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INPUT/OUTPUT LOGICS

ABSTRACT. In a range of contexts, one comes across processesnbling
inference, but where input propositions are nogeémeral included among outputs,
and the operation is not in any way reversible. nixas arise in contexts of
conditional obligations, goals, ideals, prefereneesions, and beliefs. Our purpose is
to develop a theory of such input/output operatidfsur are singled out: simple-
minded, basic (making intelligent use of disjunetimputs), simple-minded reusable
(in which outputs may be recycled as inputs), aasidoreusable. They are defined
semantically and characterised by derivation rudasyell as in terms of relabeling
procedures and modal operators. Their behaviowtudied on both semantic and
syntactic levels.

KEY WORDS: input/output logic, reusability, identitconditional goals, conditional
obligations, deontic logic

1. INTRODUCTION

Imagine a black box into which we may feed proposg as input, and that also

produces propositions as output. Of course, classansequence may itself be seen
in this way, but it is a very special case, witldiidnal features - inputs are also

themselves outputs, since gmpposition classically implies itself, and the cg®sn

is in a certain sense reversible, since contraposi valid. However, there are many
examples without those features. Roughly speakinay, are of two main kinds.

The box may stop some inputs, while letting oth#r®ugh, perhaps in modified
form. Inputs may record reports of agents, of tired Kaccording to source X is
true’, while the box may give as output eitheitself, a qualified version o%, or
nothing at all, according to the identity iofOr it might give outpuk only when at
least two distinct sources vouch for it, and so lmputs might be facts about the
performance of the stock-market today, and outpntanalyst's commentary; or facts
about your date and place of birth, with output ryboroscope readings. In these
examples, the outputs express some kind of beliekpectation.

Again, inputs may be conditions, with outputs espneg what is deemed desirable in
those conditions. The desiderata may be obligataing normative system, ideals,
goals, intentions or preferences. In general, adatertained as a condition may itself
be far from desirable, so that inputs are not asvautputs; and as is widely
recognised, contraposition is inappropriate fordibonal goals.

Our purpose is to develop a general theory of mijomal input/output operations,
covering both kinds of example. Particular attemiggiven to the case where outputs



may be recycled as inputs. In a companion papekifian and van der Torre, to
appear), we examine the imposition of constraintswtput.

From a very general perspective, logic is ofternsag an ‘inference motor’, with
premises as inputs and conclusions as outputsréfiju But it may also be seen in
another role, as ‘secretarial assistant’ to soméberpt perhaps non-logical,
transformation engine (figure 2). From this poihtvew, the task of logic is one of
preparing inputs before they go into the machimgpagking outputs as they emerge
and, less obviously, co-ordinating the two. Thecpss as a whole is one of ‘logically
assisted transformation’, and is an inference ovilgn the central transformation is
so. This is the general perspective underlyingpti@sent paper. It is one of ‘logic at
work’ rather than ‘logic in isolation’; we are nstudying some kind of non-classical
logic, but a way of using the classical one.
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Picture of Logic Assisting a Transformation Engine




On a pre-logical level, this picture is perfecthnfiliar from elementary set theory.
Consider any univerde, not necessarily of propositions, and any rela@on L2. For
example L may be the set of humans, a@&dhe parent/child relation. Given an input
A [0 L, the output oA underG may be understood simply &A) = {x: (a,x) O G for
somea [J A} - in the example, the set of all children of gams inA.

The present paper may be seen as investigating hapgiens to this basic picture
when we pass to the logical level, i.e. whens the set of propositions of some
language, and input and output are both under wWeey f the operatiorCn of
classical consequence. These are in a certain $dlfssebut give rise to subtle and
interesting behaviour.

2. LOGICAL LEVEL: THE PROBLEM

Consider a propositional languageclosed under at least the usual truth-functional
connectives; its elements are calfednulae. Let G be a set of ordered pairgX) of
formulae inL; the letter chosen serves as reminder of the prétation (among
others) of the pairs as conditional goals. We Gall generating set. We read a pair
(a,x) forwards, i.e. witha as body ana as head; and we call the corresponding truth-
functional formula a-x its materialisation, echoing the old name ‘material
implication’ for the connective involved.

Suppose that we are also given aAeif formulae. Our problem is: how may we
reasonably define the set of propositianaaking up the output & underG, or one
might also say, o6 givenA, which we writeout(G,A)? Alternatively, suppose we are
given only the generating sét how may we define the set of input/output pakx)
arising fromG, which we writeout(G)?

These questions are the same, for we may defip@ [0 out(G) iff x O out(G,A) or
conversely. But the two formulations give a ratluffiferent gestalt, and one is
sometimes more convenient rather than the othemweé\shall see, the latter tends to
be clearer in semantic contexts, whilst the fornsereasier to work with when
considering derivations in a syntactic context. $tiall move freely from one to the
other, just as one moves betweézmand | for classical consequence.

3. SIMPLE-MINDED OUTPUT
3.1. Semantic definition

The simplest response to our problem is toquifG,A) = Cn(G(Cn(A))), where the
function G(.) is defined as on the pre-logical level, a@d alias | is classical
consequence. In other words, given afsef formulae as input, we first collect all of
its consequences, then ap@yto them, and finally consider all of the conseqésn
of what is thus obtained (figure 3).
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Figure3
Simple-Minded Output: out1(G,A) = Cn(G(Cn(A)))

Under this definition, which we caimple-minded output and write asout;(G,A),
inputs are not in general outputs; that is, we achaveA [1 out1(G,A).

Example 1. PutG = {(a,x)}where a,x are distinct elementary letters, and put {a}.
ThenG(Cn(a)) = {x} so a [ out1(G,a) = Cn(G(Cn(a))) = Cn(x). Contraposition also
fails, for althoughx O out;(G,a) we have-a [ out; (G, X): sincea [J Cn(-x) we have
G(Cn(=x)) =0 so that~a [ out;(G,~X) = Cn(G(Cn(-x))) = Cn(0).

Clearly, this operation is inadequate for some pseg, for it is unable to handle
disjunctive inputs intelligently.

Example 2. PutG = {(a,x), (b,x)}and A = {allb}. Then Cn(A)nb(G) = [0 where we
write b(G) for the set of all bodies of elements@fi.e. in this example the sed,p}.
Hence als@&(Cn(A)) = O so thatCn(G(Cn(A))) = Cn(J). However, in many contexts
we would want to puk in the output, as it can be obtained from eaclheftwo
disjuncts of the input.

