

Edinburgh Research Explorer

Recursive Program Optimization Through Inductive Synthesis
Proof Transformation

Citation for published version:
Madden, P, Bundy, A & Smaill, A 1999, 'Recursive Program Optimization Through Inductive Synthesis
Proof Transformation', Journal of Automated Reasoning, vol. 22, no. 1, pp. 65-115.
https://doi.org/10.1023/A:1005969312327

Digital Object Identifier (DOI):
10.1023/A:1005969312327

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Journal of Automated Reasoning

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 28. Mar. 2024

https://doi.org/10.1023/A:1005969312327
https://doi.org/10.1023/A:1005969312327
https://www.research.ed.ac.uk/en/publications/d44f7806-cacd-4d0c-ac5b-06f6aed75be3

Recursive Program Optimization Through Inductive Synthesis
Proof Transformation�

Peter Madden
Max-Planck-Institut für Informatik

Im Stadtwald, D-66123 Saarbruecken, Germany
Email: madden@mpi-sb.mpg.de

Alan Bundy, Alan Smaill
Department of AI, University of Edinburgh,

80 South Bridge, Edinburgh EH1 1HN, Scotland.
Email: bundy/smaill@aisb.ed.ac.uk

Abstract

The research described in this paper involved developing transformation techniques which increase the
efficiency of the noriginal program, thesource, by transforming its synthesis proof into one, thetarget,
which yields a computationally more efficient algorithm. Wedescribe a working proof transformation sys-
tem which, by exploiting the duality between mathematical induction and recursion, employs the novel
strategy of optimizing recursive programs by transforminginductive proofs. We compare and contrast this
approach with the more traditional approaches to program transformation, and highlight the benefits of proof
transformation with regards to search, correctness, automatability and generality.

1 Introduction

As computer programs play an increasingly important role in all our livesso we must depend more and more
on techniques, preferably automatic, for ensuring the high quality (efficiencyand reliability) of computer
programs. Byefficientwe mean that a program is designed to compute a task with minimum overhead and
with maximum space and time efficiency. Byreliable we mean that a program is ensured, or guaranteed in
some sense, to compute the desired, or specified, task.

The most promising technique being developed for the automatic development of high quality software
areformal methods, which are used to provide programs with, or prove that programs have, certain properties:
a program may be proved toterminate; two programs may be proved equivalent; an inefficient program may
be transformedinto an equivalent efficient program; a program may beverifiedto satisfy some specification
(i.e. a program is proved to compute the specified function/relation); and a program may besynthesizedthat
satisfies some specification.

The research described herein addresses both the reliability and efficiency, as well as the automatability,
aspects of developing high quality software using formal methods. Wedescribe novel theorem proving tech-
niques for automatic program optimization. The target program is a significant improvement on the source
(the efficiency criteria), and is guaranteed to satisfy the desired program specification (the reliability criteria).

A further motivation behind exploiting proofs for the purposes of program transformation is that proofs
will contain more information than the programs which they specify. Programs need contain no more inform-
ation than that required for simple execution. Proofs, on the other hand, represent aprogram design record
because they encapsulate the reasoning behind the program construction bymaking explicit the procedural
commitments and decisions made by the synthesizer. This non-algorithmic information, which includes the
relations between facts involved in the computation of the synthesized program, is ideal for controlling the
transformations.�This research was supported by SERC grant GR/F/71799, an SERC Studentship and an SERC Postdoctoral Fellowship to the first
author, and an SERC Senior Fellowship to the second author. The authors would like to thank the many useful suggestions made by two
anonymous JAR referees. An earlier, and much shorter, version of this paper appears in the [25].

1

Further motivations include the advantages of proof transformation,concerning search, control and cor-
rectness criteria, over the more traditional styles of program development. We address these in detail inx??.
Further applications (potential and real) of this research are discussed inx??.

1.1 Contents

In x?? we provide a background to proof transformation by discussing theduality between proofs and pro-
grams. Inx?? we describe properties of theOYSTER system, and of (synthesis) proof refinement in general.
The duality between mathematical induction and recursion, in a constructivesetting, is discussed inx??.

In x?? we provide an overview of the central concepts pertaining to, and the properties of, thePTS: x??
provides a high-level view of thePTS design;x?? introduces one of our running examples, and illustrates
how specific recursion schemas correlate with the induction schemas used for synthesis; inx?? we introduce
the tupling technique for removing redundant computation from recursive procedures. x?? serves as a gentle
introduction to program through proof transformation, and enables the reader to maintain a high-level picture
when we come to the more detailed low-level expositions.

In x?? we provide details concerning: the motivations for proof transformation; the abstraction of in-
formation from proofs for the purpose of optimization; how thePTSconstructs the synthesis and verification
components of an optimized proof; and the adaptation of the tupling technique to the proofs as programs
paradigm.

In x??we explain, through detailed examples, the methodology of thePTS: x?? illustrates linearizing expo-
nential procedures through proof transformation;x?? illustrates the removal of nested recursion schemas (i.e.
loop removal); andx?? briefly describes a more complex example. We also discuss the overall performance
of thePTS, x??andx??.

In x??we compare the properties of thePTSwith existing program transformation techniques and systems.
We highlight the advantages of the former. In particular we compare our approach to theunfold/foldtechnique
and the use ofdependency graphanalysis fortupling program transformations. We also discuss applications
of the research, and some anticipated future directions for extending thePTSsystem.

Finally, in x??, we provide a concluding summary.

2 Background: The Duality Between Programs and Proofs

Constructive logic allows us to correlate computation with logical inference. This is because proofs of propos-
itions in such a logic require us to construct objects, such as functions and sets, in a similar way that programs
require that actual objects are constructed in the course of computing a procedure.1 This duality is accounted
for by theCurry-Howard isomorphismwhich draws a duality between the inference rules and the functional
terms of the�-calculus [?, ?].

Such considerations allow us to correlate each proof of a proposition with a specific�-term,�-terms with
programs, and the proposition with a specification of the program. Hence different constructive proofs of the
same proposition correspond to different ways of computing a specific program specification. The reasoning
for this can be set out as follows:1Thus we cannot, for example, compute (or constructively prove) that there are an infinity of prime numbers by assuming theconverse
and deriving a contradiction, rather we must produce a program that computes them (or a proof that we can always constructanother
prime number greater than the ones known so far).

2

1. proofs of propositions correspond to terms of the appropriate type, such that,

2. the propositions are identified with the type oftheir proofs;

3. proofs are closely correlated with the terms of the�-calculus;

4. so by 2 and 3: propositions are identified with the type of the�-terms, and;

5. �-terms can be equated with functional programs;

6. therefore, by 4 and 5, the propositions can be viewed astypesof programs;

7. in other words, the propositions of the�-calculus can be correlated with descriptions (specifications) of
programs which specifywhat task is computed by the program, and;

8. the proofs of the propositions can be correlated with programs which determinehow the task is com-
puted;

9. hence, different proofs of the same proposition can be correlated with different programs for computing
the task specified by that proposition.

Thus by controlling the form of the proof we can control the efficiencywith which the constructed program
computes the specified goal. Here in lies the key to transforming proofsthat yield inefficient programs into
proofs that yield efficient programs.

A program specification is represented, schematically, as` 8inputs; 9output: spec(input; output) (1)

Existential proofs of such specifications must establish (constructively) how, for any input vector, an output
can be constructed that satisfies the specification.2 Thus any synthesized program is guaranteed correct with
respect to the specification. Furthermore, by finding a constructive proof of (??) we canextractan algorithm,alg such that, ` 8input: spec(inputs; alg(input))alg is known as theextract term(or extract program) of the constructive proof.

So, for example, suppose we wish to compute a value for the integer log to the base2 of our input, then
from a proof of the following specification:3` 8 input : integer; 9 output : integer: (2output � input ^ input < 2output+1)
we extract an algorithmalg which satisfies the following:` 8 input : integer: (2alg(input) � input ^ input < 2alg(input)+1)
and which does the required job. Proving that a given extract algorithm does satisfy the above is known as
verification.

2.1 TheOYSTER System

The OYSTER system is an implementation of a constructive type theory which is based on Martin-Löf type
theory, [?]. OYSTER is written in Quintus Prolog, and run at the Prolog prompt level, so it is controlled by
using Prolog predicates as commands. Proof tactics can be built as Prolog programs, incorporatingOYSTER

commands (which are simply Prolog predicates). An advantage of using Prolog as the meta-language for
defining tactics is that the proof mechanisms can exploit the unification andback-tracking properties of Prolog.

The main benefit of using type theory is that, recalling the previous section, it nicely combines typing
properties with the properties of constructivism, such that we can bothcorrelate the propositions of the�-
calculus with specifications of programs and correlate the proofs of the propositions with how the specification
is computed.

The main benefit of using a sequent calculus notation, as opposed to that of any of the numerous natural
deduction systems, is that at any stage (node) during a proof development, all the dependencies (assumptions
and hypotheses) required to complete that proof stage are explicitly presented within ahypothesis list. A2Thus constructive logicexcludespure existence proofs where the existence ofoutput is proved but not identified.3Typing is not, of course, restricted to integers. Types can be natural numbers, lists of natural numbers (or integers), sets, strings,
trees and so forth. Throughout the course of this paper we shall often omit typing information so as to make formulae more readable. In
general, only when it is not obvious, or when it is pertinent to the text, shall we explicitly label the types of objects.

3

sequent is of the form[HYPOTHESES] ` [CONCLUSION], where, in the course of proving the conclusion,
refinements may either act upon the hypotheses (so calledelim refinements) or act upon the conclusion (so
calledintro refinements).

A major motivation behind the development of theOYSTERsystem is that the language uniformity of the
logic programming environment allows for the construction ofmeta-theoremswhich express more general
principles, concerning the object level theorem proving. This allows for the construction of programs, in
Prolog, that manipulate proofs inside the system itself. One such function is the construction oftacticswhich
combine the object-level rules of the system in various ways and apply them to proof (sub)goals. Within the
context of thePTS, this allows for the construction of (meta-level) transformation tactics that operate upon the
(object level) source proofs to produce target proofs from which optimized programs can be extracted.4
2.1.1 The Nature ofOYSTERSynthesis through Proof Refinement

OYSTERproofs arerefinement proofs, and are edited using arefinement editor. TheOYSTERproof starts with
the expression to be proved at the root of its proof tree, and constructs the tree back towards the leaves: the
inference rules of the logic –refinement rules– are applied in reverse to a goal, to reduce, orrefine, it to a
set of sub-goals which, in turn, require proving in order to completethe overall proof. Thus, for example, if
the user tellsOYSTER to apply8�introduction to a top-level goal statement, the system applies the rule in
reverse– the effect of this is not to introduce, but toremovethe topmost connective (since the proof tree is
being developed backwards).

Any proof iscompletewhen the proof tree has been sufficiently developedbackwardssuch that all leaves
are accounted for – i.e., when every leaf node can be proved without producingany further sub-goals. We refer
to such proofs as beinggoal-directed. The refinement editor allows proof trees to betraversed, and refinement
rules (or combinations thereof called proof tactics) to be applied to chosen nodes.

The end-nodes, or leaves, of a proof will always correspond either to axiomatic equalities, well-formedness
goals or the discharge of assumptions (i.e. where each component of the goal conclusion matches with one of
the proof hypotheses).

2.1.2 Program Extraction

TheOYSTERextract programs consist of�-calculus function terms,�(x; fx) wheref is some computed func-
tion andfx the output whenf is applied to inputx. Since all type checking (well-foundedness checking) is
done during the proof development then the extract terms need not, and do not, contain any typing information.
At any stage during the development of a proof it is possible to automatically access the extract term of the
proof constructed so far. Each construct in the extract term corresponds toa proof construct. As such, the
extract term reflects the algorithmic ideas behind the proof of the theorem.

There is a built-in evaluator for type theoretic terms, which allows for the direct execution ofOYSTER

programs. Within type theory, each mathematical sentence, or proposition,is considered as a type, the ele-
ments of which are proofs of that sentence. Atype, by definition, is a term which can beinhabitedby other
terms, or, equivalently, all types can have members. The existence of an extract term, corresponding to a
particular proposition, is evidence that the proposition’s type is inhabited, and this is equivalent to the propos-
ition being constructively proved. All constructs of a completed proofthat have an associated extract term of
computational significance are collectively referred to as thesynthesis componentof the proof.

