya and Ger-
hard Sorger for helpful comments and constructive discussion. The usual disclaimer applies.
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if 0 < β < β∗, a concave problem characterized by discount factor β exists for
which the dynamical system xt+1 = g(xt, zt) turns out to be the optimal solution.
The main argument is similar to that adopted in the deterministic case, following
in particular the idea in [22]. A special case arises when g is an affine map: it will
be shown that all affine maps are solutions of some quadratic program. Moreover,
if the affine map is also a contraction, a quadratic program exists regardless of
the magnitude of the discount factor.

The restatement of the theorem for stochastic models keeps its original mean-
ing: anything goes also in the stochastic setting. Clearly this is much less sur-
prising than the analogous result for deterministic models, since one naturally
would expect more irregularities in a dynamic system which depends on unpre-
dictable exogenous shocks. However this does not imply necessarily that such
models cannot reach any form of stability. Indeed, since the pioneering works of
Lucas-Prescott [18] and Brock-Mirman [7], it is well known that a broad class of
models converging to a unique ”steady state” solution exists (other works about
this topic are [19], [20], [6], [9], [13] and, more recently, [15]). Such a stationary
solution is expressed in terms of invariant distribution for the stochastic process
describing the dynamic of the economy.

By using the inverse control problem it would not be difficult to give examples
of models exhibiting optimal policies with multiple invariant measures and thus
violating the stability property just mentioned. Similarly, we may provide exam-
ples of optimal cyclic sets along the line followed in [4]. We do not pursue these
projects here; on the contrary, in the remaining part of the paper we study models
in which the optimal process converges to a unique invariant measure. Neverthe-
less, even if our treatment is in tune with the neo-classical literature on optimal
growth cited above, we focus on the fact that the unique attractor of these systems
may be very complicated. In particular, we are interested in economies having
a singular probability measure as their limiting distribution which is defined on
a support that is a fractal set. The results presented here and the examples
constructed will be related to those from Hutchinson [16].

A work very close to ours about the stochastic extension of the Boldrin and
Montrucchio’s indeterminacy theorem has been independently developed at the
same time by Mitra [21]. There, an argument similar to that in the first determin-
istic version of the theorem (see [5]) has been pursued, and a different direction
of research has been taken.

The paper is organized as follows. In Section 2 the basic notation is intro-
duced. Section 3 is devoted to the statement of the model and to recall some well
known facts about stochastic dynamic programming that will be used in Section
4, where the inverse problem of optimal control is formulated and the main result
is proved. Then, Section 5 deals with the problem of constructing fractals by iter-
ating contractive maps; we briefly survey the main results on this field. Finally, in
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Section 6 some examples of very simple models converging to fractal attractors are
given. In particular, a three-sector model of optimal growth is shown to converge
to the Sierpinski’s gasket.

2 Notation

For vectors x in Rm, ‖x‖ denotes the Euclidean norm. The inner product of
two vectors is denoted by 〈x, y〉. Given a metric space (X, d), we recall that the
distance between a point x and a set A in X is defined by d(x,A) = inf

y∈A
d(x, y).

The Hausdorff metric between two sets A,B ⊂ X is defined as

h(A,B) = max

[

sup
x∈A

d(x,B), sup
y∈B

d(y,A)

]

. (1)

The symbol 2X
c denotes the space of all nonempty closed and bounded subsets

of X. 2X
k ⊂ 2X

c will be the subspace of all nonempty compact subsets. It is
well known that 2X

c , endowed with the Hausdorff distance h, turns out to be a
complete metric space, whenever X is complete (see e.g. [8], page 61, problem 3).

