Skip to main content
Log in

Extended Binomial Moments of a Linear Code and the Undetected Error Probability

  • Published:
Problems of Information Transmission Aims and scope Submit manuscript

Abstract

Extended binomial moments of a linear code, introduced in this paper, are synonymously related to the code weight distribution and linearly to its binomial moments. In contrast to the latter, the extended binomial moments are monotone, which makes them appropriate for studying the undetected error probability. We establish some properties of the extended binomial moments and, based on this, derive new lower and upper bounds on the probability of undetected error. Also, we give a simplification of some previously obtained sufficient conditions for proper and good codes, stated in terms of the extended binomial moments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. Leung, S.K., Barnes, E.R., and Friedman, D.U., On Some Properties of the Undetected Error Probability of Linear Codes, IEEE Thans. Inf. Theory, 1979, vol. 25, no. 1, pp. 110–112.

    Google Scholar 

  2. Kasami, T. and Lin, S., On the Probability of Undetected Error for the Maximum Distance Separable Codes, IEEE Trans. Commun., 1984, vol. 32. no. 9, pp. 998–1006.

    Google Scholar 

  3. Kløve, T. and Korzhik, V., Error Detecting Codes: General Theory and Their Application in Feedback Communication Systems, Boston: Kluwer, 1995.

    Google Scholar 

  4. Dodunekova, R. and Dodunekov, S.M., On the Probability of Undetected Error for Near MDS Codes, Preprint of Chalmers University of Technology and Göteborg University, 1995, no. 1995: 25.

  5. Dodunekova, R. and Dodunekov, S.M., Sufficient Conditions for Good and Proper Error Detecting Codes, IEEE Trans. Inf. Theory, 1997, vol. 43, no. 6, pp. 2023–2026.

    Google Scholar 

  6. Dodunekova, R. and Dodunekov, S.M., Sufficient Conditions for Good and Proper Linear Error Detecting Codes via Their Duals, Math. Balkanica, 1997, vol. 11, no. 3-4, pp. 375–381.

    Google Scholar 

  7. Baicheva, T., Dodunekov, S.M., and Kazakov, P., On the Cyclic Redundancy-Check Codes with 8-Bit Redundancy, Comp. Commun., 1998, vol. 21, no. 11, pp. 1030–1033.

    Google Scholar 

  8. Baicheva, T., Dodunekov, S.M., and Kazakov, P., On the Cyclic Redundancy-Check Codes of 16-Bit Redundancy, in Proc. 6th Int. Workshop on Algebraic and Combinatorial Coding Theory, Pskov, Russia, 1998, pp. 17–21.

  9. Baicheva, T., Dodunekov, S.M., and Kazakov, P., On the Error Detection Performance of Some Standardized CRC Codes, in Proc. Telecom 98, Drujba, Bulgaria, 1998, pp. 66–72.

  10. Baicheva, T., Dodunekov, S.M., and Kazakov, P., Undetected Error Probability Performance of Cyclic Redundancy-Check Codes of 16-Bit Redundancy, IEEE Proc. Commun., 2000, vol. 147, no. 5, pp. 253–256.

    Google Scholar 

  11. Dodunekova, R., TThe Duals of the MMD Codes are Proper for Error Detection, Preprint of Chalmers University of Technology and Göteborg University, 2002, no. 2002: 20.

  12. Dodunekova, R., Dodunekov, S.M., and Kløve, T., Almost-MDS Codes and Near MDS Codes for Error Detection, IEEE Trans. Inf. Theory, 1997, vol. 43, no. 1, pp. 285–290.

    Google Scholar 

  13. Dodunekova, R. and Dodunekov, S.M., The MMD Codes are Proper for Error Detection, IEEE Trans. Inf. Theory, 1997, vol. 48, no. 12, pp. 3109–3111.

    Google Scholar 

  14. Kazakov, P., Application of Polynomials to CRC and Spherical Codes, PhD Thesis, Delft, Netherlands: Technishe Universiteit Delft, 2000.

    Google Scholar 

  15. MacWilliams, F.J. and Sloane, N.J.A., The Theory of Error-Correcting Codes, Amsterdam: North-Holland, 1977. Translated under the title Teoriya kodov, ispravlyayushchikh oshibki, Moscow: Svyaz', 1979.