Nevertheless, the operation of simple-minded outistan interest of its own, and its
study also helps prepare the way for more sophistitones.

3.2. Syntactic characterisation

Our definition of simple-minded output is, in a adbsense of the term, semantic. It is
not difficult to give it a syntactic characterigatiin terms of derivation rules.

In general, for any set of rules, we say that a (@x) of formulae isderivable using
those rules from a setG of such pairs iff §x) is in the least set that includ&s
contains the pairtf) wheret is a tautologyand is closed under the rules. In the
systems studied here, it will make no differencacihautologyt is chosen. Our



notations aregx) [ deriv(G) or equivalentlyx [0 deriv(G,a), with a subscript to
indicate the set of rules employed.

WhenA is a set of formulae, derivability oAf) from G is defined as derivability of
(a,x) from G for some conjunctioa = a;[1...[a, of elements oA. We understand the
conjunction of zero formulae to be a tautologytisat (J,x) is derivable fronG iff
(t,x) is for some tautologi

In the particular case of simple-minded output, wge the following three rules
determining an operatiomeriv;. Of these, the first governs the use of inputs
(strengthening the input: Sl), while the other wheal with the management of outputs
(conjunction in the output: AND; weakening the autpNO).

S: From @.x) to (b,x) wheneveb} a
AND: From @,x), (a,y) to (@x0Cly)
WO:  From @x)to (ay) whenevewx}y.

OBSERVATION 1. Outy(G,A) = derivi(G,A).

Outline of proof. The inclusion from right to left is straightforveaby induction on
length of derivation. From left to right, suppogell Cn(G(Cn(A))). Then by
compactness dfn there arexy,..., X, 0 G(Cn(A)) with x O Cn(x;[...[X,). In the case
thatn = 0,x is a tautologyt and we can also pat=t giving us a one-step derivation
of (t,t). In the case thah # 0 we proceed as follows. For eack n, sincex; [
G(Cn(A)) there is & O Cn(A) with (bi,x) O G. Puttingb = by[1... b, we note thab

0 Cn(A), and so by compactnebs] Cn(a) for some conjunctiom = a;[l...ay, of
elements ofA. We can thus construct a derivation whose leaveshe pairslg,x),
followed by applications of Sl to get the paiesx(), followed by applications of AND
to get @, x;[1...[,), followed finally by WO to getq,x).

Evidently, the proof of Observation 1 also provide'siniversal order’ for derivations
of simple-minded output: SI, AND, WO. More on timssection 8.
4. BASIC OUTPUT
4.1. Semantic definition and syntactic characterisation
As already remarked, simple-minded output is unabl@rocess disjunctive inputs

intelligently. How may this be done? On the syntatgvel, the answer is obvious:
definederiv,(G) by adding the following rule to those for simplended derivations:

OR  From &), (b,x) to (@b,x).

On the semantic level, we defibasic output, outy(G,A), asn{Cn(G(V)): V(A) = 1},
in the principal case th#t is classically consistent (see figure 4). Hereanges over
boolean valuations and = {b: v(b) = 1}. In the limiting case that there is no such
(which by classical logic happens K is inconsistent) we pubuty(G,A) to be



Cn(G(L)) whereL is the set of all boolean formulae; this equatgh(G)) whereh(G)
is the set of all heads of elementszof

Equivalently:outy(G,A) = n{Cn(G(V)): A 01V, V complete}. Here, by aomplete set

we mean one that is either maxiconsistent or etquial There is always at least one
completeV that includesA, namelyL, and so there is no need for a separate limiting
case. The same trick could be done with the fostitilation, by allowingv to be
either a boolean valuation or the function thasp(lt) = 1 for all formulaeb.

Note that as classical consequereis monotonic, and the transformati@(X) is
also monotonic in each ok and G, both simple-minded and basic output are
monotonic in each of their arguments.

To compare basic with simple-minded output, notle simple-minded output can
also be expressed as an intersection. Triviallyi(G,A) = n{Cn(G(B)): A 0 B =
Cn(B)}. As is well known,Cn(V) =V for any completé/, so we can say that basic
output is like simple-minded output except thatestricts the choice d@ to complete

sets.
Cn(G(W))

Cn(G(\))

Figure 4
Basic Output: out,(G,A) = n{Cn(G(V)): v(A) = 1}
=n{Cn(G(V)): AOV}

OBSERVATION 2. Outy(G,A) = derivo(G,A).

Outline of Proof. We begin by disposing of the limiting case tAas inconsistent. In
that caseouty(G,A) = Cn(h(G)) = derivo(G,A) by definition on the left and easy
verification on the right. Next, we dispose of dreatlimiting case, that O Cn(G(L)).



Sincel is complete and include, this gives immediately [0 outy(G,A); and it is
also easy to show by induction ttdarivo(G,A) O Cn(G(L)) so thatx [J derivy(G,A).
So consider finally the principal case thas consistent ank [ Cn(G(L)).

The verification from right to left (soundness)affected by first observing that it
suffices to prove the result for individual formella and then carrying out a
straightforward induction on length of derivatidrhe interesting case in the induction
is that for the rule OR. Suppogé] outy(G,blc). Then there is a boolean valuation
with v(bc) =1 andx [0 Cn(G(V)). But then eithew(b) =1 orv(c) =1 so eithex [
outy(G,b) or x [ outy(G,c).

For the converse (completeness), we can use a rabtyirargument, similar to that
familiar for proving completeness in classical msitional logic, but with more
verifications at each step. In sketch: supposederiv,(G,A). Then by the monotony
and compactness of the derivability operation snright argument (both immediate
from its definition) there is a maxim&' O A with x O derivo(G,A). It is easy to
verify thatA' is well-behaved with respect to conjunction angjutfiction. Using the
suppositionx I Cn(G(L)) we can also verify that it is well-behaved wi#spect to
negation. Hence there is a boolean valuatiaith A" =V. To complete the proof, one
need only show that O out;(G,V) = Cn(G(Cn(V))) = Cn(G(V)) sinceV is closed
under consequence. But this is immediate since bge@ation loutiy(G,V) =
derivi(G,V) O derivy(G,V) and we have [1 derivo(G,V).

