Skip to main content
Log in

A Heuristic Study of the First-Citation Distribution

  • Published:
Scientometrics Aims and scope Submit manuscript

Abstract

The first-citation distribution, i.e. the cumulative distribution of the time period between publication of an article and the time it receives its first citation, has never been modelled by using well-known informetric distributions. An attempt to this is given in this paper. For the diachronous aging distribution we use a simple decreasing exponential model. For the distribution of the total number of received citations we use a classical Lotka function. The combination of these two tools yield new first-citation distributions.

The model is then tested by applying nonlinear regression techniques. The obtained fits are very good and comparable with older experimental results of Rousseau and of Gupta and Rousseau. However our single model is capable of fitting all first-citation graphs, concave as well as S-shaped; in the older results one needed two different models for it.

Our model is the function

$$\Phi {\text{(t}}_{\text{1}} {\text{) = }}\gamma (1 - a^{{\text{t}}_{\text{1}} } )^{\alpha - 1} {\text{ }}.$$

Here γ is the fraction of the papers that eventually get cited, t1 is the time of the first citation, a is the aging rate and α is Lotka's exponent. The combination of a and α in one formula is, to the best of our knowledge, new. The model hence provides estimates for these two important parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Egghe, L., I. K. Ravichandra Rao (1992), Citation age data and the obsolescence function: fits and explanations. Information Processing and Management 28(2): 201–217.

    Google Scholar 

  • Egghe, L., R. Rousseau (1990), Introduction to Informetrics. Quantitative Methods in Library, Documentation and Information Science, Elsevier, Amsterdam.

    Google Scholar 

  • GlÅnzel, W. (1992), On some stopping times of citation processes. From theory to indicators. Information Processing and Management, 28: 53–60.

    Google Scholar 

  • GlÅnzel, W., U. Schoepflin (1995), A bibliometric study on ageing and reception processes of scientific literature. Journal of Information Science, 21: 37–53.

    Google Scholar 

  • Gupta, B.M., R. Rousseau (1999), Further investigations into the first-citation process: the case of population genetics. Libres, 9(2), aztec.lib.utk.edu/libres/libre9n2/fc.htm.

  • Matricciani, E. (1991), The probability distribution of the age of references in engineering papers. IEEE Transactions of Professional Communication, 34: 7–12.

    Google Scholar 

  • Moed, H. F., A. F. J. Van Raan (1986), Cross-field impact and impact delay of physics departments. Czechoslovak Journal of Physics, B36: 97–100.

    Google Scholar 

  • Motylev, V. M. (1981), Study into the stochastic process of change in the literature citation pattern and possible approaches to literature obsolescence estimation. International Forum on Information and Documentation, 6: 3–12.

    Google Scholar 

  • Rousseau, R. (1994), Double exponential models for first-citation processes. Scientometrics, 30: 213–227.

    Google Scholar 

  • Schubert, A., W. GlÅnzel (1986), Mean response time — a new indicator of journal citation speed with application to physics journals. Czechoslovak Journal of Physics, B36: 121–125.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Egghe, L. A Heuristic Study of the First-Citation Distribution. Scientometrics 48, 345–359 (2000). https://doi.org/10.1023/A:1005688404778

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005688404778

Keywords

Navigation