Given the complete metric space X, Λ (X) will be the set of all probability
measures on X which are Borel regular. The support of λ ∈ Λ (X) will be de-
noted by sptλ. The space Λb (X) is the set of regular probability measures having
bounded support. We recall that a sequence {λn} of elements in Λ (X) con-
verges weakly to λ if lim

n→∞

∫
fdλn =

∫
fdλ for every bounded continuous function

f : X → R. A useful metric on Λb (X) related to the weak convergence is the
following L metric:

dH(µ, λ) = sup
f∈L1

[∫

X
fdµ −

∫

X
fdλ

]
, µ, λ ∈ Λb (X) , (2)

where L1 = {f : X → R, |f(x) − f(y)| ≤ d(x, y)} is the set of Lipschitz functions
with constant not greater than one. The space (Λb (X) , dH) turns out to be a
complete metric space (see [16]). The metric defined in (2) is a useful criterion to
establish weak convergence of probability measures since the L metric topology
and the weak topology coincide on Λb (X)∩ {λ; sptλ is compact} . See also [10],
[3] and [13]. Therefore, if X = Rn, {λn} ⊂ Λb (X) converges weakly to λ if and
only if dH(λn, λ) converges to zero.
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3 Markovian Stochastic Dynamic Programming

The uncertainty of the environment is described by an exogenous stochastic pro-
cess {zt}∞t=0, where each random variable zt takes values in some measurable
space (Z,Z). Such a process is assumed to be Markovian with stationary transi-
tion function (stochastic kernel) Q : Z × Z → [0, 1]. Let Z∞ =

∏
∞

t=1 Zt, where
Zt = Z for t = 1, 2, . . ., and Zt = σ− {C1 × · · · × Ct × Z × Z × · · ·}, where
Cτ ∈ Z for all 1 ≤ τ ≤ t; i.e. Zt is the σ-algebra generated by cylinder sets.
Given any initial shock z0 ∈ Z, all finite probabilities on cylinder sets are given
by µt(z0, C1 × · · · × Ct) =

∫
C1

Q(z0, dz1) · · ·
∫
Ct

Q(zt−1, dzt).
The state variable takes values within a compact convex set X ⊆ Rm; let

X ⊆ Bm be the Borel σ-algebra on X. We denote by (S,S) = (X × Z,X ⊗Z)
the product space representing the state of the system; vector st = (xt, zt) is an
element of the state space at date t. The dynamic constraint is a measurable set
D ⊂ X ×X ×Z such that its sections Dz ⊂ X ×X are convex for all z ∈ Z. For
each (x, z) ∈ S, let Γ : X ×Z → X defined as Γ(x, z) = {y ∈ X : (x, y, z) ∈ D} be
the correspondence representing the set of feasible actions when the current state
is (x, z). The one-period return function U : D → R is assumed to be measurable,
bounded and with z-sections U(·, ·, z) : Dz → R concave. The discount factor β
is a constant parameter belonging to the interval (0, 1).

For each initial condition s0 = (x0, z0) ∈ S, a feasible plan from s0 is a value
π0 ∈ X and a sequence {πt}∞t=1 of Zt-measurable functions πt : Z∞ → X such
that π0 ∈ Γ(s0) and πt ∈ Γ(πt−1, zt), µt(z0, ·)−a.e., t = 1, 2, . . ... Let Π(s0) denote
the set of plans that are feasible from s0, which we will assume nonempty for all
s0 ∈ S. Then the stochastic optimization problem under investigation is:

(P) v(s0) = sup
π∈Π(s0)

{

U(x0, π0, z0) + E

[
∞∑

t=1

βtU(πt−1, πt, zt)

]}

,

where expectation is well defined as β < 1 and U is measurable and bounded.
Markov assumption on the stochastic process of the exogenous shocks estab-

lishes an important relationship between the infinite-horizon problem P and the
time-independent Bellman equation

w(s) = w(x, z) = sup
y∈Γ(x,z)

[
U(x, y, z) + β

∫

Z
w(y, z′)Q(z, dz′)

]
, (3)

as the next result states.
Define the associated policy correspondence G : S → X by

G(x, z) =

{
y ∈ Γ(x, z) : w(x, z) = U(x, y, z) + β

∫

Z
w(y, z′)Q(z, dz′)

}
.
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If there exists a measurable selection g (x, z) ∈ G (x, z), called optimal policy, then
we say that a plan π∗ = {π∗

t }∞t=0 is generated by g starting at s0 if π∗

0 = g(x0, z0)
and π∗

t = g(π∗

t−1, zt) µt(z0, ·) − a.e., t = 1, 2, ....

