Skip to main content
Log in

Theory of Single Spin Detection with STM

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We propose a mechanism for detection of a single spin center on a non-magnetic substrate. In the detection scheme, the STM tunnel current is correlated with the spin orientation. In the presence of magnetic field, the spin precesses and the tunnel current is modulated at the Larmor frequency. The mechanism relies on the effective spin-orbit interaction between the injected unpolarized STM current and the local spin center, which leads to the nodal structure of the spatial signal profile. Based on the proposed mechanism, the strongest spin-related signal can be expected for the systems with large spin-orbit coupling and low carrier concentration.

PACS: 74.40.Gk; 72.70.+m; 73.63.Kv; 85.65.+h

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. M. Farle, Rep. Prog. Phys. 61, 755 (1998).

    Google Scholar 

  2. K. J. Bruland, W. M. Dougherty, J. L. Garbini, J. A. Sidles, and S. H. Chao, Appl. Phys. Lett. 73, 3159 (1998).

    Google Scholar 

  3. J. Köhler, J. A. J. M. Disselhorst, M. C. J. M. Donckers, E. J. J. Groenen, J. Schmidt, and W. E. Moerner, Nature 363, 242 (1993); P. Tamarat, A. Maali, B. Lounis, and M. Orrit, J. Phys. Chem. A 104, 1 (2000).

    Google Scholar 

  4. B. E. Kane, N. S. McAlpine, A. S. Dzurak, R. G. Clark, G. J. Milburn, He Bi Sun, and H. Wiseman, Phys. Rev. B 61, 2961 (2000).

    Google Scholar 

  5. P. Recher, E. V. Sukhorukov, and D. Loss, Phys. Rev. Lett. 85, 1962 (2000).

    Google Scholar 

  6. S. Heinze, M. Bode, A. Kubezka, O. Pietzch, X. Nie, S. Blugel, and R. Wiesendanger, Science 288, 1805 (2000) and referencies therein; R. Wiesendanger, H.-J. Gunterodt, G, Guntherod, R.J. Gamboni, and R. Ruf, Phys. Rev. Lett. 65, 247 (1990).

    Google Scholar 

  7. H. C. Manoharan, C. P. Lutz, and D. M. Eigler, Nature 403, 512 (2000); M. F. Crommie, C. P. Lutz and D. M. Eigler, Science 262, 218 (1993); A. Yazdani, B. A. Jones, C. P. Lutz, M. F. Crommie, and D. M. Eigler, Science 275, 1767 (1997); V. Madhavan, W. Chen, T. Jamneala, M. F. Crommie, and N. S. Wingreen, Science 280, 567 (1998).

    Google Scholar 

  8. M. I. Salkola, A. V. Balatsky, and J. R. Schrieffer, Phys. Rev. B 55, 12648 (1997) and references therein.

    Google Scholar 

  9. A.Yazdani, B. A. Jones, C. P. Lutz, M. F. Crommie, and D. M. Eigler, Science 275, 1767 (1997).

    Google Scholar 

  10. B. E. Kane, Nature 393, 133 (1998).

    Google Scholar 

  11. D. Loss and D. P. DiVincenzo, Phys. Rev. A 57, 120 (1998).

    Google Scholar 

  12. Y. Manassen, I. Mukhopadhyay, and N. Ramesh Rao, Phys. Rev. B 61, 16223 (2000); Y. Manassen, R. J. Hamers, J. E. Demuth, and A. J. Castellano Jr, Phys. Rev. Lett 62, 2531 (1989); D. Shachal and Y. Manassen, Phys. Rev. B 46, 4795 (1992); Y. Manassen, J. Magnetic Reson. 126, 133 (1997). While working on this paper we became aware of a recent ESP-STM experiment by Cambridge group: C. Durkan and M. Welland, Appl. Phys. Lett. 80, 458 (2002); H. Manoharan, Nature 416, 24 (2002).

    Google Scholar 

  13. In semiconductors, the width of the ESR line 1/T 2 is quite narrow even at high temperatures, on the scale of 10-7-10-8 s at T = 70K in Fe-Si2 ceramics. For phosphoros in silicon, the spin relaxation time can be as long as 100 s. T. Miki, Y. Matsui, K. Matsubara, and K. Kishimoto, J. Appl. Phys. 75, 1693 (1994). See also R. Worner and O.F. Schirmer, Phys. Rev. B 34, 1381 (1986).

    Google Scholar 

  14. Yu. A. Bychkov and E. I. Rashba, JETP Lett. 39, 78 (1984). For recent applications to 2DEG and quantum dots see: J. Carlos Egues, Guido Burkard, and Daniel Loss, http:// arXiv.org/abs/cond-mat/0207392, J. Superconductivity, to be published; C. A. Ullrich and M. E. Flatte, http://arXiv.org/abs/cond-mat/0206251; M. Governale, http://arXiv.org/abs/cond-mat/0204410.

    Google Scholar 

  15. P. Lipavský, V. Špi?ka, and B. Velicky, Phys. Rev. B 34, 6933 (1986).

    Google Scholar 

  16. A.V. Balatsky, unpublished.

  17. M. Buttiker, Phys. Rev. Lett. 57, 1761 (1986).

    Google Scholar 

  18. H.X. Tang et al., Phys. Rev. B 61, 4437 (2000).

    Google Scholar 

  19. I. Martin, unpublished.

  20. S.A. Gurvitz, Phys. Rev. B 56, 15215 (1997).

    Google Scholar 

  21. A.N. Korotkov and D.V. Averin, Phys. Rev. B 64, 165310 (2001).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A.V. Balatsky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balatsky, A., Martin, I. Theory of Single Spin Detection with STM. Quantum Information Processing 1, 355–364 (2002). https://doi.org/10.1023/A:1023465729846

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023465729846

Navigation