Evidently, Observation 2 implies the compactnessu, a fact rather difficult to
verify directly from the semantic definition (in mwast to the situation for simple-
minded output, where compactness is almost immadiat

We present two further characterisations of basitpt. One uses relabeling of
elementary letters, the other translates into maogic. They have very similar
structures. We regard these two characterisatisnateresting curiosities more than
useful tools, and they are not re-employed in syipsiet sections. Hence sections 4.2
and 4.3 may be skipped without loss of continuity.

4.2. Account in terms of relabeling

The basic idea of this approach is to relabel ¢tieds in the heads. This has the effect
of isolating the heads from the bodies, so thairmbtion about one cannot be carried
forwards or backwards to the other. Technicallpngbkide the existing language,
introduce a fresh set of elementary letters, with new lettep* for each old lettep.

For arbitrary old formulae, definex* in the natural way, by substituting the letters
p* for p in x. Write G* for { b- y*: (b,y) //G}, i.e. as the set of all materialisations of
pairs p,y*) obtained by starring heads only of element&of

OBSERVATION 3. x 0 outy(G,A) iff x 0 Cn(G(L)) andG* A | x*.
Proof. We dispose of the limiting cases tiais inconsistent and that’] Cn(G(L)) in

the same manner as for Observation 2. So suppoghdarincipal case tha is
consistent and [1 Cn(G(L)).



Suppose first that the left side fails. Sinkes consistent, there is a valuatigron
unstarred letters with(A) = 1 andx [0 Cn(G(V)). From the latter, there is a valuation
w (also on unstarred letters) wii{G(V)) = 1 andw(x) = 0. Define a valuation* on
formulae generated by starred letters by putiifigp*) = w(p) for each starred letter
p*. Write v+w* for the valuation on starred and unstarred Istietermined by the
two together. We claim that+tw*(G*JA) = 1 andv+w*(x*) = 0. The latter is
immediate fromw(x) = 0 since all letters irx* are starred. Similarly, we have
v+w*(A) = 1 fromv(A) = 1 since all letters iA are unstarred. It remains to check that
vtw*(G*) = 1. Let ,y) O G and suppose+w*(b) = 1; we need to show that
v+w*(y*) = 1. Sinceb is unstarred the supposition tells us ¥{@) = 1 sob 1V, soy

[0 G(V) so by hypothesig/(y) = 1 sow*(y*) = 1 and finallyv+w*(y*) = 1.

To show the converse, we could use the idewotity(G,A) = deriv,(G,A) established
by Observation 2, and proceed by induction on lerajtderivation, but we give a
direct argument, as follows.

Suppose that the right side fails. Since we aramasg) thatx [1 Cn(G(L)), there is a
valuation defined on both starred and unstarradrkethat satisfie&* 1A and fails
x*. Without loss of generality, we may write thislvation asv+w* where v,w are
defined on unstarred letters antlis defined fromw as before. Thug+tw*(G*[JA) =
1 andv+w*(x*) = 0. We show that(A) = 1 andx O Cn(G(V)). We havev(A) = 1
immediately fromv+w*(A) = 1 sinceA contains only unstarred letters. Porl]
Cn(G(V)), it suffices to show thatv(x) = 0 while wW(G(V)) = 1. The former is
immediate fromv+w*(x*) = 0. For the latter, suppogel] G(V); we need to show(y)
= 1. Sincey [ G(V) there is an unstarred formuawith (b,y) 0 G andb O V so that 1
= v(b) = v+w*(b). Sincev+w*(G*) = 1 we haver+w*(b- y*) = 1 so that 1 v+w*(y*)
=w*(y*) = w(y) as desired.

4.3. Modal formulation

The modal characterisation has strong formal pEsalvith the relabeling one. Its
essential idea is to prefix heads with boxes amlya@ suitable modal logic. Indeed
any modal logic from a broad interval will do thod]

Consider the modal propositional language formedding a unary box operator to
the classical language, and consider the modallcsl&,, serving as a lower bound
on the interval, defined axiomatically as followsake as axioms all classical
tautologies in that language and all formulae & torm (a-x)-( a- x); and
take as rules passage fr@na- x to x (detachment), and passage froto t for
every classical tautology Evidently, we could reformulate the last ruleaagoms t
for every classical tautology

Ko is a subsystem of the familiar modal lo#i¢the latteralsoallows passage from
to a for every thesig. We recall the well-known fact that for first-degrformulae
(i.e. formulae without iteration of the box) allstgms fronK, to K45 agree.



Write G for the set of all modal formulde- y with (by) /G, andZ }szto mean
that (OY - 2) O Sfor some finiteY O Z

OBSERVATION 4. x [ outx(G,A) iff x O Cn(G(L)) andG OA }s X, for any modal
logic Swith Ko [0 S 0 K45.

Proof. Since all systems froid, to K45 agree on first-degree formulae, we need only
prove the Observation fét. In the limiting case tha is classically inconsistent both
sides are equivalent o] Cn(G(L)) and we are done. So suppose thi consistent.

Supposex [ outy(G,A). Then by Observation 2A) [ deriv,(G) so we need only

show by induction that wheneveaX) O derivo(G) then G 0{a} jx x, which is
straightforward.

Conversely, supposell outy(G,A). SinceA is assumed consistent, there is a valuation
v of boolean formulae withi(A) = 1 andx [0 Cn(G(V)). Fix one suctv, and define a
relational model NI,R,@) by puttingM to be the set of all purely boolean valuations
and foru,w [0 M put u,w) O R iff for every @,y) O G, if u(b) = 1 thenw(y) = 1. Put

¢ (w,p) =w(p) for all elementary lettens and allw 0 M.

To complete the proof, it suffices to check tthét, G [JA) = 1 while ¢(v, x) = O.
Sincev(A) = 1 andA is purely booleanp(v,A) = 1. Supposé- y[I G andd(v,b) =

1; then byy) O G andb is purely boolean sa(b) = 1 and also whenevey,) [0 R
then by the definition oR, w(y) = 1; thusp(v, b— y) = 1. This showsp(v, G ) = 1.

To show¢(v, X) = 0 we need to find & with (v\w) O R and¢(w,x) = 0. But by
hypothesisx [0 Cn(G(V)) so there is av with w(G(V)) = 1 andw(x) = ¢(w,x) = 0. It
remains only to check thatyv) [0 R. But if (b,y) O G andv(b) = 1 then immediately
0 G(V) sow(y) = 1 and by the definition & we are done.