However, establishing that all the extract terms assembled from the synthesis component of a proof will
indeed constitute a program that computes the specification embodied in theroot node of a proof requires
verification: theverification componentof a proof is not used in executing the extract term, but ensures that
the extract term satisfies the specification

Ideally, as with conventional computational description, the�-calculus extract terms should only contain
information about the function to be computed (whereas the proofs will contain additional information, such
as verification steps, which is not concerned with simple execution). In practice, however, it is not so easy to
(automatically) abstract away all the verification information from the extract.

2.2 The Induction-Recursion Duality

OYSTER provides primitive recursion schemas for the basic types: integers, natural numbers and lists. The
recursion schemas enable one to define recursive functions through case analyses, where the cases are de-
termined by the structure of the type; and apply induction as an inference (refinement) rule. to each form of4The language uniformity property has also led to the development of an automatic proof planning systemCLAM [?] (cf. x??).

4

induction employed in the proof there corresponds a dual form of recursion [?]. Such dualities offer the user a
handle on the type, and efficiency, of recursive behaviour exhibited by the extracted algorithm. Thus applying
inductive inference enables the synthesis of the dual recursion in the extract program (we return to this in more
detail inx??.

2.2.1 Recursive Definitions

An important class of recursive definition is that which allows one to refer to (standard stepwise) recursion
over the natural numbers. The termp ind allows one to construct such definitions. For example, addition,+,
over the natural numbers is defined asx+ y def= p ind(x; y; [�; rec; s(rec)]);
which states that ifx is 0 thenx+ y = y, otherwise if(x� 1) + y = rec thenx+ y = s(rec), wheres is the
successor function.� The first argument,x, is the recursion argument.� The second argument,y, is the (truth) value if the recursion argument is0.� The third argument,[�; rec; s(rec)] is a triple and describes how to compute its value if it is of the forms(x). The expression,rec, denotes the value of the function being defined when applied to(x � 1).

The expressions(rec) denotes the value of the function being defined when applied tox. Thusrec ands(rec) correspond, respectively, to the inductionhypothesisand inductionconclusion.5
Similarly, cv ind, specified thus: cv ind(x; [y; h; P (x)])

allows one to refer tocourse of valuesrecursion over the natural numbers.x names the induction candidate
(the argument over which the recursion is defined). The second argument,[y; h; P (x)], is a triple which
defines therecursive casefor the function being defined. The first two elements arey andh where:y is any
natural numberless thanthe recursive argument (i.e.y < x). Hence, during the course of a proof,y can be
instantiated to any desired valueless thanx. Furthermore, we can, depending on the function being defined,
have multiple values fory (as long as each is less thanx). This is, in effect, how cases can be introduced into a
proof employing course of values induction (cf. x??below). h is the value of the function being defined when
applied toy. The third element of the triple,P (x), provides thestep casevalue for the function in terms of
the first two elements,y andh, of the triple. Hence the third element,P (x), computes the output value for the
function/program being defined/synthesized. SoP (x) is a conditional function which branches according to
the value ofy (where the restrictiony < x holds).

2.2.2 Primitive Schemas

Employing any of the induction schemas in a (synthesis) proof will induce the corresponding, ordual, re-
cursion schema in the extract algorithm. So, for example, stepwise recursion over the natural numbers is
synthesized by applying stepwise induction, conventionally representedthus (wheres is the successor (con-
structor) function): ` P (0) 8y : nat: P (y) ` P (s(y))` 8x : nat: P (x) :
This states thatP holds of any natural number,x, iff one can establish thatP holds of0 (the base case), and
that, assumingP holds of some natural numbery, thatP holds ofs(y) (the step case).

Terms of the forma : P should be seen, in constructive terms, as denoting the existence of a proof of P
along with a corresponding extraction termP . Depending on context,P may be a hypothesis or (part of) a
goal conclusion. We refer to terms such ass(y) asinduction terms(i.e. those terms consisting of the induction
constructor (or destructor) function applied to the induction variable). The proof extract construction resulting
from an application of stepwise induction is thep ind construct shown in previously inx??.

Stepwise induction on the naturals, along with stepwise induction on the integers and on lists, constitute
the primitive induction schemas, and are built into theOYSTER system. Employing such induction as an
inference rule will split the proof into the corresponding cases. Each case will have a corresponding proof5In general the value of thep ind function ats(i) can be any function ofi and of the value of the function ati. In our example the
value depends only on the recursive value, and so the first argument of the triple is the anonymous variable�.

5

and extract component. The structure of the program extracted from the complete proof will mirror that
of the (instantiated) dual induction schema. This is a general observation: to each induction schema there
corresponds a dual recursion schema. Hence a reliable heuristic that applies to synthesis through inductive
theorem proving is that the behaviour of the induction variable should mirror that of the recursive terms in the
function’s definition.

Standard stepwise induction is sometimes referred to as+1 succesor induction, or(+1)s induction for
short. This is to distinguish it from any number of(+n)s inductions wheren applications of the induction
constructor function are applied, in the conclusion, to the inductionvariable.x?? illustrates a(+2)s stepwise
schema.

2.2.3 Non-Primitive Schemas

More sophisticated induction schemas can be established by performing higher order proofs that appeal to
the primitive schemas in order to justify the sophisticated scheme. An example of a non-primitive scheme
is course of values induction.6 As with the primitive schemas, course of values recursion over the natural
numbers is synthesized by applying course of values induction. This isdone by employing the following
general induction: 8z : nat; 8y : nat: ((y < z)! P (y)) ` P (z)` 8x : nat: P (x) :
This states thatP holds of any natural number,x, iff one can establish thatA holds of any natural number,z,
assuming thatP holds of any natural number,y, less thanz. If two, or more, different values ofy are appealed
to then the induction becomes course of values.

Employing course of values induction as an inference rule does not automatically split the proof into a
separate base and step case. Rather, the resulting subgoal represents the original proof tree with the induction
hypothesis,(y < z)! P (y), entered into the proof as a new assumption (which tacitly includes the assump-
tion that the hypothesis itself has a proof). The onus for splitting the proof into various cases, as defined by
the function being synthesized, then lies with the user.

The proof extract construction resulting from an application of courseof values induction is thecv ind
construct shown inx??.

3 Optimization of Recursive Algorithms By Transforming Inductive
Proofs: an Overview

Rather than enter directly into the technicalities of program through proof transformation, we shall first provide
an overview of the main concepts involved. Inx??we provide a high-level description of the proof transform-
ation system. Inx?? we give a brief introduction to program synthesis by theorem proving. We illustrate how
the efficiency of (recursive) program is dependent on the nature of the induction scheme employed and on the
subsequent proof commitments. Finally, inx??, we introduce the reader totupling.

3.1 ThePTS: Inductive Proof Transformation

Boyer and Moore have done extensive work on heuristics for inductive proofs [?, ?]. Relationships between
induction and recursion have been generalized such that most recursive structures have a corresponding in-
duction schema which can be employed to synthesize programs exhibiting the desired recursive behaviour
[?].

The computational efficiency of a recursive algorithm is directly related tothe form of the recursion. The
way in which an algorithm recurses on its input can becontrolledby the way in which mathematical induction
is employed in the algorithm’s synthesis. This provides the theoretical under-pinning of the transformation
system: recursive programs are optimized by transforming the induction schema employed within the corres-
ponding synthesis proofs.

Fig.??schematically depicts the source to target meta-level transformation. Program optimization through
proof transformation consists in the automatic transformation of asource induction proof to a target proof
whose induction schema has a more efficient associated complexity. The pre-and post-conditions of the6Other non-primitive examples includedivide and conquerinduction and induction based on the construction of numbers as products
of primes.

6

transformation correspond to the induction schema, and the recursive data-type, of the source and target proofs.
The input consists of a complete source inductive synthesis proof.This is depicted on the left hand side of the
diagram. The triangle labeledproof treedepicts the tree shape of the refinement proof (recall that the proof, or
refinement, tree is constructed backwards from the specification toward the leaves). The source proof yields
a complex source algorithm,exp, which recurses withexponentialbehaviour due to the fact that a particular
induction – course of values – is employed during the synthesis. The term extract represents the automatic
program extraction process.

The target proof is represented on the right hand side and is constructed completely automatically, by the
PTS, from the source through the application of operators which map and thentransform portions of the source
proof. In particular, the source course of values induction is transformed into the more efficient stepwise target
induction, thus yielding a target extract algorithm that recurses on itsdata-structure in more efficientlinear
fashion.

The PTS controls the transformations by exploiting extra information contained in proofs which is ex-
traneous to that required for the simple execution of straightforwardprograms: a description of the task being
performed; a verification of the method, and; an account of the dependencies between facts involved in the
computation.

INPUT: SOURCE PROOF
obtained manually, or via

previous transformation

OUTPUT: TARGET PROOF
obtained automatically via

source proof transformation

SPECIFICATION: 8x input9y output spec(input,output)������) PPPPPPq
SOURCE INDUCTION

Eg. course of values

SOURCE PROGRAM

Eg. exponential

TARGET INDUCTION

Eg. stepwise

TARGET PROGRAM

Eg. linear

@@@��� @@@���? ?extract extract

proof
tree

proof
tree

g f!!!AUTOMATIC PROOF

TRANSFORMATION

Figure 1: Recursive program optimization through induction schema transformation.

With reference to fig.1, and recallingx??, the demands for efficiency of programs are succinctly expressed
by quoting from [?] (italics added by the author):

The first criterion on which a program is judged is the correctness with respect to its specification.
The second criterion is the efficiency of the program with respect to other programssatisfying the
same specification, which is reflected by time and space complexity of the program.

Efficient programs obtained through proof transformation satisfy both these criteria: the target program neces-
sarily satisfies the specification from which it was constructed; both source and target programs are derived
from the same specification, and; the recursive procedure traced by the targetprogram will be more efficient
than that of the source.

3.2 Proof Construction and the Induction-Recursion Duality

We can construct at least two proofs, withinOYSTER, from which two alternative recursive algorithms can be
extracted, each of which computes the Fibonacci function. The difference betweenthe two syntheses is that
each employs a different induction schemata: course of values induction willinduce course of values recursion
in the Fibonacci extract algorithm and stepwise induction will inducestepwiserecursion.

7

3.2.1 Course of Values Induction

To employ course of values induction in the synthesis of an algorithm which takes as inputn requires appealing
to all, or a subset of, the output values obtained when the input is any value less thann.7 Using a standard
functional notation, the Fibonacci function is usually defined by the following course of values definition:� source definition: fib(0) = 1; (2)fib(1) = 1; (3)fib(n+ 2) = fib(n+ 1) + fib(n): (4)

We can give a formal specification for a program that computes the above definition as follows:8input; 9output: fib(input) = output (5)

wherefib is defined through three lemmata corresponding to the three branches, (??), (??) and (??), of the
above course of values definition. Note that (??) is an instance of the specification schema, (??), given inx??.

The most natural way to synthesize a procedure for computing the Fibonacci numbers is to employ the
course of values induction to (??). This is because it directly mirrors the course of values recursion exhibited
by the standard Fibonacci definition. The induction schema ofx??becomes instantiated as follows:H : (8z;8y:((y < z)! 9n0:fib(y) = n0) ` 9n00:fib(z) = n00C : ` 8x; 9n:fib(x) = n :
The proof of the induction conclusion,C, requires identifying an existentialwitnessfor n. That is, an instan-
tiation forn must be provided that makesC true. Since this is a course of values proof,fib(x) is constructed
as a conditional, branching according to the value ofy: first with a value fory of x� 1, and subsequently with
a value ofx� 2. The resulting constructs forfib(x� 1) andfib(x� 2) appear as two new hypotheses. These
are then added to obtain a witness forn, i.e. ` 8x; fib(x) = fib(x� 1) + fib(x� 2).

Fig. ??(a) depicts the computational trees forfib(5) using course of values induction. Note especially the
redundant (repeated) nodes in the tree for course of values induction. In order to calculatefib(n) one must
first calculatefib(n� 1) andfib(n� 2). Each of these sub-goals leads to another two recursive calls onfib
and so on. In short the computational tree is exponential where the number of recursive calls onfib approaches2n. Such a procedure is termedtree recursivesince it resembles a tree where the branches split into two at
each level.

