Skip to main content
Log in

Characterizing Equivalential and Algebraizable Logics by the Leibniz Operator

  • Published:
Studia Logica Aims and scope Submit manuscript

Abstract

In [14] we used the term finitely algebraizable for algebraizable logics in the sense of Blok and Pigozzi [2] and we introduced possibly infinitely algebraizable, for short, p.i.-algebraizable logics. In the present paper, we characterize the hierarchy of protoalgebraic, equivalential, finitely equivalential, p.i.-algebraizable, and finitely algebraizable logics by properties of the Leibniz operator. A Beth-style definability result yields that finitely equivalential and finitely algebraizable as well as equivalential and p.i.-algebraizable logics can be distinguished by injectivity of the Leibniz operator. Thus, from a characterization of equivalential logics we obtain a new short proof of the main result of [2] that a finitary logic is finitely algebraizable iff the Leibniz operator is injective and preserves unions of directed systems. It is generalized to nonfinitary logics. We characterize equivalential and, by adding injectivity, p.i.-algebraizable logics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. BLOK, W. J., D. PIGOZZI, 1986, ‘Protoalgebraic Logics’, Studia Logica 45, 337-369.

    Google Scholar 

  2. BLOK, W. J., D. PIGOZZI, 1989, ‘Algebraizable Logics’, Memoirs of the Am. Math. Soc. 396.

  3. BLOK, W. J., D. PIGOZZI, 1992, ‘Algebraic Semantics for Universal Horn Logic without Equality’, in A. Romanowska, J. D. H. Smith (eds.) Universal Algebra and Quasigroup Theory, Heldermann, Berlin, 1-56.

    Google Scholar 

  4. BURRIS, S., H.-P. SANKAPPANAVAR, 1981, A Course in Universal Algebra, Berlin.

  5. CZELAKOWSKI, J., 1981, ‘Equivalential Logics (I), (II)’, Studia Logica 40, 227-236, 355–372.

    Google Scholar 

  6. CZELAKOWSKI, J., 1992, ‘Consequence Operations Foundational Studies’, Reports of the Research Project Theories, Models, Cognitive Schemata, Polish Academy of Science, (Prepublication).

  7. CZELAKOWSKI, J., Beyond Protoalgebraic Logics. The Suszko Operator, Manuscript.

  8. CZELAKOWSKI, J., 1994, Logic, Algebra, Consequence Operations, preliminary version.

  9. CZELAKOWSKI, J., W. DZIOBIAK, 1991, ‘A Deduction Theorem Scheme for Deductive Systems of Propositional Logics’, Studia Logica 50, 385-390.

    Google Scholar 

  10. FONT, J. M., R. JJANSANA, 1993, A general algebraic semantics for deductive systems, Preliminary version, University Barcelona.

  11. Font, J. M., V. VerdÚ, 1991, ‘Algebraic Logic for Classical Conjunction and Disjunction’, Studia Logica 50, 391-419.

    Google Scholar 

  12. Font, J. M., V. VerdÚ, 1991, ‘Algebraic Logic for some Non-protoalgebraizable Logics’, in H. Andréka, J. D. Monk, I. Németi (eds.), Algebraic Logic, North-Holland, Amsterdam. 183-188.

    Google Scholar 

  13. HERRMANN, B., 1993, Equivalential Logics and Definability of Truth, Ph. D. Dissertation, Freie Universität Berlin.

  14. HERRMANN, B., 1996, ‘Equivalential and Algebraizable Logics’, Studia Logica 57, 419-436.

    Google Scholar 

  15. HERRMANN, B., F. WOLTER, 1994, ‘Representations of Algebraic Lattices’, Algebra Universalis 31, 612-613.

    Google Scholar 

  16. HERRMANN, B., W. RAUTENBERG, 1992, ‘Finite Replacement and Finite Axiomatizability in Logic’, Zeitschrift für math. Logik und Grundlagen der Math. 38, 327-344.

    Google Scholar 

  17. KEISLER, H. J., 1971, Model Theory for Infinitary Logic, North-Holland, Amsterdam.

    Google Scholar 

  18. Prucnal, T., A. WroŃski, 1974, ‘An Algebraic Characterization of the Notion of Structural Completeness’, Bulletin of the Section of Logic of the Polish Academy of Sciences 3, 30-33.

    Google Scholar 

  19. RAUTENBERG, W., 1981, ‘2-Element Matrices’, Studia Logica 40, 315-353.

    Google Scholar 

  20. RAUTENBERG, W., 1993, ‘On Reduced Matrices’, Studia Logica 52, 63-72.

    Google Scholar 

  21. WÓjcicki, R., 1988, Theory of Logical Calculi, Kluwer, Dordrecht.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herrmann, B. Characterizing Equivalential and Algebraizable Logics by the Leibniz Operator. Studia Logica 58, 305–323 (1997). https://doi.org/10.1023/A:1004979825733

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004979825733

Navigation