Proposition 1

If w is a measurable function satisfying (3) such that

lim
t→∞

βtE [w(πt−1, zt)] = 0, for all π ∈ Π(s0) and all s0 ∈ S, (4)

and G permits a measurable selection g, then w is the value function v of P , and
any plan π∗ generated by g is optimal.

A good reference for a complete discussion on all the assumptions and the
statement of the problem, as well as a proof for Proposition 1, is [26].

4 Indeterminacy of Optimal Policies

We now look at the inverse problem of optimal control1: given an arbitrary func-
tion g : S → X, we investigate whether there exists a concave problem P whose
optimal path is generated by the policy g. Since the discount parameter β will play
an important role in constructing the return function U of P , we will henceforth
denote it by Uβ .

Let us fix the discount factor β, a stochastic kernel Q (z, dz′) and a measurable
function w (x, z) as the optimal value function of P . Then we obtain Uβ by using
the Bellman equation, as next proposition states.

Proposition 2

Let g : S → X and w : S → R be measurable functions such that g(s) ∈ Γ(s),
and w is bounded. Let V (x, y, z) be a scalar function such that max

y∈X
V (x, y, z) =

V [x, g(x, z), z] = w(x, z). For all s0 ∈ S, let π∗ = {π∗

t } ∈ Π(s0) be the plan
generated by g. Then π∗ is an optimal plan for the infinite-horizon problem P
characterized by the return function

Uβ(x, y, z) = V (x, y, z) − β

∫

Z
w(y, z′)Q(z, dz′).

Proof

P is well defined for all π ∈ Π(s0) and all s0 ∈ S, and w satisfies (4). Then,
to apply Proposition 1, one has only to show that w is a solution to (3) and
that g attains the maximum in (3). We omit here these steps as they are a

1This section is taken from Chapter 5 of [25].
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straightforward replication of the proof of Lemma 1 in [5] where the deterministic
Bellman equation has been replaced with (3).

It should be noted that some V , satisfying the condition of Proposition 2, does
exist. For instance, V (x, y, z) = −1

2 ‖y − g(x, z)‖2 + w(x, z) meets this property.
In order to prove the next theorem, let

w(x, z) = −(L/2) ‖x‖2 + 〈a, x〉 + f(z), (5)

where f : Z → R is measurable and bounded, L ∈ R and a ∈ Rm. Thus, in view
of Proposition 2, we define the return function of the infinite-horizon problem as

Uβ(x, y, z) = −1
2 ‖y − g(x, z)‖2 − L

2 ‖x‖2 + 〈a, x〉 + f(z)

+β L
2 ‖y‖2 − β 〈a, y〉 − β

∫
Z f(z′)Q(z, dz′).

(6)

We need further to restrict the class of policies to be considered and some
more notation. Let

k0 = max
x,y∈X

‖x − y‖ . (7)

Assumption 1

For each z ∈ Z, the map g(·, z) is differentiable over an open set containing X
and a constant k1 must exist such that

k1 = sup
(x,z)∈S

‖D1g(x, z)‖ . (8)

Assumption 2

For each z ∈ Z, some constant k2 exists such that

‖D1g(x, z) − D1g(y, z)‖ ≤ k2 ‖x − y‖ , all x, y ∈ X.

Theorem 3

Let g : S → X be a function satisfying Assumptions 1 and 2, with (x, g(x, z), z) ∈
D. For any discount factor 0 < β < β∗ = (k1 +

√
k0k2)

−2, one can find a function
Uβ(x, y, z) strictly concave in x, y so that g turns out to be the optimal policy for a
problem P characterized by one-period return Uβ and discount factor β. Moreover,
Uβ can be chosen to be increasing in x and decreasing in y.

