Skip to main content
Log in

Quantum Computing Using Quadrupolar Spins in Solid State NMR

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Nuclear magnetic resonance (NMR) is a successful method for experimental implementation of quantum information processing. Most of the successful NMR quantum processors are small molecules in liquid state. In this case each spin half particle represents a qubit. Another approach is the usage of higher spin particles as multi qubit systems. We present the first solid state virtual 2-Qubit system, represented by the spin-3/2 nucleus 23Na in a NaNO3 single crystal. For this system we show how to create the pseudo pure states and we derive a set of propagators and logic gates corresponding to the selective excitation of single quantum transitions. With this set, the preparation of an “entangled” state is experimentally verified by state tomography, adjusted to the spin-3/2 system.

PACS: 0.367Lx; 76.60-k

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. D. Deutsch, Proc. R. Soc. Lond. A 400, 97 (1985).

    Google Scholar 

  2. P. W. Shor, Proceedings, 35th Annual Symposium on Foundations of Computer Science (1994).

  3. L. K. Grover, Phys. Rev. Lett. 79, 325 (1997).

    Google Scholar 

  4. A. M. Turing, Proc. Lond. Math. Soc. 42, 230 (1936).

    Google Scholar 

  5. Y. S. Weinstein, M. A. Pravia, E. M. Fortunato, S. Lloyd, and D. G. Cory, Phys. Rev. Lett. 86, 1889 (2001).

    Google Scholar 

  6. D. G. Cory, R. Laflamme, E. Knill, L. Viola, T. F. Havel, N. Boulant, G. Boutis, E. Fortunato, S. Lloyd, R. Martinez, C. Negrevergne, M. Pravia, Y. Sharf, G. Teklemariam, Y. S. Weinstein, and W. H. Zurek, Fortschr. Phys. 48, 875 (2000).

    Google Scholar 

  7. A. R. Kessel and V. L. Ermakov, Proc. of SPIE, 4061, 68 (2000).

    Google Scholar 

  8. A. R. Kessel and V. L. Ermakov, JETP Lett. 71, 307 (2000).

    Google Scholar 

  9. A. Kumar, K. V. Ramanathan, N. Sinha, and T. S. Mahesh, J. Chem. Phys. 114, 4415 (2001).

    Google Scholar 

  10. A. K. Khitrin and B. M. Fung, J. Chem. Phys. 112, 6963 (2000).

    Google Scholar 

  11. R. V. Pound, Phys. Rev. 79, 685 (1950).

    Google Scholar 

  12. R. R. Ernst, G. Bodenhausen, and A. Wokaun, Principles of Nuclear Magnetic Resonance in One and Two Dimensions (Oxford Science Publications, Oxford, 1987).

    Google Scholar 

  13. M. Munowitz, Coherence and NMR (John Wiley & Sons: Chichester, 1988).

    Google Scholar 

  14. M. N. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000).

    Google Scholar 

  15. A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J. Smolin, and H. Weinfurter, Phys. Rev. A 52, 3457 (1995).

    Google Scholar 

  16. L. M. K. Vandersypen, M. Steffen, G. Breyta, C. S. Yannoni, M. H. Sherwood, I. Chuang, Nature 414, 883 (2001).

    Google Scholar 

  17. D. G. Cory, M. D. Price, and T. F. Havel, Physica D 120, 82 (1998).

    Google Scholar 

  18. E. Knill, I. L. Chuang, and R. Laflamme, Phys. Rev. A 57, 3348 (1998).

    Google Scholar 

  19. I. L. Chuang, N. Gershenfeld, M. G. Kubinec, and D. W. Leung, Proc. R. Soc. Lond. A, 454, 447 (1998).

    Google Scholar 

  20. A. D. Khitrin and B. M. Fung, J. Chem. Phys. 112, 6963 (2000).

    Google Scholar 

  21. G. L. Long, H. Y. Yan, and Y. Sun, J. Opt. B-Quantum S. O. 3, 376 (2001).

    Google Scholar 

  22. W. S. Warren, Science 277, 1688 (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W.S. Veeman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kampermann, H., Veeman, W. Quantum Computing Using Quadrupolar Spins in Solid State NMR. Quantum Information Processing 1, 327–344 (2002). https://doi.org/10.1023/A:1023461628937

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023461628937

Navigation