5. REUSABLE OUTPUT
5.1. Idea and definitions

In certain situations, it may be appropriate fotpots to be available for recycling as
inputs. For example, the elemends| of G may be conditional norms of a kind that
say that any configuration in whichis true is one in whick is desirable. In some
contexts, we may wish to entertain hypotheticaily items already seen as desirable,
in order to determine what is in turn so. How magtsa principle of reusability be
expressed formally?

On the syntactic level, the answer again suggéstff naturally: add the following

rule of ‘cumulative transitivity’ to those alreadyailable for simple-minded output,
or those for basic output:

CT. From @X), (allx,y) to @y).
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Given SlI, this immediately implies transitivity ¢fn @), (X,y) to @y)) but not
conversely.

On the semantic level, we defigenple-minded reusable output, writtenouts(G,A), as
follows:

outs(G,A) = n{Cn(G(B)): A B =Cn(B) 0 G(B)}.

There is always at least one &twith A [0 B = Cn(B) OO G(B), namelyL, and the
intersection of any non-empty family of such seiisséies the same condition.

Recalling again that simple-minded output can baressed as an intersection, with
out;(G,A) = n{Cn(G(B)): A [0 B = Cn(B)}, we can say that reusable simple-minded
output is like plain simple-minded output, excemttit restricts the choice & to
sets that are included in their own image ur@ler

Since each of the operatior@ and Cn is monotone, their composition is also
monotone. Hence the definition may also be expdetisgs:out3(G,A) = Cn(G(A*))
whereA* is the least superset éfthat is closed under bo@n andG.

We definebasic reusable output, written outs(G,A), as follows in the principal case
thatA is classically consistent:

out4(G,A) = n{Cn(G(V)): V(A) = 1 andG(V) O V}.

Here as beforej ranges over boolean valuations ahnd {b: v(b) = 1}. In the limiting
case that there is no sughwe proceed as for basic output, puttowg,(G,A) to be
Cn(G(L)) whereL is the set of all boolean formulae; equalih(G)) whereh(G) is
the set of all heads of elements®f Equivalently,

outy(G,A) = n{Cn(G(V)): ALV O G(V), Vcomplete}.
Clearly out3(G,A) O outs(G,A) O Cn(G(L)). The diagrams for the two notions are

essentially the same. For basic reusable outpatfigere 5. For the simple-minded
version, replace the captioMsby X; = Cn(X;).
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Cn(G(V2))

Figure5
Basic Reusable Output: outs(G,A) = n{Cn(G(V)): AOV OG(V)}

5.2. Smple-minded reusable output: properties and syntactic characterisation

As in the non-reusable case, the simple-mindedal®esoperation is less satisfying
than the basic one, given its inability to deakligently with disjunctive inputs.
Nevertheless, the simple-minded version has aindrteerest, and we indicate some
of its basic properties.

OBSERVATION 5 (cumulativity on the right). Outs(G,A) = out3(G,ALID) wheneveD
[ out3(G,A).

Proof. The left is included in the right, by monotonytive right argument (immediate
from the definition). For the converse, supprge out3(G,A). Then by the definition
of out; there is aB with A 0 B = Cn(B) O G(B) andx O Cn(G(B). To showx [J
outs3(G,AID), it suffices to showAID [0 B, and so sincéA [0 B and using the
hypothesisD [0 out3(G,A), it is enough to showuts(G,A) O B. But by its definition,
out3(G,A) O Cn(G(B)) O B and we are done.

From cumulativity and monotony it follows immedigtéhat simple-minded reusable
output satisfies one half of idempotence on thehtrigouts(G,out3(G,A)) 0
outs(G,Alout3(G,A)) = out3(G,A). However, the converse half of idempotence fails.
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Example 3. PutG = {(a,X)} and A = {a} where a,x are distinct elementary letters.
Then out3(G,a) = Cn(x) whereasouts3(G,out(G,a)) = out3(G,Cn(x)) = Cn(J), so that
the former is not included in the latter.

Thus for eacl5, the right projection functiooutg 3(A), defined asouts(G,A), is in
some respects like a Tarski consequence operdlianhig§, a closure operation on sets
of propositions) and in some respects differents inonotonic and cumulative, and
iterated output is included in single output; buitgeneral it fails inclusion and the
other half of idempotence.

These remarks about the right projection functibsimple-minded reusable output
should not be confused with the fact that all ofr emput/output operations,
understood as taking seBsof pairs A,X) to setsoutj(G) of pairs, are quite trivially,

closure operations - inclusion, monotony, and idet@pce all hold.

We sketch a proof of the equivalence of its semgaatid syntactic definitions of
reusable simple-minded output, writidgivs(G,A) for the latter.

OBSERVATION 6. Outs(G,A) = derivs(G,A).

Outline of proof. It suffices to prove the result for singletdn The inclusion from
right to left is straightforward by induction onnigth of derivation. The interesting
clause is that for CT. Suppose tldi out3(G,a) andy O out3(G,a); we need to show
thaty [ out3(G,alx). From the second hypothesis, there Bwith a [0 B = Cn(B) [
G(B) andy O Cn(G(B)). By the first hypothesisx [1 Cn(G(B)). But sinceG(B) [
Cn(B) we haveCn(G(B)) O Cn(B) sox U Cn(B). Thusallx [0 Cn(B) and soy [
outz(G,alx) as desired.

For the converse, supposél derivs(G,a); we need to find 8 with a [0 B = Cn(B) [
G(B) andx O Cn(G(B)).

PutB = Cn({a} O derivs3(G,a)). Clearlya [0 B = Cn(B). To showG(B) U B, suppose

[0 G(B). Then there is b [1 B with (b,y) 0 G. We need to show [ B, i.e.derivs(G,a)

| a-y. But sinceb 00 B we havederivs(G,a) | a-b so sincederivs(G,a) is closed
under classical consequence (by the rules AND,W®the compactness of classical
consequence) we hage- b 0 derivs(G,a), i.e. @, a-b) O derivs(G). But since If,y)

[0 G we also havel(y) [ derivs(G) so by Sl, &b, y) [I deriv3(G), so by CT, &y) [
deriv3(G), i.e.y O derivs(G,a) so by WOa—y O derivs(G,a) soderivs(G,a) | a-y as
desired.