Fig. ??(a) can also be regarded as adependency graph, DG, for the course of values recursive procedure
since it is a representation of a particular function call’s evaluation treewhich shows the calling structure of the
subsidiary recursive calls. Strictly speaking, fig.??(a) is agroundedDG, since it is constructed using grounded
function calls. AsymbolicDG, on the other hand, is based on symbolic function calls and is potentially infinite
in size. The reader may wish to look ahead to fig.13,x??, which shows a portion of the symbolicDG for fibn.

fib(5)�������9 XXXXXXXz
fib(4) fib(3)���� HHHj

fib(2)fib(2)fib(3)

fib(1) fib(1) fib(0) fib(1) fib(0)

���� HHHj fib(1)

�����9 HHHj���� HHHj
fib(2)���� HHHj

fib(1) fib(0)

���� HHHj fib(5)?hfib(4),fib(3)i?hfib(3),fib(2)i?hfib(2),fib(1)i?hfib(1),fib(0)i
(a) course of values tree: (b) stepwise tree:

Figure 2: Computational tree forfib(5) induced by (a) course of values induction, and, (b), stepwise induction7Representations of the completed proofs are displayed, andexamined, inx??.

8

3.2.2 Stepwise Induction and Tupling

Alternatively, we can also employ stepwise induction over the naturals tosynthesize a program that computes
the samespecification, (??), as the previous course of values extract. This is achieved by employing tuple
constructs, at the stepwise induction cases, in order to evaluate the Fibonacci numbers. Tupling removes
redundancy by grouping together, ormerging, potentially re-usable function calls – repeated computation –
that appear in the tree recursive process generated by the course of values definition (cf. fig.2). The result
of tupling in this case islinearization: the production of a stepwise recursive algorithm which computes the
Fibonacci function,fib, through an auxiliary linear processg.� target definition: fib(n) = m where h ;mi = g(n);g(0) = h1; 1i;g(n+ 1) = hu1 + u2; u1i where hu1; u2i = g(n):
The auxiliary functiong(n) is constructed in terms ofg(n�1), where the first argument in both cases takes the
“combined values” form (in effect, the tupling combines the values of the two step cases of the less efficient
course of values definition). The linear trace for computingfib(5) through the auxiliary procedural callg(5),
is depicted in fig.??(b): the angled brackets in the stepwise sequence symbolizetuple formationin that the
output of each recursive pass is some function of the arguments within the brackets. The functiong is defined
in terms of a tuple that consists of two components, each of which are made up from subsidiary calls tofib:
the first corresponds to the sum offib(n � 1) andfib(n � 2), i.e. fib(n). The second tuple component
corresponds to the first argument of the first tuple component,fib(n � 1). The tuple functional applies the
addition function to the first and second arguments. So the goalg(n) is ultimately satisfied by defining it in
terms of the known course of values definition, i.e:g(n) = h(fib(n� 1) + fib(n� 2)); fib(n� 1)i: (6)

Note that the first tuple component is equivalent to the body of the recursive step of the course of values
definition. Note also that there is no recourse to the originalfib definition andg(n) requires onlyn recursive
calls (stepping downto the base caseg(0)). In other words, the computational tree resulting from stepwise
induction islinear, with a branching rate of1, and hence the resulting algorithm requires far less computational
effort in computingfib(n) than that synthesized by employing course of values induction.

Regarding synthesizing a program to compute the stepwise procedure, the first step is to apply stepwise
induction to (??). This yields the following (instantiated) schema:` 9t0: g(0) = t0 8y; 9t0: g(y) = t0 ` 9t00: g(s(y)) = t00` 8x; 9t: g(x) = t :
As with the course of values proof, the proof requires establishing witnesses for the existential quantifiers. In
this case we are required to find existential witnesses fort; the tuple through whichg is defined. At the base
case of the induction, we simply employ symbolic evaluation using the terminating branches, (??) and (??),
of the source definition in order to provide a witness,h1; 1i, for t0. A witness at the induction step case is
provided by a process of unfolding the induction conclusion with the source definitional equations (notably
(??)) until a match is found with the induction hypothesis (i.e. the body of (??)). This enables the unification
of conclusion and hypothesis (??) there by providing a witness fort in terms ofg (thus introducing recursion
into the program).

Greater detail concerning both the above proofs is provided inx??, where we describe how such stepwise
proofs are automatically constructed from source course of values proofs.

3.3 Background to the Tupling Technique

ThePTSoperates by using information in the source course of values proof to guide the automatic construction
of the target stepwise proof. This research offers the first instance of the tupling technique being employed
within the context of proof transformation (as opposed to the directtransformation of programs).

Existing systems that automate tupling transformations, within the context of program transformation, de-
pend on an analysis of such graphs so as to obtain dependency information which guides subsequent transform-
ation [?]. In x?? we illustrate how, within the context of proof transformation, such dependency information
can be read directly from the source proof thus circumventing the need forDG construction and analysis.

9

Tupling, originally developed as an optimization technique in [?], is a form oftabulation, albeit constructed
in real-time, since the tuple represents a record of previous recursive calls. Tupling is an important means of
linearizing exponential procedures. It works by grouping together, ina single recursive tuple function, the
separate recursive expressions in the source procedure. The main advantageof tupling over the most general
kind of table for redundant computation,memo-tables[?], is that we store only the subsidiary calls of a
specified function, rather than calls from the whole program. In the case ofmemo-tables there is a heavy
storage requirement as entries inserted during function execution, are not usually removed even if they are no
longer required.8

Existing program transformation systems reported within the literature also employ the tupling technique
in order to remove redundancy from recursive procedures (e.g. [?], [?, ?], and later in[?]). However, these
systems do not operate within the proofs as programs framework. Thegeneral strategy of program trans-
formation employed by these systems originates from [?] and is referred to as theunfold/foldstrategy. This
strategy basically consists in defining the target program in terms of the source, and then, by a process of re-
writing recursive definitions, deriving a recursive definition for the target program which is independent of the
source definition. This general strategy has since been incorporated, in a variety of guises and applications, in
many program transformation systems. The three most problematic steps in the unfold/fold strategy, regarding
search, control and automation, are:� the so calledeurekastep: obtaining the initial definition of the target in terms of the source ((??) in our

example ofx??);� the control problems associated with when to apply the re-writing step(s) which eliminate any reference
to the source definition from the target recursive step, and;� the principled application of lemmas (or laws) often required to propagate the program derivations.

We shall return to a more detailed exposition of this related work inx?? in order to explain how proof
transformation offers a promising means of overcoming these problems. We shall compare the work described
in this paper with that reported in [?]: a recent systemization and extension of the earlier transformation
strategies discussed in [?].

4 Proof Transformation Strategy

ThePTSis tuned to recognize the key positions within inductive proofs that have a decisive effect on the recurs-
ive behaviour of the extract algorithm. These key positions correspond to the application of an induction rule,
the constructive type of the objects required to witness the induction cases, the actual proof constructs intro-
duced to witness the induction cases, and finally the definitions chosen to complete the verification component
of the proof.

Although the transformations involve using the source proof toguidethe new construction of a target proof
by mapping, and then transforming, portions of the former, the source proof, and extract, is itself preserved.
This is an intentional design factor since, for some applications, it may prove desirable to have access to both
the source and target proofs at the termination point of the transformation.

4.1 Abstracting Salient Features of the Proof

Proof trees are internally represented withinOYSTER as quite complex Prolog data-structures.9 However,
theseOYSTER data-structures, and the corresponding proofs, contain large amounts of information which
is irrelevant toboth execution and the tupling transformations. Hence inefficiency would result from this
additional information being subject to extensive manipulation in the course of the transformations. To avoid
computational effort being expended on attempting to access individual semantic units thePTSprocesses, by
abstraction, theOYSTER internal proof representations into more accessible list structures calledrule-trees. A
typical rule-tree will either explicitly contain, or contain labels which allow for the direct accessing of, the
following information:� Someof the assumptions (hypotheses) made during the proof.8However, memo-tables do have the advantage of being more general in their range of function applications.9Within the pre-processedOYSTERrepresentation there are many Prolog variables hanging on to the various (sub)lists and it is gener-
ally hard to follow what parts of information form semantic units.

10

� The branching structure of the proof.� The rules applied along with any corresponding arguments.� An account of the dependencies between facts in the proof:

– dependency information concerning inter-relations between (sub)goals; and

– dependency information concerning inter-relations between (sub)goals andassumptions (hypo-
theses).

So, recalling the Curry-Howard isomorphism,x??, the rule-trees contain an account of the dependencies
between facts involved in the computation of the�-function constructed by the corresponding proof.

Each rule entry consists of a refinement rule such that a rule-tree corresponds (schematically) to:apply(Rule1) then [apply(Rule2) then[::: apply(Rulen)] :::]];
and as such is akin both to a proof plan which combines a number of proof tactics and/or rules into a large
tactic such that a complete proof can be (re)produced from the plan, and to a skeleton of a proof in which
the inference rules of the proof are recorded, but not the formulae to which they are applied. A source rule-
tree contains all the information required to reproduce faithfully thesource proof from which it is abstracted.
Similarly, at the termination point of a transformation, the target rule-tree contains all the information required
to produce the complete target proof (indeed, once constructed, target rule-trees are automatically applied as
large tactics to the specification goal there by producing a complete target proof).

The fact that proofs are transformed indirectly via the transformationof the ruletree proof tactics (or proof-
plans) is not a necessary feature of the proof transformations but is rather employed for purposes relating to the
efficiency of the actual transformation process. We only mention them here to establish that the internal proof
representations of thePTShave no effect other than to increase the efficiency of the transformation process. In
this paper we are primarily concerned with how information in the sourceproof is used to construct the target
proof, and not with implementational detail. Hence, unless directly relevant, we shall in subsequent sections
describe the proof transformation process as passing directly from source proof to target proof without the
intermediate creation of the ruletree abstractions.

4.2 Tactic Transformation: Conditionally Guided Proof Modification

The PTS transformations are, then, akin to meta-level tactic transformations guided in part by whether or not
certain syntactic properties are true of the source proofs. Such syntactic properties function as transformation
tactic pre-conditions. We can also predict the probable outcome of the application of a transformation tactic in
terms of syntactic properties of the target proof. A source to target transformation will be deemed successful
if the target proof satisfies the post-conditions.10

We can give fairly high-level pre- and post-conditions for the induction schema transformations. For
example, transformations from an exponential procedure to a linear procedure include, amongst their pre-
conditions, that the dominant induction in the proof is a course ofvalues induction (i.e the proof must contain
a cv ind construct). Amongst the post-conditions will be the presence of a stepwise construct in the target
proof. Inx??we provide further pre- and post-conditions specific to the proof tupling transformations.

Similarly, transformations from a linear procedure to a logarithmicprocedure have as a pre-condition
that the dominant induction in the source proof is a stepwise schema. The target must then satisfy the post-
condition of having adivide and conquerinduction. We do not cover logarithmic transformations in this
paper. A theoretical description of such transformations is given in [?], and we discuss systemizing such
transformations in [?].

4.3 Efficiency, Correctness and Automation

The presence of a program specification both provides a termination condition and guarantees that all proofs
tranformed by thePTSyield programs that are correct with respect to that specification (cf. fig.1). Traditional
program transformation systems have no such formal specification and this this means there is no immediate
means of checking that the target program meets the desired operational criteria.By proving that the target
program satisfies the original specification, we avoid the need to establish that any re-write rules used are10If the source proof satisfies the pre-conditions then only inexceptional cases will a complete target proof be produced which violates
the post-conditions.

11

in themselves correctness (equivalence) preserving. This will, as a general rule, require as much effort as
providing an explicit proof of correctness for the source to target transformations. For example, many of the
systems that employ theunfold/foldstrategy re-write the recursive step(s) of a source program throughthe
application of variousequalitylemmas, each of which needs to be proved (by induction) if the source to target
transformation is to preserve equivalence [?, ?].

Furthermore, there is no guarantee that unfold/fold style derivations will actually lead to any optimization,
where as proof transformations replace an induction yielding an inefficientrecursion schema with one that
yields a (more) optimal schema. Thus target programs are guaranteed to compute the input-output relation
specified originally for the source, and to do so more efficiently.

Regarding automation, the proofs contain sufficient information to allow the source to target proof trans-
formations to proceed withoutanyuser interaction. In other words, in forming proofs from source proofs, the
PTSabstracts precisely that information which allows for the automatic construction of the target proof.

4.4 Synthesis and Verification

Thesynthesis componentof the transformation process is concerned with the formation of the target tuple, the
replacement of the source induction by a target induction with a more efficient induction rule (e.g., applying
stepwise in place of course of values induction) and/or merging a nested induction structure in the source into
a single induction in the target, and the subsequent witnessing of the target induction cases. Theverification
componentis concerned with performing specific sequences of unfolding operations at the instantiated induc-
tion step usingboth source and target equations. Symbolic evaluation and well-formedness tactics are also
usually applied at the induction cases.

