Skip to main content
Log in

Quantum Pattern Recognition

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

I review and expand the model of quantum associative memory that I have recently proposed. In this model binary patterns of n bits are stored in the quantum superposition of the appropriate subset of the computational basis of n qbits. Information can be retrieved by performing an input-dependent rotation of the memory quantum state within this subset and measuring the resulting state. The amplitudes of this rotated memory state are peaked on those stored patterns which are closest in Hamming distance to the input, resulting in a high probability of measuring a memory pattern very similar to it. The accuracy of pattern recall can be tuned by adjusting a parameter playing the role of an effective temperature. This model solves the well-known capacity shortage problem of classical associative memories, providing a large improvement in capacity.

PACS: 03.67.-a

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Roman Rietsche, Christian Dremel, … Jan-Marco Leimeister

REFERENCES

  1. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000); A. O. Pittenger, An Introdcution to Quantum Computing Algorithms (Birkhäuser, Boston, 2000).

    Google Scholar 

  2. P. W. Shor, SIAM J. Computing 26, 1484 (1997).

    Google Scholar 

  3. L. Grover, Phys. Rev. Lett. 79, 325 (1997).

    Google Scholar 

  4. C. A. Trugenberger, Phys. Rev. Lett. 87, 067901 (2001): C. A Trugenberger, Phys. Rev. Lett. 89, 277903 (2002).

    Google Scholar 

  5. M. Sasaki, A. Carlini, and R. Jozsa, Phys. Rev. A 64, 022317 (2001); M Sasaki and A. Carlini, quant-ph/0202173; R. Schützhold, quant-ph/0208063.

    Google Scholar 

  6. B. Müller and J. Reinhardt, Neural Networks (Springer-Verlag, Berlin, 1990); T. Kohonen, Self-Organization and Associative Memory (Springer-Verlag, Berlin, 1984).

    Google Scholar 

  7. E. Baum, Science 268, 583 (1995).

    Google Scholar 

  8. J. J. Hopfield, Proc. Natl. Acad. Sci. USA 79, 2554 (1982).

    Google Scholar 

  9. B. Kosko, IEEE Trans. on Systems, Man and Cybernetics 18, 49 (1988).

    Google Scholar 

  10. M. Mezard, G. Parisi, and M. A. Virasoro, Spin Glass Theory and Beyond (World Scientific, Singapore, 1987).

    Google Scholar 

  11. P. Kanerva, in Associative Neural Memories: Theory and Implementation, M. H. Hassoun (ed.) (Oxford University Press, New York, 1993).

    Google Scholar 

  12. P. A. Chou, in Neural Information Processing Systems, D. Z. Anderson (ed.) (American Institute of Physics, New York, 1988); P. A. Chou, IEEE Trans. Info. Theory 35, 281 (1989).

    Google Scholar 

  13. G. Brassard, P. Hoyer, M. Mosca and A. Tapp, quant-ph/0005055.

  14. N. Sourlas, Nature 339, 693 (1989); I. Kanter and D. Saad, Phys. Rev. Lett. 83, 2660 (1999); Y. Kabashima, T. Murayama, and D. Saad, Phys. Rev. Lett. 84, 1355 (2000).

    Google Scholar 

  15. Y. Kabashima, T. Murayama, and D. Saad, Phys. Rev. Lett. 84, 2030 (2000).

    Google Scholar 

  16. A. Barenco, C. Bennet, R. Cleve, D. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J. Smolin, and H. Weinfurter, Phys. Rev. A 52, 3457 (1995).

    Google Scholar 

  17. W. Wootters and W. Zurek, Nature 299, 802 (1982).

    Google Scholar 

  18. V. Buzek and M. Hillery, Phys. Rev. A 54, 1844 (1996).

    Google Scholar 

  19. N. Gisin and S. Massar, Phys. Rev. Lett. 79, 2153 (1997); D. Bruss, A. K. Ekert, and C. Macchiavello, Phys. Rev. Lett. 81, 2598 (1998).

    Google Scholar 

  20. L.-M. Duan and G.-C. Guo, Phys. Rev. Lett. 80, 4999 (1998).

    Google Scholar 

  21. A. Chefles and S. M. Barnett, Phys. Rev. A 60, 136 (1999).

    Google Scholar 

  22. G. L. Long, quant-ph/0106071.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trugenberger, C.A. Quantum Pattern Recognition. Quantum Information Processing 1, 471–493 (2002). https://doi.org/10.1023/A:1024022632303

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024022632303

Navigation