It remains to check that [0 Cn(G(B)), i.e. x O Cn(G(Cn({a}U derivs(G,a)))) =
out1(G, {a}d derivy(G,a)) = derivi(G, {a} 0 derivs(G,a)) using the completeness
theorem for simple-minded output (Observation lip@se the contrary. Then, using
S|, there areq, ... X, O derivs(G,a) with x [ derivy(G, allx[...[X,) i.e. @i 0... [,

X) [0 derivy(G) O derivs(G). But since eachk; [ derivs(G,a), i.e. @,x) [ derivy(G) we
have by AND and WO thataf{ x;[1...[x,) O deriv3(G). Hence by CT, g,x) 0
derivs(G) i.e.x [ derivs(G,a) contradicting our initial supposition.
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5.3. Basic reusable output: first properties

We now focus on basic reusable output, better ratdo/ than its simple-minded
counterpart and also more interesting formally.ligbten terminology, from now on
we refer to it simply aseusable output. We show in section 5.4 thatt,(G,A) =
deriv4(G,A), where the latter is defined by the rules for ibautput
(SI,AND,WO,0OR) plus CT. But before doing so we draftention to some properties
of the semantic construction.

Reusable output may equivalently be defined infeélewing manner, which is rather
less intuitive, but establishes a link with basitput and simplifies proofs.

OBSERVATION 7. Out4(G,A) = n{Cn(G(V)): ALUM(G) O V, V complete}.

Proof. It suffices to show that for any complete ¥eive haveG(V) OV iff m(G) O
V, wherem(G) is the materialisation dB, that is, the set of all formulae- y with
(by) OG.

In one direction, suppose(G) O V and lety O G(V); we need to show that[] V.
Sincey O G(V) there is ab O V with (by) O G, sob-y [0 V and so sincé/ is
completey [V as desired.

Conversely, supposg(V) [0V and supposb-y [0 m(G); we need to show-y [ V.
Supposed] V; sinceV is complete, it suffices to show that] V. But sinceb-y [
m(G) we havel§,y) O G so sinceéb IV we havey 0 G(V) O V and we are done.

This observation immediately allows us to expressable basic output in terms of
its non-reusable counterpart, a fact that will beful later.

COROLLARY TO OBSERVATION 7. Outs(G,A) = outy(G,ACIM(G)).

It also permits a simplification of Figure 5: drtipe backward-reaching lines with
their inclusion signs, and alongside the inputleinnsert a circle fom(G), also
included within theV; ellipses.

First, we note that althougbut;(G,A) O {outy(G,A), out3(G,A)} O outs(G,A) O
Cn(AQ m(G)), still outs(G,A) # Cn(AL m(G)); in particular inputs are still not in
general outputs, and contraposition still fails, Bsample 1 continues to show.
Nevertheless, contraposition plays a curious ‘ditosdile for reusable basic output.

Example 4 (ghost contraposition). PutG = {(-x,~a),(allx,y)}. On the one hand [
outy(G,a) sincex [0 Cn(G(L)) = Cn(h(G)) = Cn(—a)y). On the other handy 0
outs(G,a), sincey O Cn(G(L)) and also for every valuation satisfying fa} Im(G),
v(X) = 1, soy 0 G(V).

Expressed more generally, this example tells us yha out,(G,a) whenevery [
out4(G, allx) and—-a [ out4(G,—X). In other words, for basic reusable output weehav
the rule:
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GC: From 6 x,—a), (allxy) to @y).

Intuitively: although we cannot contrapose the psenmt-x,—a), we can ‘use’ the
contraposition for an application of cumulativensaivity. This can be verified
directly, or from the following principle ahput sufficiency:

OBSERVATION 8 (input sufficiency). Whenever & 0Om(G) } x, then ify O outs(G,
allx) theny [ outy(G,a). More generally, whenevé&Im(G) |- X, then ify 0 outy(G,
AX) theny O outs(G,A).

Proof. Immediate from Observation 7, forAfIm(G) |- XandAOm(G) OO V whereV is
a complete set, theN IXOmM(G) O V.

This is a powerful principle, with a number of ceqaences. Expressed syntactically,
it is the rule:

IS: From @Cx,y) to (a,y) whenever & Om(G) | x.

This implies ghost contraposition, fera O out(G,~x) implies {~x}m(G) | —a so
that {a} Om(G) } x. Again, sincex [ out(G,a) implies {a} Om(G) } x, input sufficiency
also implies CT, which we recall authorises passame (a,x), (alXx,y) to @y).

Essentially the same property may be expressedllasvé: for reusable output we
may add to the input the materialisations of somalbof the generators, without
changing the output.

OBSERVATION 9 (shadow input). Out4(G,A) = out,(G, ALl m(G’)) wheneveG’' G.

Proof. Immediate from Observation 7, sinBBIm(G) = ALM(G)Om(G) whenevelG’
[ G. It may also be seen as the case of ObservatiomvBich X = AUM(G).

From Observation 9 we may say that for reusablpudugenerators are in a certain
sense stronger than inputs. But only in a limitedse: we caopy from generators
to inputs without altering output, but if ieansfer from generators to inputs then we
may in general lose and gain output, as can be rsHwtrivial examples. Simple
examples also show that copying from inputs to gnes may change output.

Finally, we note that basic reusable output is dative and satisfies half of
idempotence (iterated output included in singlegpat)t The proof is the same as for
simple-minded output (Observation 5). However, ¢hgsoperties fail for plain
simple-minded and basic output (i.e. without reiggp This is as one would expect:
cumulativity of the output operation is closely @sated on the syntactic level with
the rule CT, and on the semantic level with reuggbi

5.4. Basic reusable output: syntactic characterisation

We now show thabut,(G,A) = deriv4(G,A), where the latter is defined by the rules for
basic output (SI,AND,WO,OR) plus CT.
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OBSERVATION 10 (soundness). Deriva(G,A) [ outs(G,A).

Outline of proof. We need only add to the verification of the cgpanding result for

basic output (Observation 2, first part of proofyexification of the rule CT. That
verification follows the same pattern as in the ramess proof for simple-minded
reusable output (Observation 6).

OBSERVATION 11 (completeness). Outs(G,A) [ deriva(G,A).

Proof. By the Corollary to Observation 7 we hawat,(G,A) = outy(G,ALOM(G)) =
derivo(G,A00 m(G)) by Observation 2, so it suffices to shaeriv,(G,AOM(G)) O
deriv4(G,A). Hence, we need only show that the shadow inppesty, already noted
for the semantic operatioout, (Observation 9), also holds for the syntactic one
derivs. We do this in two steps: first, we prove the iy for singleton input with
singleton generating set, and then show thatldvid in the general form.