We categorize the proof constructs mapped and/or transformed from the source proof according to which
component of the proof is being transformed. The synthesis componentwill involve abstracting, and then
transforming, (sub) structures from the source in order to:

(i) construct the target tuple;

(ii) determine the nature, and number, of elimination rule applications; and perhaps most importantly;

(iii) witness the existential quantifier at the target induction cases by mapping across structures from the
source induction cases.

The connection between (ii) and (iii) is that the elimination rules employed within the proof, particularly
those used in order to supply the source induction witnesses, provide an account of the inter-relations between
(sub)goals and hypotheses. This dependency information is then used tosupply witnesses for the target induc-
tion.

The verification component will involve abstracting, and then transforming, all those source proof branches
associated with:� tactics for controlling unfolding;� well-formedness goals; (such as the applications of type-checking rules);and� the application of lemmas – lemmas used for the satisfaction of the source induction cases are mapped

across and, after some simple transformations, used by the unfoldingtactics in order to satisfy matching
target sub-goals.

Both synthesis and verification involve:

(1) the fairly extensive mapping, and subsequent transformation, ofconstructs from the source proof; com-
bined with

(2) heuristic theorem proving strategies; and

(3) transformation techniques such astupling.

With regard to (1), by matching target sub-goals with source sub-goals, thePTS determines to what extent
it needs to patch the corresponding source proof branches in order to applythem successfully to the target
sub-goals.

12

4.5 Tuple Construction

As well as the more general pre- and post-conditions for optimizing recursive programs through transforming
the source induction,x??, we also give lower-level pre- and post-conditions which are specific tothe tactic
based proof tupling transformations:

1. Pre-condition: There exist two or more induction terms,f 0(n); :::; f 0(n� i), which share somecommon
induction variable(s)in a function definition (wherei � 2).

2’. Post-condition: There must be present(constructed) a fixed sized tuple - theeureka tuple- within which
common subsidiary function calls arising from the unfoldings of each of f 0(n); :::; f 0(n� i) are merged,
thus forming a recursive function without the original redundancy.

Note that condition 1 is, in effect, a defining condition of course of values induction. This means that any
proof employing one, or more, course of values induction schemes will generally be a good candidate for
optimization by tupling.

We shall refer to the tuple size, or the number of subsidiary calls tabulated within the tuple, as�. In general,i will provide an accurate, and the best, value for�. Regarding the induction step of the course of values
schema, 8x;8y: ((y < x)! P (y)) ` P (x);
the system evaluates the best tuple size by observing the source courseof values schema and determining the
number of times the induction hypothesis is invoked for different values of the induction parametery. In other
words, from a reading of how many distinct eliminations are performed on the induction hypothesis of the
source, the system can automatically calculate the best value for�. The contents of the tuple are then those
recursive calls corresponding to the� separate invocations ofy.

A quick and simple heuristic for constructing the explicit target tuple definition is simply to form the target
tuple structure by a direct 1-1 mapping of the function calls in the body of the source definition recursive
step. This is not, of course, guaranteed to produce the best tuple, but itwill not produce a target program any
less efficient than the source. The system will not produce an erroneous target program by employing this
heuristic, despite the fact that there are examples where an erroneous tuplewould be produced by mapping the
source recursive step.11 This is simply because the target specification, identical to that of the source, cannot
be satisfied by a proof employing an erroneous tuple function.

Functions which are constructed using schemas other than course of values induction can also satisfy con-
dition 1 in an implicit sense. For example, a function,f+2, synthesized using(+2)s stepwise induction may
well be a candidate for proof tupling since an invocation off+2(s(s(n))) will require two subsidiary calls onf+2(s(n)) andf+2(n). We formally display the(+2)s schema and provide an example of proof tupling on an
instance off+2 in x??.

Regarding the transformation of nested inductions consider the following schematic definition:f(n) = f1(n) + f2(n� 1);
It may be the case that upon unfolding either, or each of,f1 and f2, two or more induction terms,fj(n); :::; fj(n � i), which share some common induction variable(s) are exhibited. This isthe case with
auxiliary recursive functions wherein the redundancy is not immediatelyobvious since it occurs amongst the
auxiliary recursive calls (viz. the computation of the function(s), inthe body of the definition, which are not
self-recursive). Such “auxiliary redundancy” manifests itself in the source proof in the form of a nested induc-
tion. The task of proof tupling on such nested induction structures is to “merge” the computation associated
with the innermost induction with that of the outermost induction. Hence the explicit definition for the target
tuple is determined by calculating the value of�, and the recursive calls to be tabulated, for the outer and
(each of the) nested inductions and then simply combining the results. Weshall illustrate by example the
optimization of these kinds of inductively synthesized functions inx??.

It is worth noting that, in practice, tuples are represented in theOYSTERproofs by conjunctions of function
calls. That is, the program extraction process sets up a correspondence between conjunction proof constructs
and tuple program constructs. This approach has certain advantages to which weshall return inx??.11For example, we would need to use the more rigorous approach to determine the tuple definition for a variant of Fibonacci with the
following recursive step: fib3(n) = fib3(n� 1) + fib3(n� 3)
The quick heuristic would erroneously produce a tuple of size 2, i.e. hfib3(n � 1); fib3(n � 3)i, whereas an analysis of a source
course of values proof forfib3 would reveal that3 distinct invocations of (eliminations on) the induction hypothesis are required. Thus

the correct tuple should behfib3(n� 1); fib3(n� 2); fib3(n� 3)i.

13

Henceforth, we shall distinguish proof transformations which employ a tupling technique from program
tupling transformations by referring to the former asproof tuplingand the latter asprogram tupling.

5 Proof Transformation: Examples

The proof transformations performed by thePTScan be broadly categorized in two ways:

1. Transformation of induction schemas: The source induction schema is replaced by a different, but
logically equivalent, target induction schema.12

2. Transformation of nested inductions, or Loop Removal: A nested application of induction in the
source is “merged” with the outermost induction to produce a target proof with a single induction. We
may also refer to such transformations asloop removal(since a recursion loop is removed from the
source).

Both 1 and 2 are automatic and involve essentially the same strategy: thesystem cuts in an extra goal,G into
the “simple” proof of the program specification,S, thus yielding two subgoals: the first being the original
goal S, with G as an additional hypothesis, and the second beingG itself. The proof of (sub)goalG is then
responsible for synthesizing the more efficient computation of the input-output relation specified in S. In both
cases the need to treat the identification ofG as a eureka step is removed by exploiting the structure of the
source proof. Furthermore, the source proof provides the information required to witness the induction step of
the target proof (and thereby build recursion into the target program).

In this section we provide detailed analyses of three examples of proof transformation which involve
tupling. The first corresponds to linearization by the transformation of course of values induction schemas.
The second corresponds to the transformation of nested inductions. The third example involves both the
transformation of a source induction scheme and the merging of nested inductions. As well as combining
aspects of the first two examples, it also illustrates the transformation of a different induction schema,+2
succesor induction, than that in the first example.

The reader should bear in mind throughout this section that we regard the construction of source proofs as
given (i.e. either as output from a previous transformation, or froman interactive synthesis session within the
OYSTER system). The construction of target proofs, on the other hand, is automatic given the source proofs
as input. Thus although a comprehensive explanation requires us to provide a step by step description of the
target proof constructions, the process is fully automated regarding thePTS.

5.1 Example 1: Linearization

Remaining with the Fibonacci example, we provide representative figures for synthesizing Fibonacci the
source course of values proof, fig.3(a), and for synthesizing the targetstepwiseproof, fig.3(b). Taken as a
whole, fig.3 depicts the correctness guaranteed transformation of a course of values proof to a stepwise proof.
For the sake of clarity, we omit some of the type checking, substitution and elimination rules (such omissions
being indicated by a broken vertical arrow). We shall have course to often refer back to fig.3 throughout the
text. Thus to aid clarity we adopt the naming convention that symbols appearing in the text in calligraphic
font refer to either the correspondingly named formulae, proof branches, or the arcs depicting proof map-
pings, of fig.3.13 For example, we use the arcs,M1 toM8, that pass from fig.3(a) to fig.3(b) to depict those
(sub)structures of the source proof which are used to develop the target proof. These “mappings” will be
explained inx??. We shall first describe the nature of the source proof (i.e. fig.3(a)). The nature of the target
proof construction, fig.3(b), will become evident when we discuss the transformation of the source (x??).

5.1.1 The Source (Course of Values) Proof

The specification,FIB, for a program that computes the Fibonacci numbers, is shown below:FIB : 8x; 9y: fib(x) = y; (7)fib is defined through the use of three proved, and subsequently stored, lemmas corresponding to the three
cases of the course of values definition (x??):12By logically equivalent induction schemas we mean that the associated induction theorems are inter-derivable. This guarantees that
any two proofs satisfying the same complete specification but differing only in which of the two schemas are employed arefunctionally
equivalent.13The same convention is adopted regarding the later examplesand their corresponding proof figures.

14

lemma 1: fib(0) = s(0);
lemma 2: fib(s(0)) = s(0);
lemma 3:8x; 9y1; 9y2: x 6= 0 ^ x 6= s(0) ^ fib(p(x)) = y1 ^ fib(p(p(x))) = y2 ! fib(x) = y1 + y2;

wherep is thepredecessor function defined by induction over the naturals such thatfib(x� 1) � fib(p(x))
andfib(x�2) � fib(p(p(x))).14 Thep operator is usefully employed as a destructor function of a function’s
data-structure (as opposed to using the canonical successor function,s, to build constructor definitions). The
reason for specifying Fibonacci indirectly, through the use of proved lemmas, is so that the proof specification,
(??), does not constrain the dominant induction of the proof to course of values (since in the case of the target
proof we will wish to construct a stepwise proof of (??)).

Lemmas 1 and 2 define the base cases of the Fibonacci definition. Lemma 3 defines the recursive case and
is naturally a course of values definition: values are given for inputs0 ands(0), andfib(x) requires appealing
to a pair of output values obtained when the input is less thanx, specifically,fib(p(x)) andfib(p(p(x))). A
ramification of the induction-recursion duality is that the behaviourof the induction variable should mirror
that of the recursive terms in the function definitions [?]. Hence (??), or FIB, is most naturally proved by
course of values induction. The proof requires an initial application ofthe8�intro refinement. This has the
effect of removing the universal quantifier.15 This is followed by applying course of values induction onx
(denoted, in fig.3(a) by CV induction(x)). The cases of the induction schema are then satisfied by setting up a
nested case analysis structure by performing two case-split refinements, where the second case-split is nested

14Depending on context, we shall subsequently use the postfix notation, e.g.(x � 1), interchangeably with the prefix notation, e.g.p(x) (similarly for, e.g.,x+ 1 ands(x)).15Recall,x??, that a feature of the goal-directed proofs is that introduction (intro) rules have thequantifier strippingeffect usually
associated with elimination rules in forwards proof systems. Conversely, elimination (elim) rules have the effect of introducing an
existential instantiation in the hypotheses of sequents.

15

Fig.3(a): INPUT: SOURCE PROOF

(COURSE OF VALUES INDUCTION)

�� �
FIB: ` 8x 9y: fib(x) = y?8�intro?
CV induction(x)IH : 8x0: x0 < x! 9y0:fib(x0) = y0IC : ` 9y: fib(x) = y?

case-split(x = 0)B1�� �
base(x = 0)??9�intro(s(0))` fib(0) = s(0)?
lemma 1

case-split(x = s(0))B2�� �
base(x = s(0))??9�intro(s(0))` fib(s(0)) = s(0)?
lemma 2

S�� �
step(x > x0)??
Ind-Elims onIHH1 : fib(p(x)) = y1H2 : fib(p(p(x))) = y2?9�intro(y1 + y2)` fib(x) = y1 + y2?

lemma 3

M4

M3

M1

M2

Fig.3(b): OUTPUT: TARGET PROOF

(STEPWISE INDUCTION)

�� �
FIB: ` 8x 9y: fib(x) = y?8�intro?G: seq(9u9vfib(s(x)) = u ^ fib(x) = v; tuple : hu; vi)P1G: tuple : hu; viFIB: ` 9y: fib(x) = y?9�intro(v)?
unify(G)

P2?
stepwise ind.(x)�� �
base(x = 0)??9�intro(s(0))?9�intro(s(0))` fib(s(0)) = s(0) ^ fib(0) = s(0); tuple : hs(0); s(0)i?

lemmas 1and 2

�� �
step(x = s(x0))IH : fib(s(x0)) = u ^ fib(x0) = v; tuple : hu; viIC :` fib(s(s(x0))) = u0 ^ fib(s(x0)) = v0; tuple : hu0; v0i?9�intro(u)?9�intro(u+ v)` fib(s(s(x0)) = u+ v ^ fib(s(x0)) = u; tuple : hu + v; ui?
lemma 3

PPPPPPPPM5

Figure 3: Schematic Representation of Source to Target Proof Mappings forFibonacci

16

within the first. The outermost case split corresponds tox = 0 _ x 6= 0, and the innermost case to split tox = s(0) _ x 6= s(0). By having the case splits nested in this way, we cover all the conditions specified in
the course of values definition. By using the9� intro(!) rule, a suitable witness,!, is introduced at each
case, and then verification is performed by appealing to (unfolding with) the relevant lemma (with various
well-formedness goals being satisfied along the way). Within the dashed-boxes (fig.3) we have included key
hypotheses and (sub)goals (conclusions): the application of course ofvalues induction yields the induction
hypothesis,IH, IH : 8x0: x0 < x! 9y0fib(x0) = y0;
and the induction conclusion,IC , IC : ` 9y: fib(x) = y:
At the two base cases,B1 andB2, we provide in both cases, a witness ofs(0).

