Skip to main content
Log in

Percolation as a Model for Informetric Distributions: Fragment Size Distribution Characterised by Bradford Curves

  • Published:
Scientometrics Aims and scope Submit manuscript

Abstract

It is shown how Bradford curves, i.e. cumulative rank-frequency functions, as used in informetrics, can describe the fragment size distribution of percolation models. This interesting fact is explained by arguing that some aspects of percolation can be interpreted as a model for the success-breeds-success or cumulative advantage phenomenon. We claim, moreover, that the percolation model can be used as a model to study (generalised) bibliographies. This article shows how ideas and techniques studied and developed in informetrics and scientometrics can successfully be applied in other fields of science, and vice versa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Rousseau, S. Rousseau, Informetric distributions: a tutorial review, Canadian Journal of Information and Library Science, 18 (1993) 51-63.

    Google Scholar 

  2. R. Rousseau, Bradford curves, Information Processing & Management, 30 (1994) 267-277.

    Google Scholar 

  3. S. C. Bradford, Sources of information on specific subjects, Engineering, 137 (1934) 85-86. Reprinted in: Journal of Information Sciences, 10 (1985) 176–180.

    Google Scholar 

  4. R. Rousseau, Lotka's law and its Leimkuhler representation, Library Science with a Slant to Documentation and Information Studies, 25 (1988) 150-178.

    Google Scholar 

  5. R. Rousseau, A weak goodness-of-fit test for rank-frequency distributions. In: C. Macias-Chapula (Ed.), Proceedings of the Seventh Conference of the International Society for Scientometrics and Informetrics, Universidad de Colima (Mexico), 1999, 421-430.

    Google Scholar 

  6. A. Bunde, S. Havlin, A brief introduction to fractal geometry. in: A. Bunde, S. Havlin (Eds), Fractals in Science, Springer-Verlag, Berlin, 1995, 1-25.

    Google Scholar 

  7. D. Stauffer, Introduction to Percolation Theory. Taylor & Francis, London, UK, 1985.

    Google Scholar 

  8. G. Grimmett, Percolation, New York (etc.): Springer-Verlag (1989).

    Google Scholar 

  9. J. Bogaert, I. Impens, Generating random percolation clusters, Applied Mathematics and Computation, 91 (1998) 197-208.

    Google Scholar 

  10. J. Bogaert, P. Van Hecke, R. Moermans, I. Impens, Twist number statistics as an additional measure of habitat perimeter irregularity, Environmental and Ecological Statistics, 9 (1999) 275-290.

    Google Scholar 

  11. R. H. Gardner, B. T. Milne, M. G. Turner, R. V. O'Neill, Neutral models for the analysis of broad-scale landscape pattern, Landscape Ecology, 1 (1987) 19-28.

    Google Scholar 

  12. R. H. Gardner, M. G. Turner, V. H. Dale, R. V. O'Neill, A percolation model of ecological flows, In: A. J. Hansen, F. Di Castri (Eds) Landscape Boundaries. Consequences for Biotic Diversity and Ecological Flows, Springer-Verlag, New York, USA, 1992, 259-269.

    Google Scholar 

  13. K. A. With, A. W. King, The use and misuse of neutral landscape models in ecology, Oikos, 79 (1997) 219-299.

    Google Scholar 

  14. R. T. T. Forman, Land Mosaics. The Ecology of Landscapes and Regions, Cambridge University Press, Cambridge, UK., 1997, p. 406.

    Google Scholar 

  15. D. J. Bender, T. A. Contreras, L. Fahrig, Habitat loss and population decline: a meta-analysis of the patch size effect, Ecology, 79 (1998) 517-533.

    Google Scholar 

  16. M. J. Groom, N. Schumacker, Evaluating landscape change: patterns of worldwide deforestation and local fragmentation, In: P. M. Kareiva, J. G. Kingsolver & R. B. Huey (Eds), Biotic Interactions and Global Change, Sinauer Associates Inc., Sunderland, MA, USA, 1993, 24-44.

    Google Scholar 

  17. J. M. Lord, D. A. Norton, Scale and the spatial concept of fragmentation, Conservation Biology, 4 (1990) 197-202.

    Google Scholar 

  18. D. A. Saunders, R. J. Hobbs, C. R. Margules, Biological consequences of ecosystem fragmentation: a review, Conservation Biology, 5 (1991) 18-32.

    Google Scholar 

  19. A. Farina, Principles and Methods in Landscape Ecology, Chapman & Hall, London, UK, 1998, p. 58.

    Google Scholar 

  20. L. Egghe, Bridging the gaps — conceptual discussions on informetrics, Scientometrics, 30 (1994) 35-47.

    Google Scholar 

  21. B. F. J. Manly, Randomization and Monte Carlo Methods in Biology, Chapman & Hall, London, UK, 1991, pp 38-42.

    Google Scholar 

  22. USA-CERL, GRASS 4.1 User's reference manual, United States Army Corps of Engineers. Construction Engineering Research Laboratories, Champaign, Illinois, USA, 1993.

    Google Scholar 

  23. D. Nijssen, R. Rousseau, P. Van Hecke, The Lorenz curve: a graphical representation of evenness, Coenoses, 13 (1998) 33-38.

    Google Scholar 

  24. H. A. Simon, On a class of skew distributions, Information and Control, 52 (1955) 425-440.

    Google Scholar 

  25. D. De Solla Price, A general theory of bibliometric and other cumulative advantage processes, Journal of the American Society for Information Science, 27 (1976) 292-306.

    Google Scholar 

  26. J. Tague, The success-breeds-success phenomenon and bibliometric processes, Journal of the American Society for Information Science, 32 (1981) 280-286.

    Google Scholar 

  27. W. GlÄnzel, A. Schubert, The cumulative advantage function. A mathermatical formulation based on conditional expectations and its application to scientometric distributions, In: L. Egghe, R. Rousseau (Eds), Informetrics 89/90, Amsterdam, Elsevier, 1990, 139-147.

    Google Scholar 

  28. Y.-S. Chen, P. P. Chong, M. Y. Tong, Dynamic behavior of Bradford's law, Journal of the American Society for Information Science, 46 (1995) 370-383.

    Google Scholar 

  29. L. Egghe, R. Rousseau, Generalized success-breeds-success principle leading to time-dependent informetric distributions, Journal of the American Society for Information Science, 46 (1995) 426-445.

    Google Scholar 

  30. G. M. Braga, Some aspects of the Bradford's distribution, Proceedings of the American Society for Information Science Annual Meeting, 29 (1978) 51-54.

    Google Scholar 

  31. V. OluiĆ-VukoviĆ, Journal productivity distribution: quantitative study of dynamic behavior, Journal of the American Society for Information Science, 43 (1992) 412-421.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bogaert, J., Rousseau, R. & Van Hecke, P. Percolation as a Model for Informetric Distributions: Fragment Size Distribution Characterised by Bradford Curves. Scientometrics 47, 195–206 (2000). https://doi.org/10.1023/A:1005678707987

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005678707987

Keywords

Navigation