LEMMA 11a. If (b,x) O G thenderivs(G,al (b - x)) [ deriva(G,a).

Proof. Let (b,x) [0 G and supposyg U derivy(G,alJ(b- x)); we want to show that [
deriv4(G,a)). The desired derivation can be displayed asedragram, as follows:

(b,x) (aXb-x),y) @(b-x).y)
Y | S 0
(alb,x) @blx,y) O
-------------------------------- CT |
(albyy) |
------------------------------------- OR
ay)

LEMMA 11b. Deriva(G,AOM(G)) O deriva(G,A).

Proof. Suppose [ derivy(G,ALIM(G)). Clearly the operatioderiv, is monotonic and
compact on left and right. By definition, thereaigonjunctiora of formulae inA, and
a conjunctiong = (b —»x) of formulae inm(G), such thaty [0 deriv4(G,allg).
Applying Lemma 11a finitely many times accordingthe number of conjuncts m
we havey [ deriv4(G,a) so by definitiony O derivy(G,A). This completes the proof of
the Lemma and of Observation 11.

The above proof of completeness makes use of thectien of reusable basic output
to plain basic output, in the Corollary to Obseimat?7. If one prefers to argue from
first principles, one can re-run the same maximaianstruction as in the proof of
Observation 2, but ensuring thAlm(G) O A'. For this it suffices to show that
wheneverx [ derivy(G,A) thenx O derivy(G,ALOM(G)), i.e. the same shadow input
propertyderivy(G,ACM(G)) O derivy(G,A) proven as Lemma 11b above.

OBSERVATION 12 (semantic characterisation). Outs(G,A) = deriva(G,A).
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Proof. Immediate from Observations 10, 11. As a corgllare may note that since
deriv, is compact on both left and riglayt, is too.

5.5. Relabeling and modal formulations

Like basic output, its reusable extension can lagagdterised by means of relabeling,
and also in modal terms.

OBSERVATION 13. x 0 outs(G,A) iff x 0 Cn(G(L)) andG* JAIM(G) } x*.

Proof. Immediate from the reduction of basic reusablguiuto out, in the Corollary
to Observation 7, i.auts(G,A) = out,(G,AIM(G)), together with Observation 3.

OBSERVATION 14. x 0 outs(G,A) iff x O Cn(G(L)) andG OAOM(G) }s x, for any
modal logicS with Ko [0 S [0 K45.

Proof: Immediate from the same reduction, with Obseovad.

A more interesting modal reduction gets rid of thdditional premise’'m(G) in
favour of the additional modal axioma—- a, known as T.

OBSERVATION 15. x 0 outs(G,A) iff x 0 Cn(G(L)) andG UA }s x, for any modal
logic Swith KoT 0O SO KT45.

Outline of proof. Since all systems froidoT to KT45 agree on first-degree formulae,
we need only prove the observation Kf. The argument follows the same lines as
for Observation 4, with the following additions amedifications.

From left to right, we need to show that the madahslation satisfies the rule CT.
This amounts to showing that for any formglaf (glla) -~ x and gCalx) - yare in
KT then so isd(la) -~ y. But this is immediate given the availability of - x in KT.

From right to left, we supposell out4(G,A). As before, it follows from the definition
of the output operation that there is a valuatraf boolean formulae with(A) = 1
andx O Cn(G(V)), and this time we also ha¥&V) [I V. Fix one suclv, and define
the relational modelM,R,¢) as before, but with a modified relati® For the chosen
valuationv put (,w) O R iff for every ,y) O G, if v(b) = 1 thenw(y) = 1; for every
valuationu # v, put (,u) [0 R. Note that whew(b) = 1 and Ip,y) O G theny [0 G(V) [

V so thatv(y) = 1; this showswv) O R. Combining this with the other part of the
definition of R, we have its reflexivity, so that the model valetathe modal system
KT. To complete the proof, it suffices to check théat, G [IA) = 1 while ¢(v, Xx) =

0. This is done exactly as in the proof of Obstoved.

We note in passing that in modal logics satisfyihg modal axiom TG implies
m(G), so that given observations 14 and 15, we camlsh the upper bound of the
former up toK T45.
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As far as the authors are aware, it is not posstbtdharacterise the system of simple-
minded output (with or without reusability) by re&ing or modal logic in a
straightforward way. The OR rule appears to be egedo that we can work with
complete sets.

6. ACCEPTING INPUTS AS OUTPUTS

What happens if we strengthen the logic of somd kinoutput by accepting inputs as
outputs? Syntactically, add the rule: From no psasito ¥,y). Evidently, such a rule
can always be applied first, so the semantic copate amplifies outj(G,A) to
out;(GOI,A) wherel = {(y,y): y a formula}. Of these, basic reusable output plus
identity collapses into classical consequence.

OBSERVATION 16: out(GOI,A) = Cn(AOm(G)).

Proof. Given Observation 11, the left in right inclusiisna trivial induction. For the
converse, writeG" for GOI, and suppose& [ outs(G",A). Then by Observation 7,
there is a complete setwith ADM(G") O V andx O Cn(G*(V)). ClearlyV O I(V) O
G'(V) O Cn(G*(V)), sox OV, so that the complete s¥tis a maxiconsistent set,
corresponding to a classical valuation with v(x) = 0. Since alscAIm(G) O
AOm(G") OV, we have(ADM(G)) = 1. Putting these togetherd Cn(AOmM(G)). [

Alternatively, one may re-run the second argumentfbservation 11, observing that
sincex O outy(G",A) (defined as in that proof) add G*, we havex 0 A’ so that
v(X) = 0. SinceAOm(G") O A’= V we also have(AOm(G)) =1.

Simple-minded reusable output plus identity dodscotlapse into classical logic, but
may be simplified.

OBSERVATION 17: outs(GOI,A) = n{B: A B =Cn(B) 0 G(B)}.

Proof. By the definition ofouts it suffices to check that whenev@r= Cn(B) [0 G(B)
we haveCn(G'(B)) =B . Left in right: if G(B) O B then since alst(B) 0 B we have
G'(B) O B soCn(G'(B)) O Cn(B) = B by hypothesis. Right in left: sinde] G" we
haveB 0 G'(B) O Cn(G*(B)). [

Note that this verification makes essential useeasability, i.e. thaG(B) [ B, and of
identity, i.e. that the generating set includieso that the argument does not apply to
weaker kinds of output.