Proof

Since f : Z → R in (5) is measurable and bounded, Proposition 2 applies. We
have thus only to find out for which β a parameter L ∈ R exists such that
Uβ(·, ·, z) defined in (6) turns out to be strictly concave. Linear terms and terms
independent of x, y do not affect concavity of Uβ(·, ·, z), therefore the proof is
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identical to that of the deterministic version of this theorem (see Theorem 2.1 in
[22]).

We must prove that, given function g(x, z), a real number L and a discount
factor β∗ > 0 exist such that for all 0 < β < β∗ the function

W (x, y, z) = −(1/2) ‖y − g(x, z)‖2 − (L/2) ‖x‖2 + β(L/2) ‖y‖2

is strictly concave in x and y for each fixed z ∈ Z. In order to do this, we shall
show that W (·, ·, z) is superdifferentiable over its whole domain, i.e. that

∆W = W (x+ x̂, y + ŷ, z)−W (x, y, z)−〈D1W (x, y, z), x̂〉− 〈D2W (x, y, z), ŷ〉 ≤ 0,

for all x+ x̂, y + ŷ ∈ X and for all z ∈ Z. Here D1W and D2W denote the partial
derivatives of W with respect to x and y respectively.

By assuming βL < 1, the same technique adopted in [22] leads to

∆W ≤ βL
2(1−βL) ‖g(x + x̂, z) − g(x, z)‖2

+ 〈y − g(x, z), g(x + x̂, z) − g(x, z) − D1g(x, z)x̂〉 − L
2 ‖x̂‖2 .

From Assumption 2 it follows that

‖g(x, z) − g(y, z) − D1g(x, z)(x − y)‖ ≤ (1/2)k2 ‖x − y‖2 , for all x, y ∈ X

(see, for example, Theorem 3.2.12 in [24]), and from Assumption 1 we get

‖g(x + x̂, z) − g(x, z)‖2 ≤ k2
1 ‖x̂‖2 .

Since by (7) ‖y − g(x, z)‖ ≤ k0 holds, it is easily seen that

∆W ≤ (1/2)
[
βL(1 − βL)−1k2

1 + k0k2 − L
]
‖x̂‖2 .

Clearly for any pair (β,L) such that βL < 1 and

βL(1 − βL)−1k2
1 + k0k2 − L ≤ 0, (9)

W (·, ·, z) turns out to be concave. It is readily seen that the set of solutions of
(9) is nonempty. More specifically, each pair (β,L∗) such that

0 ≤ β ≤ β∗ = (k1 +
√

k0k2)
−2, and

L∗ = (1/2)(β−1 − k2
1 + k0k2)

satisfies (9), thus establishing the result on the strict concavity of Uβ.
To prove the monotonicity properties of Uβ , it will be sufficient to calculate

the first order derivatives of Uβ:

D1Uβ(x, y, z) = D1g (x, z) [y − g (x, z)] − Lx + a
D2Uβ(x, y, z) = g (x, z) − (1 − βL)y − βa.
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If the components of vector a are positively large enough, then D1Uβ(x, y, z) > 0
and D2Uβ(x, y, z) < 0 and this completes the proof.

It is important to remark that the results above still hold under weaker as-
sumptions. Indeed, it would be sufficient to replace ”for all z ∈ Z” with ”almost
for all z ∈ Z” in the statements above. The drawback of such an approach is
the more complex notation arising as soon as one tries to define the marginal
probability with respect to the zero-probability sets are to be considered2.

In view of what follows, it is worthwhile to consider the case where the policy
function is an affine transformation: g (x, z) = A (z) x + b (z), with A (z) an m-
order matrix depending on the shock z and b (z) an m-order random vector. In
this circumstance, the return function (6) turns out to be quadratic:

Uβ (x, y, z) = −1
2 (1 − βL) ‖y‖2 + 〈y,A (z) x〉 − 1

2

〈
x,

(
A

′

(z)A (z) + LIm

)
x
〉

+ linear terms.