The goal at the induction step case,S, is to reduce the induction conclusion,IC , to terms which can be
unified with those in the induction hypothesis, there by providing a witness for the existential variable –y in
the case ofIC – which introduces recursion into the step branch of the function. Thisis achieved by:� eliminating on the induction hypothesis,IH, twice: first with a value forx0 of p(x), and subsequently

with a value ofp(p(x)).16 In fig.3(a) this is depicted by the term “Ind-Elims onIH”. The constructs
resulting from the eliminations appear as two new hypotheses,H1 andH2, which provide outputs forfib(p(x)) andfib(p(p(x))), namedy1 andy2 respectively; and,� recursion is then built into the function being constructed by usingH1 andH2 as unifiers, orfertilizers,
to provide a witness for the step casefib(x), namelyy1 + y2. This completes the recursive branch
synthesis (sincey1 + y2 � fib(p(x)) + fib(p(p(x)))).

Thus, to witness a value for the induction step we appeal, twice, to the induction hypothesisIH. These elim-
inations on the induction hypotheses, and the fact that they are explicitly recorded in the sequent hypothesis
lists, will be seen to be crucial for the automatic construction of the target induction (x??).

Upon completion of the synthesis component of the target proof, verification is performed by appealing to
the stored lemmas: lemmas 1 and 2 for the base cases, and lemma 3 for the step case.

The unification of the induction conclusion with the hypothesis is called fertilization. Formulae are “un-
packed” - orunfolded- by replacing terms by suitably instantiated definitions. Fertilizationis facilitated by the
fact that the induction conclusion is structurally very similar to the induction hypothesis except for those func-
tion symbols which surround the induction variable in the conclusion. An implemented rewriting technique
known asrippling exploits this property of inductive proof by proliferating the process of unfolding such that
recursive terms are gradually removed from the recursive branches until a match – fertilization – can be found
with the induction hypothesis [?]. In x?? we say a little more concerning the general inductive proof strategy
and how this has positive ramifications regarding the completeness of the proof transformation system.

5.1.2 The Source (Course of Values) Extract Program

The complete extract program results from the combination of all the separate proof branch constructions
appearing at the proof branch leaves of the first base case, second base case, and stepcase respectively. We
indicate, in fig.4, the input/output associated with each case computation in the�-calculus representation of the
complete extract program (cf. x?? for an explanation of thecv ind proof construct). The program construction
associated with a case analysis is of the formeq(x; y; P;Q), which specifies the required decision procedure:
if x = y thenP , otherwiseQ. complete extractz }| {�x:cv ind(x; [x0; IH; eq|{z}1st case�split(x0; 2nd basez }| {0; s(0) ; eq|{z}2nd case�split(x0; 1st basez }| {s(0); s(0); step casez }| {IH(p(x0)) + IH(p(p(x0)))))])

Figure 4: The course of values extract forFIB16Following these eliminations, the proof also requires us toestablish that bothp(x) < x andp(p(x)) < x are true.

17

The�-calculus functional program extracted from the course of values inductive proof will compute the
Fibonacci numbers according to the course of values definition (corresponding to the three lemmas). The proof
reflects the same inefficiency generated by the extract program. This could notbe otherwise since the proced-
ural commitments and/or decisions made during the synthesis determinethe nature of the recursive process
generated by the synthesized (extract) program. The extract program dictatesthat in order to compute the step
branch of the recursion the induction hypothesis,IH, is evoked twice. This means that the recursive process
generated by the extract program will be exponential (i.e. the tree recursive represented by the dependency
graph of fig.??(a),x??).

It is clear, therefore, that there is a one-to-one correspondence between termsin the extract and terms
in the proof from which it was extracted. However, it should also now be clear that the correspondence
is not bi-directional: the course of values proof contained many steps which are not reflected in the extract
program. Notably, due to the absence of anything resembling a hypothesis list, the extract program does not
contain a record of the dependencies between facts involved the computation. Nor does it contain a complete
representation of the verification component(s) of the proof (required for establishing the correctness of the
computation). This provides a graphic illustration of how proofscontain information which is extraneous to
that required for simple execution, but valuable for understanding the program design.

5.1.3 The Target Proof Construction: Exploiting Source Dependency Information

Regarding fig.3(a), if one looks at the source proof branch corresponding to the step case of the course of values
induction then we can represent the proof nodes constituting the synthesis part of this branch as in fig.5 below.

induction hypotheses: IH : 8x0: x0 < x ! 9y0:fib(x0) = y0
refinement: Ind-Elims onIH
resultant hypotheses: H1 : p(x) < x ! 9y1: fib(x� 1) = y1H2 : p(p(x)) < x ! 9y2: fib(p(p(x))) = y2
induction conclusion: IC : ` 9y: fib(x) = y� ��
witnessing refinement: 9�intro(y1 + y2)
fertilized conclusion: ` fib(x) = y1 + y2

Figure 5: Elimination and Witnessing Steps of Source (Course of Values) Proof

Fig.5 represents the elimination and subsequent witnessing step required for the fertilization of the induc-
tion conclusion with the hypothesis. From this information, thePTScan extablish that the source proof satisfies
the pre-condition for proof tupling (x??): that there are two or more induction terms which share the common
variable,x, at the induction step of the proof construction.

In order to identify the (eureka) tuple, thePTS records the maximum difference between the induction
term in the induction conclusion and thesmallestof the subsidiary calls used to witness a value fory.17 Sincep(p(x)) < p(x), and the induction termx is greater thanp(p(x)) by 2 then the required tuple size,�, is 2.
So in order to calculatefib(x), for anyx, thePTSmust “store”, or tabulate, 2 subsidiary calls:fib(p(x)) andfib(p(p(x))). Thus, in order to determine the size and contents of a target (tuple) definition, thePTSobserves:
how many times the hypothesis,IH, is evoked in order to provide a witness at the induction conclusionIC ,
and; the greatest number of applications,2 in the case of Fibonacci, of the induction constructor/destructor
function the proof employs when eliminating on the induction hypothesis in order to synthesize constructs
for the induction witnesses. This procedure completely identifies an explicit definition, G, for the auxiliary
recursive procedure through which Fibonacci can be defined:G: seq(9u; 9v: fib(s(x)) = u ^ fib(x) = v; tuple :hu; vi)
Hence, by having access to theOYSTERinternal proof representations of the source elimination and witnessing
steps, thePTShas all the information needed for the automatic generation of the target tuple definition (depicted
byM5 of fig.3). Following the mapping across of the initial portions of the source proof — the specification
and the8�intro applications —G is cut into the target proof as a new fact. In effect,G is a nested specification
goal that states the existence of a tuple of two components (i.e.,� = 2). Such new facts are cut into proofs,17By smallest we mean that subsidiary call which has the greatest (least) number of applications of the induction destructor (constructor)
function applied to the induction variable.

18

as a new sub-goal, by a generalized version of thesequence, or seq, rule. The generalizedseq rule allows one
to cut in, orsequence, a new fact into a proof by introducing a new node in the proof tree with two subgoals
where: the first subgoal represents the original proof tree with the new fact as an additional hypothesis (which
in constructive terms amounts to an additional hypothesis that there isa proof of the new fact), and; the second
subgoal is responsible for constructing a proof of the new fact. So,sequencingG into the developing target
proof produces the corresponding two sub-goals:� the first (sub)goal, at proof branchP1 in fig.3(b), will be the originalFIBgoal, with the universal quan-

tifier removed, and withG as an additional hypotheses, and� the second (sub)goal, branchP2, will require provingG itself.

Stepwise induction is applied at the second subgoal in order to prove the sequenced in goalG (this is
denoted, in fig.3(b), by “stepwise ind.(x0) to G”: i.e. stepwise induction onx0 is applied toG). At the
base case an̂� intro rule is applied which has the effect of decomposing the goal into the separate tuple
components. Such decomposition of the tuple will always be controlledby the tuple size,�. The PTS then
maps across the base case witnesses,0 ands(0), from the source proof in order to witness a base case value
for each of the tuple constituentsu andv (M1 andM2, fig.3). The base case is then verified by mapping
across and applying the source base case lemmas and well-formedness tactics.

At the induction step we have the following goal to prove (of the formhypothesis̀ conclusion):9u; 9v:fib(s(x0)) = u ^ fib(x0) = v ` 9u0; 9v0: fib(s(s(x0))) = u0 ^ fib(s(x0)) = v0;
i.e., regarding figs.3(b) and 5, thePTS must establish thatIH ` IC . The PTS must then provide witnesses
for u0 andv0 in the conclusion. Furthermore, it must do so in terms ofu andv in the hypothesis. This will
both introduce recursion into the target function and eliminate all reference to the sourcefib function from the
target definition. An application of̂�intro splits the induction conclusion, into separate conjuncts producing
two new sub-goals (the number of applications ofintro being determined by�):` 9u0: fib(s(s(x0))) = u0 (8)` 9v0:fib(s(x0)) = v0 (9)

A witness foru0, in (??), is required which is equal tofib(s(s(x0))): since, in this example,� = 2,
then a value foru0 is obtained by appealing to those two subsidiary calls which take recursive arguments
that differ from s(s(x)) by, respectively,1 and 2 applications of the successor functions, i.e. fib(s(x))
andfib(s(s(x))).18 These subsidiary calls are precisely those labelledu andv in the induction hypothesis.
However, to avoid all charges of eurekas, thePTS must automatically determine what function to apply tou
andv in order to construct the witness foru0. This is done by observing the witnessing step of the source
proof: a call to the main function requiresaddingthe� subsidiary calls (cf. thewitnessing refinementslot
of fig. 5). Thus the identity of the first tuple component is provided by substituting the subsidiary calls in
the target induction hypothesis for those in the source induction conclusion (depicted byM4, fig.3), there by
witnessing a value foru0 of u + v. A similar analysis of the source proof could be performed to identifythe
second component of the target tuple corresponding to (??). However, a witness,v, for v0 is provided by one
of the target hypotheses and can hence be directly appealed to in order to witnessa value for the remaining
component. Once the witnessing steps have been completeted, the instantiated, or fertilized, conclusion is
verified by appealing to the same tactics for unfoldingand the same lemma, lemma 3, as used to verify the
source induction step (M3, fig.3). This completes the construction of the target proof, fig.3(b), which is then
passed on to theOYSTERautomatic program extraction process (x??).

So, by utilizing the eliminations and witnesses in the source proof induction, thePTS is able to automate
the difficult tuple construction process which, within existing program transformation, systems has constituted
a eureka step. We elaborate on this performance advantage inx??.

5.1.4 PTSLemma Translation

Regarding the use of lemmas, thePTS is equipped with a simple translation procedure that turns a destructor
type lemma of the form: f1(x) = f2(f1(x� a); f1(x� b)); where b � a;18In the general case, if� = n then a tuple of sizen is constructed, and the value ofn subsidiary calls would be required to construct
a witness for the 1st component,n� 1 for the second, and so forth.

19

into a constructor version of the following form:f1(x+ b) = f2(f1(x+ (b� a)); f1(x)):
Hence there is no problem in using source proof lemmas that define a functionf(x) in terms ofpredecessors
of x, since, if necessary, we can translate it into the equivalent lemma that definesf(x) in terms ofsuccessors
of x.