From our perspective, operations that accept plitsnas outputs are a limiting case
of ‘logically assisted transformations’. Howeveh<$@rvation 17 draws attention to an
interesting connection with a construction undedyi normal default logic.
Specifically: Reiter’s default logic, stripped a$ iconsistency constraint, is the same
as simple-minded reusable output with identity.see this, take the quasi-inductive
definition of an extension of a normal default systas given in (Reiter 1980,
theorem 2.1) or (Makinson 1994, section 3.2), ake but the consistency constraint.
This putsext(G,a) = {E: 0<i < w} whereE; = {a} and Ei+; = Cn(E)JG(E). It is



18

easy to check thaxt(G,a) = n{B: a I B = Cn(B) O G(B)}, so by Observation 17,
ext(G,a) = out3(GLII,a).

In (Makinson and van der Torre, to appear) we show normal default logic, with
its consistency constraint, is a special case w$ttained input/output logic.

7. REVERSIBILITY OF RULES IN A DERIVATION

We finally consider briefly some questions arising the syntactic formulations of
the four input/output operations: reversibilityrofes (this section) and ‘universality’
of certain orders of derivation of output (followjisection).

Note that all four input/output operations satisfplacement of input, and of output,
by classically equivalent propositions. That is@i) [0 out(G) then @,x) O out(G)
wheneverCn(a) = Cn(a’) and Cn(x) = Cn{'). From this point on, we treat
replacement of logically equivalent propositionsadsilent rule’, that may be applied
at any step without explicit justification.

With this understanding, the order of applicatidntwo derivation rules is often

‘reversible’. In some cases, we may simply perntiaéeapplication of two successive
rules, independently of the choice of the formul@ewhich they are applied. For
example, any application of AND followed by SI mag replaced by one in which Sl
is followed by AND. In other cases, the order mayrbversed, but with additional
(and prior) use of a third rule - often SI and meanstance WO. Finally, there are
some configurations for which no transformationegp to be available.

Observation 18 displays in a table the transforomatithat the authors have noted to
be possible. The table should be read as follows:

* Anentry in the cell determined by the row for r&@nd the column foR’
tells us to what extent the sequeRR’may be reversed R’R.

* In an application of the asymmetric rule CT, takirsgfrom ,x) and @llx,y) to
(ay), we call &,x) the ‘minor’ premise anda(x,y) the ‘major’ premise. In the
column for CT, the left (resp. right) sub-columpnesents the case where the
output of the previous rule feeds in as the minesg. major) premise of the
rule CT.

* The entryv indicates that simple permutation is possible.

* When only a more complex reversal is known to b&sitode, it is written
explicitly. Thus for example in the cell for CT,AN®e have written
SILAND,CT to indicate that the former order maytiasformed into the latter.

* The entrynone? means that no transformation is known to the astho

* The empty spaces in the diagonal mean that theigoetes not arise there.
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OBSERVATION 18 (reversibility of rules).

Sl WO CT AND OR
SI v none? none? none? v
wO v SILCT v v none?
CT v v SILAND,CT | none?
AND v v SI,LCT v WO,0OR,AND
OR v v SI,CT,OR [SI,CT,OR | SI,AND,OR

Not to overburden the paper, we omit the verifmagi of the reversals in the table,
giving only the least immediate among them as @mgte. This is the transformation
OR,CT= SI,CT,OR, where the left hand configuration takes forms according as

the conclusion of OR feeds in as ‘minor’ or ‘maj@remise of the non-symmetric
two-premise rule CT.

OR,CT (Case 1}> SI,.CT,OR

@x (X (o) x,y) @x) (eMIxy) ©bX) (eCb)Ix,y)
.............. OR | | | S | | sl
(@b,x) | | axy) | bLx,y)
------ CT (0} S —— ceeee— CT

4(hyy) &y) 0.y)
e ®
alb,y)
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OR,CT (Case 2 SI,CT,OR

zy) @x (b.x) zy) a.x) 1y) 0,x)
| e OR | S | | Sl |
| ab,x) (zZ(=ba)y) | (-a)y) O
------ CT:zly=allb | -----------------CT -mmmmmmmmmnem-—o- CT
£X) (z0(~b0a),x) ¢0(~alh),X)
-------------------------------------------------- OR
z)

Here = stands for classical equivalence. In the secosd,dfie given application of
CT (on the left) is allowable iff @y = alb, in which casez[(-ba)lly = a and
Z[(—alb)y = b so that we can apply CT as indicated on the right.

8. UNIVERSAL ORDERS OF DERIVATION

Consider any system with derivation rules (e.g. basic output with its foutes Sl,
AND, WO, OR). We say that a derivation respecto@er R,...,R, of those rules iff

a rule Ris never applied in it before (i.e. leafwards afjule R for i <j. In other
words, rules may be skipped or repeated (and mereas already mentioned earlier,
it is understood that classically equivalent foramumay replace each other whenever
desired), but the rules must never be applied aontto the indicated order. Of
course, many derivations do not respect any ordaf;an particular, if an application
of R is made before one of a distinct ri®é but also an application @&’ is made
before one oR, then no order is respected in the derivation.

We say that an order imiversal (for a given set of rules defining an input/output
operation) iff whenevera(x) [0 out(G) then there is a derivation o&,X) from G
respecting that order. The question naturally arisee there any universal orders?
Repeated application of Observation 18 tells usttiexre are several.

OBSERVATION 19.

(a) For simple-minded output, with the rules SI,[ANNVO, there are (at least) three
universal orders of derivation: SI,AND,WO, and (80),AND.

(b) For basic output, with the rules SI, AND, WORQOthere are (at least) six
universal orders: SI,AND,WO, OR, and (SI,WO),(ANRPand WO,OR,SI,AND.

(c) For simple-minded reusable output, with thesubl, AND, WO, CT, there are (at
least) eight universal orders: SI,(WO,CT,AND) an®\8I,(CT,AND).

(d) For reusable output, with the rules SI, AND, W@R, CT, there are (at least)
eleven universal orders: SI,(WO,CT,AND),OR and \8CX,CT),OR,AND and
WO,SI,(CT,AND),OR and WO,SI,CT,OR,AND.
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Here the parentheses indicate that every arrangesiigm them is counted. The first

order for simple-minded output also emerged fromm dompleteness proof

(Observation 1). Of course, Observation 19 deperaty much on the particular

choice of rules made, not only their joint forcer Ehe rules that we have used, we
conjecture that in each case there are no universigrs of derivation other than

those listed.

