Skip to main content
Log in

Commodious Axiomatization of Quantifiers in Multiple-Valued Logic

  • Published:
Studia Logica Aims and scope Submit manuscript

Abstract

We provide tools for a concise axiomatization of a broad class of quantifiers in many-valued logic, so-called distribution quantifiers. Although sound and complete axiomatizations for such quantifiers exist, their size renders them virtually useless for practical purposes. We show that for quantifiers based on finite distributive lattices compact axiomatizations can be obtained schematically. This is achieved by providing a link between skolemized signed formulas and filters/ideals in Boolean set lattices. Then lattice theoretic tools such as Birkhoff's representation theorem for finite distributive lattices are used to derive tableau-style axiomatizations of distribution quantifiers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baaz, M., and C. G. FermÜller, ‘Resolution-based theorem proving for many-valued logics’, Journal of Symbolic Computation 19(4):353–391, 1995.

    Google Scholar 

  • Baaz, M., A. Leitsch, and R. Zach, ‘Incompleteness of a first-order Gödel logic and some temporal logics of programs’, in H. Kleine Büning, editor, Selected Papers from Computer Science Logic, CSL'95, Paderborn, Germany, volume 1092 of LNCS, p. 1–15. Springer-Verlag, 1996.

  • Birkhoff, G., Lattice Theory, volume XXV of AMS Colloquium Publications, American Mathematical Society, third (new) edition, 1970.

  • Carnielli, W. A., ‘Systematization of finite many-valued logics through the method of tableaux’, Journal of Symbolic Logic 52(2):473–493, 1987.

    Google Scholar 

  • Carnielli, W. A., ‘On sequents and tableaux for many-valued logics’ Journal of Non-Classical Logic 8(1):59–76, 1991.

    Google Scholar 

  • Davey, B. A., and H. A. Priestley, Introduction to Lattices and Order, Cambridge Mathematical Textbooks, Cambridge University Press, Cambridge, 1990.

    Google Scholar 

  • Fitting, M. C., ‘Bilattices and the semantics of logic programming’ Journal of Logic Programming 11(2):91–116, 1991.

    Google Scholar 

  • Fitting, M. C., First-Order Logic and Automated Theorem Proving, Springer-Verlag, New York, second edition, 1996.

    Google Scholar 

  • Ginsberg, M. L., ‘Multi-valued logics’ Computational Intelligence 4(3), 1988.

  • HÄhnle, R., ‘Uniform notation of tableaux rules for multiple-valued logics’, in Proc. International Symposium on Multiple-Valued Logic, Victoria, p. 238–245, IEEE Press, Los Alamitos, 1991.

    Google Scholar 

  • HÄhnle, R., Automated Deduction in Multiple-Valued Logics, volume 10 of International Series of Monographs on Computer Science, Oxford University Press, 1994.

  • Hay, L. S., ‘Axiomatization of the infinite-valued predicate calculus’ Journal of Symbolic Logic 28(1):77–86, 1963.

    Google Scholar 

  • Mostowski A., ‘Axiomatizability of some many valued predicate calculi’, Fundamenta Mathematicœ L:165–190, 1961.

    Google Scholar 

  • Ragaz, M. E., Arithmetische Klassifikation von Formelmengen der unendlichwertigen Logik, PhD thesis, ETH Zürich, 1981.

  • Rosser, J. B., and A. R. Turquette, Many-Valued Logics, North-Holland, Amsterdam, 1952.

    Google Scholar 

  • Rousseau, G., ‘Sequents in many valued logic I’, Fundamenta Mathematicœ LX:23–33, 1967.

    Google Scholar 

  • Salzer, G., ‘Optimal axiomatizations for multiple-valued operators and quantifiers based on semilattices’, in M. McRobbie and J. Slaney, editors, Proc. 13th Conference on Automated Deduction, New Brunswick/NJ, USA, volume 1104 of LNCS, p. 688–702, Springer-Verlag, 1996.

  • Scarpellini, B., ‘Die Nichtaxiomatisierbarkeit des unendlichwertigen Prädikatenkalküls von Łukasiewicz’, Journal of Symbolic Logic 27(2):159–170, 1962.

    Google Scholar 

  • Smullyan, R. M., First-Order Logic, Dover Publications, New York, second corrected edition, 1995. First published 1968 by Springer-Verlag.

    Google Scholar 

  • Takeuti, G., and S. Titani, ‘Intuitionistic fuzzy logic and intuitionistic fuzzy set theory’, Journal of Symbolic Logic 49(3):851–866, 1984.

    Google Scholar 

  • Thiele, H., ‘On T-quantifiers and S-quantifiers’, in Proc. 24th International Symposium on Multiple-Valued Logics, Boston, USA, p. 264–269, IEEE Press, Los Alamitos, 1994.

    Google Scholar 

  • WesterstÅhl, D., ‘Quantifiers in formal and natural languages’, in D. Gabbay and F. Guenthner, editors, Handbook of Philosophical Logic, Vol. IV: Topics in the Philosophy of Language, chapter 1, p. 1–131, Reidel, Dordrecht, 1989.

    Google Scholar 

  • Zabel, N., Fr Nouvelles Techniques de Déduction Automatique en Logiques Polyvalentes Finies et Infinies du Premier Ordre, PhD thesis, Institut National Polytechnique de Grenoble, 1993.

  • Zach, R., ‘Proof theory of finite-valued logics’ Master's thesis, Institut für Algebra und Diskrete Mathematik, TU Wien, 1993. Available as Technical Report TUW-E185.2-Z.1-93.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hähnle, R. Commodious Axiomatization of Quantifiers in Multiple-Valued Logic. Studia Logica 61, 101–121 (1998). https://doi.org/10.1023/A:1005086415447

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005086415447

Navigation