In this case, the strict concavity of Uβ (x, y, z) can be studied directly without
resorting to Theorem 3 and, more importantly, we can relax the boundedness
assumption on domain X (not so if we are concerned about the monotonicity
of Uβ, which requires that X be bounded). It is easily verified that the two
conditions: βL < 1 and βL (1 − βL)−1 A

′

(z) A (z) − LIm ≤ −εIm for all z and
some ε > 0, assure that Uβ (., ., z) is strongly concave, uniformly over z. This
implies in turn that the fixed point w is the value function. It is readily seen
that the condition is β < k−2

1 , where k1 = supz ‖A (z)‖, and one may take, for
instance, L = 1

2

(
β−1 − k2

1

)
. All that is formalized in the next proposition.

Proposition 4

Given a linear map g (x, z) = A (z) x + b (z), for every 0 < β < β∗ = k−2
1 there

exists a strongly concave quadratic programming having g as its optimal policy.

It should be noted that whenever the affine transformations are uniformly
contractive, i.e., ‖A (z) x1 − A (z) x2‖ ≤ α ‖x1 − x2‖ for α < 1, then k1 = α and
thus the inverse problem does not require any restriction on the discount factor.

2Given any initial probability µ0 for the random shock z0 (for example µ0 = δz0
, which

denotes the probability that is a unit mass at the point z0) all marginal probabilities of the
random variables zt are well defined by iterating the adjoint operator associated to Q; that is
µt(·) =

∫
Z

Q(z, ·)µt−1(dz), t = 1, 2, . . .. Since the µt’s are different probability measures on the
same space (Z,Z), also the zero-probability sets are different as t varies. Therefore, in order
to restate our results for this broader class of concave models, it is enough to set assumptions
that must hold for almost every exogenous shock with respect to all marginal probabilities µt,
t = 1, 2, . . .; or, which is the same, for all exogenous shocks but a set which is the intersection of
all zero-probability sets.
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5 Constructing Fractals

In this section we study the asymptotic behavior of finite families of contraction
maps {g1, ..., gn} that produce limiting singular measures supported on fractals.
Let us suppose that the mappings gi : X → X, acting over a complete metric
space (X, d), have a common contraction factor α < 1, i.e.,

d (gi(x), gi(y)) ≤ αd (x, y) , for all x, y,∈ X, and i = 1, ..., n.

The system {g1, ..., gn} is sometimes called an iterated function system and we can
associate to it the so-called Barnsley operator g# defined over the subsets C ⊂ X:

g#(C) =
n⋃

i=1

gi(C).

We can also consider its iterates gt+1
# (C) = g#

[
gt
#(C)

]
, for all t ≥ 0.

The asymptotic behavior of gt
# is illustrated by the next ”collage” theorem.

Theorem 5 (Hutchinson [16])
There exists a unique closed and bounded set A, such that A = g#(A) =

⋃n
i=1 gi(A).

Furthermore, A is compact and h
[
gt
#(C), A

]
→ 0 as t → ∞ for all closed bounded

sets C ⊂ X, where h is the Hausdorff distance.

Proof

Hutchinson showed that g# : 2X
c →2X

c is a contraction as well as the operator
g# : 2X

k →2X
k . To be precise,

h [g#(A), g#(B)] ≤ αh(A,B)

holds for all A,B ∈ 2X
c . Therefore, since 2X

c and 2X
k are complete metric spaces,

the contraction mapping principle applies.

The invariant set A can be interpreted as the attractor of the system {g1, ..., gn}.
Most popular fractals are attractors of a finite number of contractions. As an ex-
ample, let X = R2 and consider the linear maps

g1(x1, x2) =
(x1

2 , x2

2

)
,

g2(x1, x2) =
(

1
4 + x1

2 , 1
2 + x2

2

)
,

g3(x1, x2) =
(

1
2 + x1

2 , x2

2

)
.

These are similitudes centered in three points of the triangle of vertex (0, 0),
(1/2, 1), (1, 0). The invariant set (the attractor) is Sierpinski’s gasket which is
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shaped by three copies of itself. In the same way, the middle-third Cantor set of
the interval [0, 1] is generated by the two maps g1(x) = 1

3x and g2(x) = 1
3x + 2

3 .
These attractors have Hausdorff dimension ln 3/ ln 2 and ln 2/ ln 3 respectively.