5.1.5 The Target (stepwise) Extract Program

The lambda calculus extract program, shown in fig.6, for the target stepwise proof is somewhat more esoteric
than the more standard representation of the stepwise recursive Fibonaccithat we gave inx??. The basic
explanation of thep ind proof construct was provided inx??. The unfamiliar construct is thespread function.
Thespread function takes a pair (first argument) and a list (second argument) specifying two variables and a
term which may include them; on execution the function returns this termwith the variables substituted by the
elements of the pair. complete extractz }| {�x:((�tuple:spread(hu; vi; [�; y; y]))(p ind(x; base casez }| {hs(0); s(0)i; [x0; IH; step casez }| {spread(IH; [u0; v0; (u0 + v0) ^ u0])])))

Figure 6: The stepwise extract forFIB
So, regarding fig.6, the innermostspread term (that constructed through theP1 branch of fig.3(b)) specifies
that the two components,u andv, of the pair (tuple),IH, whose existence is assumed through the induction
hypothesis, are substituted, respectively, foru andv in the term(u+ v) ^ u. The outermost spread term (that
constructed through theP2 branch of fig.3(b)) specifies that the output for Fibonacci is obtained by substituting
the second element of the tuple, synthesized throughP1, for y in the root node specification. Note that the
stepwise extract, as in the stepwise proof, contains only a single evocation of the induction hypothesis,IH.
The recursive process generated by the stepwise extract is hence linear.

It is the use of tupling which allows us to construct such a linear process: the solution for Fibonacci
corresponds tov in the above extract (i.e., the second argument of the first tuple component). Parameteru
acts as an accumulator since its value in successive invocations accumulates the value(s) of the function. So,
the process generated islinear recursivesince, withu andv initialized to1 and0 respectively, the procedure
applies the simultaneous “transformations” shown on the l.h.s. of the following informal equivalence (whereA 7�! B meansP “transforms” toB),� u 7�! u+ vv 7�! u � � �hu; vi 7�! hu+ v; ui	 whereu = fib(i) andv = fib(i� 1), (for somei).
This represents a single recursive call where to obtainhu+v; ui we require a single evocation of the induction
hypothesis construction, corresponding tohu; vi.

So after applying this “transformation”n times thenu andv will be equal tofib(s(n)) andfib(n) re-
spectively, i.e., (schematically),� u 7�! u+ vv 7�! u �� n � hfib(s(n)) + fib(n); fib(s(n))i:
5.1.6 Scope of Induction Schema Transformations

In this section we provide an indication of the performance of thePTSas currently implemented. Although the
PTSshould currently be regarded as in an embryonic form, it is capable of linearizing, through the transforma-
tion of source proof induction schemas, a large class of program characterizedby what Cohen describes as the
common generator redundancy, CGR, class of programs [?]. This class is represented by the below schematic
definition for a functionf , with n self-recursive calls, and whered1, d2, :::, dn, aredescent functions. Descent
functions are those functions which are applied to the main recursive arguments used in subsidiary calls.19f(x) (if b(x)then c(x)else h(x; f(d1(x)); :::; f(dn(x))):19So, for example, there are two subsidiary recursive calls entered in the Fibonacci source course of values proof in orderto satisfy the
induction step,p(x) andp(p(x))). The corresponding two descent functions for the two subsidiary calls are in both cases the predecessor
functionp.

20

The CGR class of programs are those programs where there exists acommon descent function, �, in terms of
which each ofd1, d2, :::, dn can be defined. This means each descent function is related to each other through� in that each is cashed out in terms of applying� a certain number of times, i.e.,d1 = �i andd2 = �j , where�n is to be interpreted as the application of� n times.

The general schematic function, shown above, for theCGR class of programs can hence be re-represented
by S1 below:20 (S1) f(x) (if b(x) then c(x)else h(x; f(�i(x)); :::; f(�j(x)))
For the sake of brevity, we illustrated the transformation process using a fairly simple bi-linear instance ofS1,
namely Fibonnacci. However, thePTSwill optimize any instance ofS1.21 For further examples the reader is
referred to [?].

5.2 Example 2: Optimization By Transforming Nested Inductions

With the Fibonacci example ofx?? the optimization was achieved through transforming the source induction
schema into a different schema with a more efficient computational rule. We now illustrate, by example, how
the PTS is capable of transforming a source proof that involves a nested application of induction to a target
proof with a single induction.

Our second example concerns the optimization of a program that computes the factlist function,fctl, with
the following definition: fctl(0) = []; (10)fctl(n) = fact(n) :: fctl(n� 1); (11)

where the auxiliary functionfact is defined as follows:fact(0) = 1; (12)fact(n) = n� fact(n� 1): (13)

Here redundancy does not occur directly due to any self-recursive call but rather among the auxiliary recursive
fact calls. This redundancy is exhibited by the symbolic dependency graph for fctl, the initial portion of
which is shown in of fig.8. Recall fromx?? that asymbolicDG is based on the calling structure of subsidiary
symbolic function calls (and is therefore potentially infinite in size). The multiple evocations of subsidiary
calls, the redundancy pattern, is exhibited by more than one arrow directed at any particular node.�� �
fctl(n)��	 @@@RQQQs�� �
fact(n) �� �
fctl(n� 1)?�� �
fact(n� 1) ���+ ?�� �
fctl(n� 2)

Figure 8: The symbolicDG for fctl(n)
A program for computing this inefficient procedure is synthesized from the following specification,FL,

for the factlist function: FL : 8x; 9l : list: fctl(x) = l:
As with the Fibonacci example,fctl is defined through the use of lemmas, four in this case, which correspond
to the terminating ((??) and (??)) and recursive ((??) and (??)) branches of the above definitions. However,20TheCGR class also covers the class of programs, referred to by Cohenas theexplicit redundancyclass, whered1 = d2.21In fact S1 is a slight simplification sinceh may differ depending on which subsidiary call to which it is appled. thus theMPTS
will also, for example, transform a source proofs of the following functionf 0(n) = f 0(n� 1)� (f 0(n� 3) + f 0(n� 4)).

21

unlike the source synthesis proof for the Fibonacci function,fctl is defined by a stepwise recursion schema
– sincefctl function does not invoke itself more than once at each recursive call – and so is therefore most
naturally synthesized using stepwise induction.

In fig.7 we provide a diagram that, as with fig.3, depicts the source and target proofs, and the (sub)structure
mappings between them.22 The redundancy manifests itself in the source proof, fig.7(a), in theform of the

22The same conventions apply to fig.7 as did to fig.3: symbols in the text in calligraphic font refer to the corresponding symbols in
fig.7; terms such as “step(x = s(x0))” denote that the induction variable,x, in the hypothesis is instantiated tos(x0) in the conclusion,
and; terms such as “stepwise ind.(x0) to G” mean stepwise induction onx0 is applied toG. We also, due to space constraints, abbreviate
some formulaes with:::, and omit some of the8�intro applications.

22

Fig.7(a): INPUT: SOURCE PROOF

(NESTED INDUCTION)

�� �
FL: ` 8x; 9l: fctl(x) = l?8�intro?OI
stepwise ind(x)

outer IH1 : 9l : list: fctl(x0) = lIC1 : ` 9l0 : list: fctl(s(x0)) = l0?G1: seq(8x0;9z:fct(s(x0)) = z)
�� �
step(x = s(x0))�� �
base(x = 0)??9�intro([])` fctl(0) = []?

lemma 1 NI
stepwise ind(x0) toG1nested�� �
base(x00 = 0)?9�intro(s(0))` fct(0) = s(0)?

lemma 2

�� �
step(x0 = s(x00))IH2 : 9z: fct(x00) = zIC2 : ` 9z0: fct(s(s(x00))) = z0?9�intro(s(s(x00))� z)` fct(s(s(x00))) = s(s(x00))� z?
lemma 3 M5

IH1 : 9l : list: fctl(x0) = lG1 : 9z:fct(s(x0)) = zIC1 : ` 9l0 : list: fctl(s(x0)) = l0?9�intro(z :: l)` fctl(s(x0)) = z :: l?
lemma 4

M4

M3

M2

Fig.7(b): OUTPUT: TARGET PROOF

(SINGLE INDUCTION)

�� �
FL: ` 8x; 9l: fctl(x) = l?8�intro?G2: seq(8x;9u;9v: fct(s(x)) = u ^ fctl(x) = v; tuple :hu; vi)G2 : :::; tuple : hu; vi` 9l: fctl(x) = l?9�intro(v)` fctl(x) = v?
unify(G2)

?SI
stepwise ind.(x) onG2�� �
base(x = 0)?9�intro(s(0) � fct(0))?9�intro([])` (fct(s(0)) = s(0) � fct(0)) ^ (fctl(0) = [])?

lemmas 1, 2, 3

�� �
step(x = s(x0))IH3 : 9u;9v: fct(s(x0)) = u ^ fctl(x0) = v; :::IC3 : ` 9u;9v: fct(s(s(x0))) = u0 ^ fctl(s(x0)) = v0; :::?9�intro(s(s(x)) � u)?9�intro(u :: v)` fct(s(s(x0)) = s(s(x)) � u ^ fctl(s(x0)) = u :: v?
lemma 4

Figure 7: Schematic Representation of Source to Target Proof Mappings forFactlist

23

nested stepwise induction,NI , required to synthesize an extract term for the auxiliaryfact call. The nested
induction requires a prior sequencing step, at the induction step of theouter induction, to cut in the specification
goalG1 for thefact sub-routine: G1: seq(8x0; 9z:fct(s(x0)) = z):
The nested schema means that for each recursive pass corresponding to the outermost induction,OI , the
source program must fully recurse on the innermost schema. This is alsoreflected by the dual nested recursion
schema construct of the source proof extract program, a simplified representation of which is shown in fig.9:
thep ind function defines stepwise recursion and is evoked by the application of the corresponding induction.
The nestedp ind structure mirrors the nested induction structure of the source proof. Thus if the induction
variable,x0 is 0 then the output isnil, otherwise the output isz :: l, wherez is provided by the induction
hypothesisIH2, of thenestedinduction onx00, andl is provided by the induction hypothesis,IH1, of theouter
induction onx0. So the nested inductive proof provides an output,z, for fact(s(x0)), which is then used in the
computation,z :: l, for fctl(s(x)) (i.e. z :: l serves as a witness for the outer induction conclusionIC2).complete extractz }| {�x: p ind(x;fctl basez}|{[] ; [x0; l; (�z:fctl stepz}|{z :: l (p ind(x0;fact basez}|{s(0) ; [x00; z; fact stepz }| {s(s(x00))� z]))))])

Figure 9: The Source Extract forfctl
So the task of thePTS transformation is to remove this nested induction, and thereby the redundancy caused
by the nested recursion, by effectively specifying the auxiliary call at the level of the outermost induction.

5.2.1 Exploiting Dependency Information for the Target Construction

As with the source to target transformation of self-recursive functions, the optimization of the source auxiliary
recursivefctl function involves proof tupling and the exploitation of dependencyinformation contained in the
source proof. The step case existential witnesses of the inner and outer inductions of thefctl source proof
are expressed in terms of the source induction hypotheses (necessarily since the�-function constructed is
recursive). These witnesses are directly exploited in order to satisfy the single step case of the target proof.

In fig.10 we have represented the witnessing steps of both the source proof inductions (i.e. the outer and
inner inductions of fig.7(a)). Fig.10(a) corresponds to the witnessing of the existential variable at the step case
of thenestedinduction, and fig.10(b) to that of theoutermostinduction.

ref: stepwise ind(x0)
hyps: 9z: fct(s(x00)) = z
conc: ` 9z0: fct(s(s(x00))) = z0� �
next ref: 9�intro(s(s(x00))� z)
next conc: ` fct(s(s(x00))) = s(s(x00))� z

ref: stepwise ind(x) then seq(9z:fct(s(x0)) = z)
hyps: 9z: fct(s(x0)) = z and 9l0 : list: fctl(x0) = l
conc: ` 9l0 : list: fctl(s(x0)) = l0
next ref: 9�intro(z :: l)
next conc: ` fctl(s(x0)) = z :: l

9(a) Step witness forfact (atNI). 9(b) Step witness forfctl (atOI).

Figure 10: The witnessing steps of the sourcefctl proof

The PTS is able to determine from the above witnessing steps of the source proof, and from the subsequent
unfoldings with the lemmas, that the recursive definition of the target tuple requires tabulating two function
calls (i.e.� = 2): there is one elimination performed on the respective induction hypothesis at each of the two
inductions in order to provide a witness at the respective step cases (thus introducing recursion in the main
and auxiliary functions being constructed). The actual witnesses tell us that the first is an occurrence of the
auxiliaryfact function which takes the same argument,n, as in the head of the definition. The other tabulation
is a subsidiaryfctl call which takes the predecessor,n � 1, of the argumentn in the head of the definition.