    Google Scholar 

  16. MacWilliams, F.J., A Theorem on the Distribution of Weights in a Systematic Code, Bell Syst. Tech. J., 1963, vol. 42, pp. 79–94.

    Google Scholar 

  17. Katsman, G.L. and Tsfasman, M.A., Spectra of Algebraic-Geometric Codes, Probl. Peredachi Inf., 1987, vol. 23, no. 4, pp. 19–34 [Probl. Inf. Trans. (Engl. Transl.), 1987, vol. 23, no. 4, pp. 262275].

    Google Scholar 

  18. Ashikhmin, A. and Barg, A., Binomial Moments of the Distance Distribution: Bounds and Applications, IEEE Trans. Inf. Theory, 1999, vol. 45, no. 2, pp. 483–452.

    Google Scholar 

  19. Ashikhmin, A. and Barg, A., Binomial Moments of the Distance Distribution and the Probability of Undetected Error, Des. Codes Cryptogr., 1999, vol. 16, no. 2, pp. 103–116.

    Google Scholar 

  20. Greene, C., Weight Enumeration and the Geometry of Linear Codes, Stud. Appl. Math., 1976, vol. 55, no. 2, pp. 119–128.

    Google Scholar 

  21. Barg, A., The Matroid of Supports of a Linear Code, Appl. Algebra Engrg. Commun. Comput., 1997, vol. 8, no. 3, pp. 165–172.

    Google Scholar 

  22. Katsman, G.L., Tsfasman, M.A., and Vlăduţ, S.G., Spectra of Linear Codes and Error Probability of Decoding, Coding Theory and Algebraic Geometry, Stichtenoth, H. and Tsfasman, M.A., Eds., Lect. Notes Math., vol. 1518, Berlin: Springer, 1992, pp. 82–98.

    Google Scholar 

  23. Abdel-Ghaffar, K.A.S., A Lower Bound on the Undetected Error Probability and Strictly Optimal Codes, IEEE Trans. Inf. Theory, 1997, vol. 43, no. 5, pp. 1489–1502.

    Google Scholar 

  24. Delsarte, P., Bilinear Forms over a Finite Field, with Applications to Coding Theory, J. Combin. Theory, Ser. A, 1978, vol. 25, no. 3, pp. 226–241.

    Google Scholar 

  25. Helleseth, T., Kløve, T., and Levenshtein, V.I., On the Information Function of an Error-Correcting Code, IEEE Trans. Inf. Theory, 1997, vol. 43, no. 2, pp. 549–557.

    Google Scholar 

  26. Simonis, J., The Effective Length of Subcodes, Appl. Algebra Engrg. Commun. Comput., 1994, vol. 5, no. 6, pp. 371–377.

    Google Scholar 

  27. Olsson, J. and Willems, W., A Characterization of Certain Griesmer Codes: MMD Codes in a More General Sense, IEEE Trans. Inf. Theory, 1999, vol. 45, no. 6, pp. 2138–2142.

    Google Scholar 

  28. Olsson, J., Linear Codes with Performance Close to the Singleton Bound, Licentiate Thesis no. 683, Linköping, Sweden: Linköpings Univ., 1998.

    Google Scholar 

  29. Olsson, J., On Near-Near MDS Codes, in Proc. 5th Int. Workshop on Algebraic and Combinatorial Coding Theory, Sozopol, Bulgaria, 1996, pp. 231–236.

  30. Faldum, A. and Willems, W., Codes of Small Defects, Des. Codes Cryptogr., 1997, vol. 10, no. 3, pp. 341–350.

    Google Scholar 

  31. Dodunekov, S.M. and Landjev, I.N., On Near MDS Codes, J. Geom., 1995, vol. 54, nos. 1-2, pp. 30–43.

    Google Scholar 

  32. de Boer, M.A., Almost MDS Codes, Des. Codes Cryptogr., 1996, vol. 9, no. 2, pp. 143–155.

    Google Scholar 

  33. Faldum, A. and Willems, W., A Characterization of MMD Codes, IEEE Trans. Inf. Theory, 1998, vol. 44, no. 4, pp. 1555–1558.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dodunekova, R. Extended Binomial Moments of a Linear Code and the Undetected Error Probability. Problems of Information Transmission 39, 255–265 (2003). https://doi.org/10.1023/A:1026162531539

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026162531539

Keywords

Navigation