The idea behind the self-similarity for the attractor A is that from A =⋃n
i=1 gi(A), it turns out that A is shaped by n copies of its miniatures gi(A),

at least if some non-overlapping condition is fulfilled. There are several studies on
the topological nature of sets generated by contractive maps and on their Haus-
dorff dimension. See [16], [1], [27], [12] and [14] for more details. We here mention
only the stochastic interpretation of the iterated function systems described above.

Consider the random system xt+1 = gσt
(xt), where the indices σt are chosen

randomly and independently from the set of indexes {1, 2, ..., n} at each date t
with probabilities Pr (σt = i) = pi, with pi > 0 for all i and

∑n
i=1 pi = 1. An

appealing way to write this, that is consistent with the notation adopted for the
policy functions discussed in Section 4, is as follows.

Consider the stochastic process generated by the ”policy” g(x, zi) = gi(x),
where each map gi is associated with an exogenous shock zi belonging to a finite
set Z =

{
z1, ..., zn

}
. Therefore, by construction, the process of exogenous shocks

{zt} is i.i.d. with marginal probability distribution given by Pr(zi) = pi.
Clearly, {xt} is a Markov process whose law of motion is given by the station-

ary transition function P (x,A):

P (x,A) = Pr
{
zi : gi(x) ∈ A

}
=

n∑

i=1

piχA [gi(x)] , for all x ∈ X, all A ∈ X , (10)

where χA(x) is the indicator function. The adjoint operator M : Λ (X) → Λ (X)
associated to transition P is:

M(λ) =

∫

X
P (x, ·)λ(dx). (11)

The iterates M t+1(λ0) = M
[
M t(λ0)

]
define the sequence of marginal probabilities

of the process {xt} starting from an initial marginal probability λ0 ∈ Λ (X).
The next theorem can be regarded as the probabilistic counterpart of Theorem

5 and provides the stochastic realization of the attractor A of Theorem 5.

Theorem 6 (Hutchinson [16])
There exists a unique invariant probability measure λ∗ ∈ Λb (X) for the process
{xt}; i.e., the adjoint operator M , defined in (11), has one and only one fixed
point. Moreover, spt λ∗ = A, where A is the unique attractor of the system
{g1, ..., gn} . The iterative process λt+1 = M (λt) converges weakly to λ∗, for every
starting probability measure λ0 ∈ Λb (X).
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Proof

Hutchinson proved that the operator M is a contraction; more precisely

dH [M(µ),M(λ)] ≤ αdH(µ, λ), for all µ, λ ∈ Λb (X) ,

where dH is defined in (2). Since (Λ, dH ) is a complete metric space, the results
follow by contraction mapping principle. The fact that spt λ∗ = A is a consequence
of Theorem 5. A different proof of this theorem can be found in [17].

A consequence of this approach is the following (see [2], [27], [17]).

Proposition 7

With probability one, in the steady state the orbit {xt} generated by random system
xt+1 = g (xt, zt) is dense on A.

6 Fluctuations Versus Stability: Fractal Cycles

Here we provide a few examples of the theory developed in the first part of the
paper. The first example does not require the inverse theorems of Section 4.

6.1 One-Sector Model with Cantor Attractor

Consider the one-sector growth model with a Cobb-Douglas production function,
f(x) = x1/3, which already takes into account depreciation of capital. The utility
of the representative decision maker is U(c) = ln c. Suppose that an exogenous
perturbation may reduce production by some parameter 0 < k < 1 with proba-
bility p > 0. This random shock enters multiplicatively the production process;
i.e. output is given by fz(x) = zx1/3 where z ∈ {k, 1}. Thanks to monotonicity

of both production and utility functions, the problem is to maximize ln(z0x
1/3
0

−π0)+ E[
∑

∞

t=1 βt ln(ztπ
1/3
t−1 − πt)] over the sequences {πt} of random variables

such that 0 ≤ πt ≤ ztπ
1/3
t−1, t = 0, 1, ..., where 0 < β < 1 is the discount factor.