24

The two arcs corresponding toM5 of fig.7. depict the mapping of information from the source proof in order
to identify the requisite tuple. The target definition is given the hypothesis labeltuple and, as in the Fibonacci
example, is expressed as a conjunction and sequenced into the target proof as anew factG2:G2: seq((8x; 9u; 9v: fct(s(x)) = u ^ fctl(x) = v); tuple : hu; vi):
Stepwise induction is then performed on the sequenced in goal (where the induction variable,x, is the same
as that for the outermost application of induction in the source proof).

At the induction step of the target proof,s(x) in the hypothesis,IH3, is instantiated tos(s(x)) in the
conclusion,IC3, yielding:(9u0; 9v0: fct(s(s(x))) = u0 ^ fctl(s(x)) = v0); tuple : hu0; v0i: (14)

Both the tuple components (conjuncts)u0 andv0, of (??), unfold to terms that are provided by mappings from
the source proof:� fact(s(s(x))) is equivalent tos(s(x)) � fact(s(x)) wherefact(s(x)) matches the hypothesisu =fact(s(x)). Hence we require a witness value for the first tuple component ofs(s(x)) � u. This is

obtained by mapping across the witness for the source nested induction and substitutingu0 for z. In
fig.7 this corresponds toM3.� fctl(s(x)) is equivalent tofact(s(x)) :: fctl(x) where fact(s(x)) matches the hypothesisu =fact(s(x)), and wherefctl(x) matches the hypothesisv = fctl(x). Hence we witness a value for
the second tuple component ofu :: v. The PTS obtains this witness simply by substituting the target
hypothesis labels,u0 andv0, for the labels,z and l0, in the step case witness of theoutermostsource
induction (depicted byM4 of fig.7)

As with the previous examples, the base case witnesses are mapped across, one on one, from the source,
as are the lemma applications required for verifying both the base and stepcase witnesses (M1 andM2 of
fig.7).

The completed target proof constructed by thePTS, corresponding to fig.7(b), is then passed on to the
OYSTERextraction process.

5.2.2 The Target (stepwise) Extract Program

The target program construction is shown below in fig.11.

�x: (complete extractz }| {(�tuple: spread(hu; vi; [�; y; y]))(p ind(x; basez }| {hs(0); []i; [x0;G2 :hu; vi; stepz }| {spread(G2; [u0; v0; (s(s(x0)) � u0) ^ (u0 :: v0)])])))
Figure 11: The target extract forfctl

Note that just as the source proof – fig.7(a) – contained two stepwise inductions, with the nested induction
being applied at the step case of the outermost induction, and the target proof – fig.7(b) – contains only a
single induction (on a tuple structure), so the source extract program – fig.9 – contains a dual nested recursion
schema, with the nested recursion being applied at the step case of the outermost recursion, and the target
extract program – fig.11 – contains only a single dual recursion (on a tuple structure).

5.2.3 Scope of Loop Removal Transformations

The situation for proof tuplingauxiliary recursivefunctions is different from that of functions which contain
only self-recursive calls in the body of the definition.CGR functions which areauxiliary recursive fit the
following schematic definitionS2:S2 f(x)(if b(x) then k(x)else h(x; f1(�i(x)); :::; fn(�j(x)))

25

where there is at least one auxiliary function call in the body ofS2. So for a bi-linear instances ofS2, such as
thefactlist function, the following holds:(f = f1 _ f = f2) ^ f1 6= f2. ThePTS is, however, capable
of performing tupling transformations on any instances ofS2.

As we illustrated inx??, the PTS will also transform functions where, regardingS2, one or more of the
functions,f1; :::; fn, in the body ofS2 is an instance ofS1. This increases the performance of thePTSsince
the scope of transformable functions is not soley those that pertainto S1 or S2, but in addition those that
pertain to some combination ofS1 andS2. A thorough account of example transformations can be found in
[?].

5.3 Example 3: Loop Removal By Transformation of(+1)s to (+2)s Induction

Consider the following variant offactlist:factlist(s(n)) = fact2(s(n)) :: factlist(n); (15)

where the auxiliary functionfact2 is a(+2)s recursive function thus:fact2(0) = s(0);fact2(s(0)) = s(0);fact2(s(s(n))) = s(s(n)) � fact2(n);
and where thePTSconstructs a target tuple of length3, where one component is the subsidiaryfactlist call
and the remaining two components are the2 subsidiary calls for thefact computation.(+2)s induction is best suited to construct the auxiliaryfact2 function sincefact2 is naturally a(+2)s
definition. The schema for(+2)s induction is as follows:` P (0) ` P (s(0)) 8v : pnat: P (v) ` P (s(s(v)))` 8x : pnat: P (x) :
So in order to synthesize a program which computes thefactlist varient (??), we must construct a proof
where in a(+2)s induction is nested within (at the step case of) an outer(+1)s induction. The nested(+2)s
inductive proof is almost identical to the nested(+1)s proof of example 2 (cf. fig. 9(a)). The only difference
is that the recursive argument in the goal conclusion is two, rather than one, applications of the successor
function out of step with the recursion argument in the induction hypothesis. In fig.12 below we show the
corresponding(+2)s induction node:

refinement: (+2)s induction(x0)
induction hypothesis: 9z: fact2(x00) = z
induction conclusion: ` 9z0: fact2(s(s(x00))) = z0� ��
witnessing refinement: 9�intro(s(s(x00))� z)
fertilized conclusion: ` fact2(s(s(x00))) = s(s(x00))� z
Figure 12: Source nested(+2)s induction (forfact2 construction).

To perform the proof tupling transformations on such a nested induction, thePTSneeds to tabulate2 fact2
function calls, along with thefactlist call. That the target tuple includes2 fact2 function calls is determined
by precisely the same reasoning that is used to form a target tuple for theFibonacci example: the body of
the step case definition forfact2 contains a self recursive call tofact2 that is2 applications of the common
generator function, in this cases, out of step with the head of the definition. This is clearly illustratedby
replacingz in thenext conclusionslot, of fig.12, by the hypothesis that it labels thus:` fact2(s(s(x00))) = s(s(x00))� fact2(x):
Hence, the optimization of thefact2 function requires a tuple of two components (i.e.,� = 2), where the
tabulations would correspond tofact2(s(n)) andfact2(n). Sincefact2 appears as the auxiliary function call
of factlist, then the required target tuple contains three components (i.e.,� = 3), and thePTSsequences the
following goal into the target proof:

26

((9u; 9v; 9w: fact2(s(x)) = u ^ fact2(x) = v ^ fctl(x) = w); tuple : hu; v; wi):
Note that, in effect, in performing the above source to target transformation we haveboth:� transformed a source proof with a nested induction to a target proof with a single induction (employed

on a tuple); and� in doing so, transformed the (nested)(+2)s induction into a standard(+1)s stepwise induction.

Hence proof tupling on source proofs that contain a nested induction structure, where either of the induc-
tions is in itself susceptible to optimization through tupling, is tantamount to combining the transformation of
induction schemas with the merging of nested inductions.

6 Merits and Applications of Proof Tupling and Comparisons with
Program Tupling Transformations

In x?? we mentioned that one of the most influential strategies for program transformation is theunfold/fold
technique [?]. This technique is employed within Darlington’s interactiveNLP program transformation system,
and used by Chin to performautomatictupling transformations [?].

In x?? we identified three key steps for transformation using theunfold/foldstrategy. These steps corres-
pond to the most difficult aspects as far asautomationis concerned, and inNLP, and similar systems, require
some form of user guidance:� Lemma generation: the introduction of an appropriate function definition in terms of the source defin-

ition. The provision of such explicit definitions, where the targetis defined in terms of the source,
generally constitute the well knowneurekastep in unfold/fold transformations, and are notoriously
difficult to automate [?]. The unfold/fold strategy is motivated by the observation that significant op-
timization of a (declarative) program generally implies the use of a new recursion schema. This process
usually depends on theuserproviding the requisite explicit target definition. The strategy then proceeds
to evaluate the recursive branches of the target definition, primarily through unfolding with the source
definitions, until a fold (match) can be found with the explicit definition.� Folding: when to fold the eureka definition with the source definition. This requires using matching as
a means of testing for the successful folding of the target function definition with the source definition.� Application of laws: for example, when to apply associativity.

In subsequent sections we discuss the differences, and advantages, that thePTSapproach to optimization
has over unfold/fold style program development.

6.1 The Reduced Workload Regarding Dependency Analyses

To understand how the proof tupling approach circumvents the need to produce and analyze dependency graphs
we shall briefly describe an existing program transformation system that employs the tupling technique.

Recently, Chin, a student of Darlington’s, has described several methodsfor automatic program trans-
formation within theHOPE+ system [?]. By an analysis ofsymbolic dependency graphs, based on [?], Chin
is able to describe an automatic procedure for finding a pair ofmatching tuplesby the unfolding of selected
calls to the source program, and then using matching as a means of testing for successful folding. This is a
significant achievement and represents the first successfull attempt to automate the notoriously difficult un-
fold/fold eureka steps. Chin’s automatic tupling method is best described by example (we shall remain with
the Fibonacci function).

The initial portion of the symbolicDG for Fibonacci is shown below in fig.13. As with the symbolicDG

for the factlist function, fig.9, redundancy is exhibited by more than one arrow directed at any particular node.

27

�� �
fib(n)��	 @@@RQQs�� �
fib(n� 1) �� �
fib(n� 2)?�� �
fib(n� 3) ���+ ?�� �
fib(n� 4)
Figure 13: The symbolicDG for fib(n)

The main idea taken from [?] is that:

An appropriate eureka tuple can be found if and only if there exists aprogressive sequenceof cuts
thatmatchone another, in the function’s dependency graph.

A cut is defined as a subset of nodes across a dependency graph that when removed will divide the graph
into two disconnected halfs. Aprogressive sequenceof cuts is a sequence of cuts ordered according to size
(i.e., according to the number of nodes in the subset). A pair of cutsmatchif a consistent substitution can be
obtained when each function call of the first cut is matched with the corresponding function call of the second
cut.23

The finding of an appropriateeureka tupledepends on the notion of a continuous sequence of cuts. This is
defined in [?] as follows:

“A continuoussequence of cuts,cut1; cut2; :::; cutN , is a successive series of cuts which starts
with the root node as its first cut. This sequence successively obtains the next cut by giving up a
subset of nodes... from thetopmost setof the current cut in order to acquire the children for the
next cut.”

The topmost set of a cut is defined as a set of nodes whose ancestors are not present in the cut itself.
Returning to the example and starting with the main function call, Chin’s analysis replacesfib(n), the first

cut, with its two subsidiary calls,hfib(n� 1); fib(n� 2)i. This gives us the second cut. The analysis then
proceeds by unfolding only that call in a cut which isnot a subsidiary call of the other call, i.e., the topmost
item. So, since the function callfib(n � 2) is a subsidiary call offib(n � 1), only fib(n � 1) is unfolded.
This gives the third cut,hfib(n� 2); fib(n � 3)i. The third cut matches the second cut, thus providing the
analysis with a matching tuple.

Chin’s process is essentially the same as that described for Darlington’sunfold/foldtupling technique: the
unfold/fold steps required for the tupling transformation are achieved by locating a pair of matching tuples
by the unfolding of appropriately selected calls and then using matching as ameans of testing for successful
folding.

The main difference between Chin’s and Darlington’s systems is that the use of such selection ordering
allows for a considerable degree of automation, since once this analysissucceeds the main task of the tupling
transformation – finding a successful fold – will have been achieved.

6.1.1 Comparison with Proof Tupling

Chin’s DG analysis tells us two things:

1. firstly, the number, �, of subsidiary calls of the main function calls required to form the tuple (i.e., the
determination of the tuple size); and

2. secondly,whichsubsidiary calls are to be tabulated.

An advantage ofproof tuplingis thatbothof these things, required for the tuple formation, are contained in the
source proof. This means that they can readily be abstracted from the proofand exploited for the construction
of the target tuplewithoutany additional dependency graph construction and analysis procedures. Thiswill23These terms are formally defined in [?].

28

always be the case for tupling transformations since the eliminationsperformed on the induction hypothesis
in the source will always provide an accurate measure of what recursive calls are (a) required to compute the
source course of values procedure, and (b) require tabulation in order to compute the target stepwise procedure.
Returning to the Fibonacci example, the required information is read directly from the witness,9�intro(y1 + y2);
of the source induction step. InOYSTERnotation this witness is specified in terms of the eliminations on the
induction hypothesisIH: (intro(IH of p(x) + IH of p(p(x))));
This tells us precisely the number of,2, and the identity of,p(x) andp(p(x)) the eliminations onIH performed
in the source induction in order to introduce recursion in the sourcefunction. In the general case, the dominant
function of the first tuple component will always be that employed at theinduction step of the source (where the
number of tuple elements corresponds to the number of source proof eliminations on the induction hypothesis).