Remark. In Observation 18, there are just four non-ratégsorders: SI,CT; SI,AND;

WO,OR; CT,OR. Thus all orders listed as universalObservation 19 satisfy the
property: Sl before (immediately or separated Wyeotrules) CT, Sl before AND,
WO before OR, and CT before OR. More surprisingtycan be checked by
enumeration that the converse is also true: evedgrosatisfying that property is
universal. It is not clear whether this fact poitt® deeper pattern.

9. OTHER SYSTEMS

One might consider strengthening, weakening, oerettse modifying the systems
studied in this paper, with either a purely formabtivation or an eye to possible
applications.

For example, with an interest in defeasible conddils, one might drop the Sl rule,
perhaps replacing it by a rule of replacement ofiveent input propositions.
Semantically, the operations aa(G(a)) andCn(G(E(a))) for individual formulaea,
although the definition for infinite sefs(section 3.2) becomes problematic.

Again, one might consider modifying certain of tiiées employed. For example, we
know (section 5.1) that given SI, cumulative trémgy CT implies transitivity T, but
not conversely. What happens if in the system mopg-minded reusable output, say,
we replace CT by T? Given Sl and AND, it is easghliow that T is equivalent to the
following principle of ‘ghost cumulative transittyi GCT, which the authors have
not seen in the literature: Fromd), (a,b), (alb,c) to (,c).

We conjecture that this system may be definedoaG,A) = Cn(outs(GOI,
out;(G,A))). Diagrammatically: twoG boxes, one under the other, with the same
ordered pairs inside. The inpiitcomes into the first box; whose output is inputhte
second box. Input to the second box reappears iouiput; and output of the second
box is reusable in its input. The final outputlsstre undeCn of the second box.

Finally, one could consider adding various rulesotee or more of the systems
studied. For example, one could look at:

Contraposition CP: from ,X) to (-x,-a)
Dual cumulative transitivity DCT:  from @,x[ly), (x,y) to @,y)
Conditionalisation CND: from @,x) to , a- X).

We see these three rules of relatively minor irdigras they have little motivation in
terms of the underlying vision of input/output peeses outlined in the first section of
this paper. Nevertheless, we note some facts d@hent. Observe, first, that we may
add any or all of these three rules to those faicheusable output without collapse
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into classical consequence. FoGif= [, then whenevera(x) [I out(G), whereout is
the enlarged operation, then a simple inductiowshihat eithea is a contradiction
or X is a tautology, so that in particula,d) (0 out(G), for contingenta, whereasa [
Cn({a} Im(G)). We also have the following equivalences.

OBSERVATION 20. Given CP, the rules CT and DCT are equivalergoAgiven the
rules of basic output, DCT and CND are equivalent.

Outline of proof. The only verification that is not trivial is thédr Basic + DCT=
CND, as follows.

t.0) @x) @x)
a S 0 WO U
(—a, ad(—~aX)) (a, ~alk) o WO
-------------------------------------- DCT O
ta, ~alX) a, ~alx)
------ OR
t,a-x)

On the semantic level, it is difficult to see anput/output semantics for CP or DCT.
However, in the case of the rule CND, we do haseraantics, indirectly.

OBSERVATION 21. For each of the systerost; (i = 1,...,4), if we add the rule CND
then we have a semantics like that for the souystées, except that the sétis
replaced byG{(t, a- x): (a,x) O G}. If we add both CND and the identity rule, then
we replaces in the semantics b@0I0{(t, a-x): (a,x) O GOI}.

Proof. It is easy to check that the rule CND may alwagsapplied first in any
derivation using at most SI,AND,WO,OR,CT,CND.

10. SUMMARY

The investigations in this paper are inspired byiew of logic as ‘secretarial

assistant’ to an arbitrary process transformingopsdional inputs into propositional

outputs. Its task is to prepare the inputs, unpghekoutputs, and co-ordinate the two
in various ways. In this perspective, we introdudedr principal input/output

operations: simple-minded, basic (making intelligerse of disjunctive inputs),

simple-minded reusable (in which outputs may beydled as inputs), and basic
reusable output. These are doubled by correspongystems in which inputs

reappear among the outputs. The systems are defeedhntically, and are

characterised syntactically by derivation rules. Mall the four basic systems.

e Smple-minded output, written outy(G,A), is defined asCn(G(Cn(A))), and is
characterised by the rules SI,AND,WO.

e Basic output, written outy(G,A), is defined ash{Cn(G(V)): A O V, V complete},
where acomplete set is one that is either maxiconsistent or etputtie set. of all
formulae of the language. It is characterised hjISD,WO,OR.
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» Smple-minded reusable output, writtenouts(G,A), is defined as {Cn(G(B)): A U
B =Cn(B) O G(B)}. It is characterised by SI,AND,WO,CT.

» Basic reusable output, written outs(G,A), is defined asn{Cn(G(V)): A O V O
G(V), V complete}. Equivalently, asa{Cn(G(V)): ALUm(G) O V, V complete}. It
is reducible to basic output by the equabtyts(G,A) = outy(G,ALOM(G)), and is
characterised by SI,AND,WO,OR,CT.

In none of the systems are inputs automaticallypuist that is, we do not have in
generala [J out(G,a). Nor do the systems guarantee contrapositionmag havex [
out(G,a) without—a [ out(G,~x). Of the four systems, basic reusable output levea
the most subtle behaviour, for example the ‘inpuffigency’ and ‘shadow input’
properties (Observations 8 and 9).

Basic output and its reusable extension may alsochmeacterised in terms of
relabeling procedures and modal operators. The uatcm terms of relabeling

substitutes fresh elementary letters for old oneshéads, and applies classical
consequence. The modal characterisation prefixageshto heads, and applies any
modal logic from within a broad interval.

On a syntactic level, it is shown that in a suipgsnumber of cases, the application
of rules in a derivation may be reversed (Obsemvati8), giving rise to certain
‘universal orders’ of derivation for each of theifeystems studied (Observation 19).

Given that an intended area of application of ifguutput logic is the study of systems
of conditional goals or obligations, it is natutal ask how one might introduce
constraints into them, to deal with ‘contrary totyduconditions. This question is
investigated systematically in a sequel (Makinsod 2an der Torre, to appear).
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