It is well known that the optimal policy for the concave problem just described
is g(x, z) = 1

3βzx1/3 (see e.g. [26]); i.e. the plan {πt} generated recursively by

πt = g(πt−1, zt) = (1/3)βztπ
1/3
t−1 (12)

is optimal. Consider now the dynamic system obtained by the following logarith-
mic transformation of {πt}:

yt = lnπt − (3/2) [ln(1/3)β + ln k] . (13)

The new system {yt}, conjugated to {πt}, evolves by the law ĝ(y, z) = 1
3y+ln(z/k):

yt = (1/3)yt−1 + ln(zt/k),
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as it is easily seen by substituting (12) into (13). Then the middle third Cantor
set on the interval [0,−3

2 ln k] is the invariant set (the attractor) of the system
{yt} generated by the linear maps g1(y) = 1

3y and g2(y) = 1
3y − ln k.

Therefore the attractor of the original system {πt}, i.e. of the optimal dynamic
of the one-sector optimal growth model under study, is a Cantor set.

6.2 Stochastic Quadratic Programming and Fractals

As it has been widely discussed, most of fractals are realized by iterating a finite
number of contractive mappings. Even better, a good deal of them are obtained
by iterating affine mappings. Hence, Theorem 3 and Proposition 4 show that
these fractals can be obtained through quadratic programs. To give a flavor of
this theory, we treat explicitly the Sierpinski’s gasket presented in Section 5. In
order to apply this construction to a three-sector model in the next subsection,
we modify the original ”triangle” attractor by shifting it away from the origin
and by shrinking it to let it remain within the square [0, 1]2. Thus the policy will
be g (x, z) = 1

2x + b (z), where x = (x1, x2), the shock z can take three values

z ∈
{
z1, z2, z3

}
and b

(
z1

)
=

(
1
6 , 1

6

)
, b

(
z2

)
=

(
1
3 , 1

2

)
, b

(
z3

)
=

(
1
2 , 1

6

)
. In this way,

the vector function g is constituted of similarities centered in the three points of

the triangle of vertex
(

1
3 , 1

3

)
,
(

2
3 , 1

)
,

(
1, 1

3

)
.

Let β ∈ (0, 1), a ∈ R2 and f : Z → R be a measurable bounded function.

In view of Proposition 4, since k1 = sup
z

‖A(z)‖ = 1
2 , we take L = 1

2

(
1
β − 1

k2
1

)
=

1
2β − 1

8 . By replacing these values in (6), we get the following one-period return:

Uβ(x, y, z) = −
(

1
16 + 1

4β

)
‖x‖2 −

(
1
4 + β

16

)
‖y‖2 + 1

2 〈y, x〉
+

〈
a + 1

2b(z), x
〉

+ 〈b(z) − βa, y〉 − 1
2 ‖b(z)‖2

+f(z) − βE(f),

(14)

where E(f) is the expectation of f which, as random shocks zt are i.i.d., does not
depend on z. The value function for the model under construction is

w(x, z) = −
[
(4β)−1 − 1/16

]
‖x‖2 + 〈a, x〉 + f(z).

6.3 Three-Sector Model with Sierpinski Attractor

We turn now to the construction of a stochastic three-sector, no-joint-production,
optimal growth model where the one-period welfare function Uβ is exactly (14).

Consider an economy with three production sectors: consumption c and two
capital goods, k and h. Labor is supplied at two different levels: unskilled work m
and skilled work l. Utility is linear in consumption, a fixed amount of labor from
both categories is supplied in each period and capital depreciation factor equals
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one for each capital good. All factors are employed in the consumption sector
while capital k and unskilled work m are used only in the production of capital
k. Similarly, capital h is produced by skilled work l and capital h. One can think
of sector h as a high-technology sector while sector k as a low-technology sector.
The Production Possibility Frontier T (k, h, k′, h′, z) will be given by

T (k, h, k′, h′, z) = max fc(k
c, hc,mc, lc, z)

s.t. k′ ≤ fk(k
k,mk), h′ ≤ fh(hh, lh),

kc +kk ≤ k, hc + hh ≤ h
mc +mk ≤ 1, lc + lh ≤ 1,

(15)

where fc, fk and fh are the production functions, k′, h′ are end-of-period level
of the two capital goods, z represents an exogenous shock belonging to the set{
z1, z2, z3

}
which is supposed to affect only the consumption good sector. The

total amount of work has been normalized at one in each category and all the
variables are constrained to non-negative values. Clearly, the dynamic constraint
turns out to be Γ(k, h) = {(k′, h′) : 0 ≤ k′ ≤ fk(k, 1), 0 ≤ h′ ≤ fh(h, 1)}, which
does not depend on shock z. The consumer’s problem then is

max
{
T

(
k0, h0, π

k
0 , πh

0 , z0

)
+ E

[∑
∞

t=1 βtT
(
πk

t−1, π
h
t−1, π

k
t , πh

t , zt

)]}

s.t.
(
πk

t , πh
t

)
∈ Γ

(
πk

t−1, π
h
t−1

)
,

(16)

where, as usual, 0 < β < 1.
If we assume that the technologies of capital sectors are Leontief type with

coefficients γ and ν respectively, i.e. fk(k
k,mk) = min

{
γkk,mk

}
and fh(hh, lh) =

min
{
νhh, lh

}
, then the solution to (15) is

T (k, h, k′, h′, z) = fc
(
k − (k′/γ), h − (h′/ν), 1 − k′, 1 − h′, z

)
.

Now, if we use (14) as the Production Possibility Frontier function in (16), i.e.,
if we let T (k, h, k′, h′, z) = Uβ [(k, h), (k′, h′), z], then, by a straightforward substi-
tution of variables, the production function of consumption becomes

fc(k
c, hc,mc, lc, z) = Uβ [(kc + (1 − mc)/γ, hc + (1 − lc)/ν) , (1 − mc, 1 − lc) , z] ,

which clearly is strictly concave over [0, 1]2 for each fixed z. By assuming γ,
ν ≥ 3, it is easily seen that the dynamic constraint is such that all pairs (k′, h′)
belonging to the square [0, 1]2 are feasible whenever k, h belong to the square[

1
3 , 1

]2
. Furthermore, if γ, ν are such that γβ > 1 and νβ > 1, for any vector

a = (a1, a2) whose components are greater than 13γ
12(βγ−1) and 13ν

12(βν−1) respectively,
it is easily seen that fc turns out to be strictly increasing in kc, hc, mc and lc.
Therefore this neo-classical stochastic optimal growth model converges to the
Sierpinski gasket discussed in the previous subsection. By Proposition 7, the
trajectories of two capital goods wander densely over this fractal through time.
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7 Concluding Remarks

The discussion developed in this paper shows that two different disciplines, stochas-
tic optimal control and chaotic dynamic systems, may interact in the description
of the evolution thorough time of an economic system. By joining the two the-
ories we found that stability and complex behavior of economic models turn out
to be not mutually incompatible. On one side, standard ergodic theory applied
to Markovian systems establishes existence of a unique steady state (a stationary
probability defined on an invariant support, the attractor) to which the economy
eventually converges; models with optimal policies that are contractive maps are
of this type. On the other side, contractive maps generate systems that converge
to fractal attractors. Hence, by applying the stochastic version of the Indetermi-
nacy Theorem to affine contractive maps, it is easy to construct economic models
converging to invariant (singular) probabilities defined on fractal attractors. Such
economies are well shaped as agents have concave, increasing, differentiable utili-
ties, but, in the long run, they evolve through a stationary chaotic cycle.

It remains to find some characterization also for the invariant distribution
defined on the fractal support, that is, the stochastic law that moves the system
through the points of the attractor after the system entered the steady state. In
particular, it would be interesting to study the relationship between the shape of
the distribution of the exogenous shocks and the shape of the resulting invariant
distribution on the attractor.
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