Note also that no extensive search is involved in the analysis of the source proof in order to determine�
and to witness a value for the tuple components. The portions of thesource proof that are accessed for the
analysis correspond to specific semantic units: the specification, the application of induction, the induction
base and step cases, the unfolding step, and the witnessing rule. These areclearly represented as distinct
sub-lists within the rule-tree abstractions (x??) and thePTSknows precisely where to look in order to access
any of the aforementioned units. For example, the induction step will always correspond to that rule applied
at the deepest node of the decision tree employed to separate the various cases.So, within the rule-tree, the
induction step occurs as the last case of a nested case analysis.

So, unlike program tupling, thePTS proof tupling optimizations do not require the construction of a (po-
tentially infinite) dependency graph, nor does it require any procedures for searching the dependency graph in
order to find amatching tuple.

6.1.2 Tuples As Conjunctions

Within the object-levelOYSTER proofs the tuples are represented simply as conjunctions (hence a tuplehA;B;Ci is represented asA ^ B ^ C). Hence, we bypass the need to invent new data-types for tuples
solely for the purposes of transformation. This means we avoid the charge that (program) tupling techniques
rely heavily on the somewhat ad hoc requirement to introduce tuples, memo tables or similar objects, and
that we do not require arbitrarily complex tabulating constructs. Forexample, program transformations within
Darlington’sFPEenvironment automate, to some extent, the construction of the eureka tuple by incorporating
a large table and managing system [?]. However, this causes considerable inefficiency since it has the effect of
carrying round potentially huge open-ended tuple structures whose length is tailored to the functions needs.

6.2 Further Advantages Regarding Search, Control and Correctness

The fact that thePTStransformation tactics are (partially) specified at the meta-level, in terms of syntactic pre-
and post-conditions, reduces the amount of search that would be involvedif the target proof were constructed
at the object-level. In other words, since we can regard the rule-trees, together with pre- and post-conditions,
as proof plans then a general advantage of performingtactic transformations– i.e., meta-level transformations
on the object-level tactics – is that the transformation space is equivalentto a planning search space which is
far smaller than the object-level search space.

As well as the way that dependencies are sought during tupling transformations, further factors which
play a beneficial role regarding search and control include the means by which the target recursive step is
completed, and the form of equation development used all have a significanteffect on the amount of search
involved during the transformation.

We shall consider in turn how thePTSreduces the search involved with each of these factors in comparison
with previous program tupling systems (notably [?, ?]

6.2.1 Derivational Form: Folding Vs. Fertilization

Darlington’sNLP, and Chin’sHOPE+, tuple analysis is motivated by the desire to find a matching tuple which
can be used forfolding. This can involve extensive search. To illustrate this property, we display, in fig.14, the
unfold/fold derivation of the efficient Fibonacci procedure:

29

� Equational def. offib:(1) fib(0) = 1 Given(2) fib(1) = 1 Given(3) fib(x+ 2) = fib(x+ 1) + fib(x) Given� Derivation of auxilliary tuple functiong:(4) g(x) = hfib(x+ 1); fib(x)i Eureka — Definition(5) g(0) = hfib(1); fib(0)i Instantiation(6) = h1; 1i Unfolding with 1 and 2(7) g(x+ 1) = hfib(x+ 2); fib(x+ 1)i Instantiate 4(8) = hfib(x+ 1) + fib(x); fib(x+ 1)i Unfold with 3(9) = hu+ v; ui where hu; vi == hfib(x+ 1); fib(x)i Abstract(10) = hu+ v; ui where hu; vi == g(x) Fold with 4� Derivation offib in terms ofg:(11) fib(x+ 2) = u+ v where hu; vi == hfib(x+ 1); fib(x)i Abstract 3(12) = u+ v where hu; vi == g(x) Fold with 4

Figure 14: Unfold/Fold development of efficient Fibonacci

The development of the target terminating branch is straightforward. Regarding the recursive branch,
unfolding must be performed in order to obtain the explicit definition, (8), from the eureka definition (4). A
fold step is now required so as to introduce a recursion into (8). The search for a fold involves observing that
all the components necessary to match the above equation are present within the initial definition, (4), for the
auxiliary functiong. Hence (8) is re-written using unfolding andwhere abstraction, to (10) which easily folds
with the eureka definition (4) yielding the desired optimized recursivedefinition (10).24

The derivation of fig.14 illustrates how, within unfold/fold style systems, the head of the developing equa-
tions remains constant, and it is only the body that is modified, i.e., re-write rules are only applied to the left
hand side of equations. This form of equation development, together with the formal definition of folding [?]:

If E = E0 andF = F 0 are equations and there is some occurrence inF 0 of an instance ofE0,
replace it by the corresponding instance ofE obtainingF 00; then add the equationF = F 00,

means that, throughout the equation development, the same equation head is retained. Hence folding with the
source equations is a necessary requirement at some point in order to introduce a recursion into the tail of the
developing equations. There is not, however, any procedure for knowing when to halt unfolding and introduce
a fold (nor when to perform aforced fold). Thus the folding requirement presents control problems, and is
one primary reason why user guidance is usually required in such systems in order to avoid flawed attempts
at folding. The other reason being the provision of the eureka step corresponding to the generation of the
auxiliary tuple. Note that, regarding fig.14, the control problem is, in fact, doubled since following the first
fold, (10), further (forced) folding is required, at steps (11) and (12), to expressfib in terms ofg.

An advantage of thePTS transformations is that they inherit the properties of theorem proving: inductive
proofs are driven by the heuristic requirement to find a fertilization:the proof construction is developed in a
bi-directional manner since both sides of the induction conclusion can bere-written in the search for matching
(unifiable) terms. The simplest way to illustrate this is to employ meta-variables (in upper-case) for those
“unknown” portions of the proof (corresponding to the initial eureka step and the witnessing steps). We also
adopt the standard conventional notation for tuples, rather than useOYSTER’s conjunctive representation, and
use awhere construct to refer to the induction hypothesis. These changes do not alterthe bi-directional form
of the proof development, but rather makes it easier to see and compare with the unfold/fold style derivation
of fig.14. A characterizing feature of tupling proofs is that the recursive definition will consist of some, as
of yet unknown, function(s) applied to the tuple components of the induction hypothesis [?]. Hence we shall
use the meta-variables to represent such functions in our comparative illustration, fig.15 below, of the target
Fibonacci proof (we show only the induction step case of the auxiliary proof, corresponding to steps (4) to
(14) of fig.14).24Abstraction consists of replacing parts of an expression, in the body of an equation, by variables, and then defining these variables in
awhereclause. The combination of unfolding and abstraction is sometimes referred to asforcedfolding.

30

g(s(n)) = hM1(u; v);M2(u; v)i; where hu; vi = g(n);
unfold g unfold g;hfib(s(s(n))); fib(s(n))i = hM1(u; v);M2(u; v)i; where hu; vi = hfib(s(n)); fib(n)i;

unfold fibh(fib(s(n)) + fib(n)); fib(s(n))i = hM1(u; v);M2(u; v)i; where hu; vi = hfib(s(n)); fib(n)i;
fertilize (u=fib(s(n)); v=fib(n))hu+ v; ui = hM1(u; v);M2(u; v)i;

instantiation M1 = �u; v:u + v andM2 = �u; v : u:
Figure 15: Parallel development of induction conclusion

The important feature to note is the “parallel” development of both head and body towards a unifiable pattern,
such that induction terms may be eliminated from the conclusion. This means that since we can modify both
sides of the equation we can avoid the decision(s) as to when, and with what, to fold. That is, we can limit
the process to the iterative application of unfolding with equational definitions. This significantly reduces the
search space, and on the available evidence is much easier to control (it is precisely what is formally captured
by the rippling technique,x??andx??).

6.2.2 Law Application

A notorious problem with unfold/fold is that there is no principled means of applying semantic laws. That
many unfold/fold transformations may require the numerous and somewhat arbitrary application of laws, for
which any overall strategy is difficult to characterize, means that user-interaction is usually required. Thus
an advantage of operating within a proof theoretic framework is the capability to automatically form and
apply rewrites from semantic laws. By semantic laws we usually mean lemmas such as theassociativity of
append, rather than the lemmas used for the purposes of verification in our examples. Several examples of
such principled law application can be found in [?].

6.2.3 Correctness

More recent incarnations of the unfold/fold strategy have been shown to be correctness guaranteed for specified
classes of functions (cf. [?] and [?]). However, each extension to the class of functions requires a corresponding
extension to the correctness procedures, and this leads to a considerable work overhead (proportional to the
range of transformations – orgenerality– of the system).

This is not a problem regarding thePTS, and any future extensions thereof: synthesis proofs must contain a
verification proof that the extract term computes the task described by the specification. Thus, extract programs
are correct with respect to the complete specifications of the synthesis proofs from which they are extracted.
Hence the correctness ofall transformations is ensured without having to additionally provide, or extend, any
correctness criteria, or proof, each time we extend the range of programs towhich the transformations are
applicable.

Stricktly speaking, we have only addressedpartial correctness. Total correctness involves providing ter-
mination conditions in addition to ensuring that the output program computes the desired function. As stated in
the previous section, a problem with controlling unfold/fold transformations is knowing when to stop unfold-
ing and introduce the crucial fold step into the derivation. This can lead to an infinite regression of unfolding
and lemma applications. In the case of proof transformation, termination simply corresponds to the comple-
tion of the target proof: when the rewriting of the induction conclusion has been successfully driven toward
fertilization with the hypothesis. Unlike folding, fertilizationis well-founded.

6.3 Generality: Exploiting Proof Plans

In x?? we remarked that since the majority inductive proofs pertain to the same(formal) pattern that thePTS

design need not be altered for disparate inductive proof transformations (thus the majority of proofs employing
course of values induction can be transformed into an equivalent, but moreefficient, stepwise inductive proof).
That there is a high degree of similarity in the overall shape of the inductiveproof trees(and in the strategy

31

employed in inductive proofs) requires some explanation if our claimsconcerning the generality of thePTS

design are to be justified. This will also be relevant to the subsequentsection on future research.
Inductive proofs, including the source and target Fibonacci proofs, invariably involve a process whereby

formulae are unfolded by replacing terms by suitably instantiated definitions. The proliferation of this process
such that recursive terms are gradually removed from the recursive branches –by the repeated unpacking of
induction terms – is part of the (heuristic) process known asrippling. A simple examples of this would be the
application of the recursive branch of theappend definition:append(e :: l1; l2)) e :: append(l1; l2)
The termsappend(l1; l2) would unify (fertilize) with the respective induction hypothesis. Thus the goal of
rippling is precisely that of the induction step: to reduce the induction step case to terms which can be fertilized
with those in the induction hypothesis, or those in subsequent derivations of the induction hypothesis.�
 �	8x input9y output spec(input,output)?8�intro (specific to synthesis?

induction�������9 XXXXXXXz��	 @@R additional cases (if any)additional cases (if any)� �� �� �� �� ��� � �� �� �� �� � ���
 �	BASE CASE?9�intro?
symbolic eval?

(nested) induction?���
true

�
 �	STEP CASE?9�intro (specific to synthesis?
(iterative unfolding)
rippling?
fertilization?
symbolic eval?

(nested) induction?���
true

Figure 16: Proof plan for induction strategy

This common pattern to inductive theorem proving allows for the construction of a general inductionproof
plan, specified at the meta-level, which can then be used for guiding a whole gamutof object-level proofs. In
fig.16 we have represented the key decisions and choice commitments made during a typical inductive proof.
These will involve applying one of the numerousOYSTER induction rules and then witnessing the existential
quantifier, using9�intro, at each of the induction cases (where, as indicated in fig.16, the application oftheintro rules are specific to inductivesynthesisproofs). We have indicated, within dashed boxes, that, following
the witnessing steps of the (outermost) induction, there may occur a furthernestedinduction. These will take
the same format as the outermost induction. Finally, we must verify that the instantiated schema will yield a
recursive schema that will compute the input-output relation specified in the main conjecture.

The fact that inductive proofs invariably pertain to this common form increases our expectations that there
will be no need to build into thePTS ad hoc and diverse mechanisms for dealing with substantially different
patterns of proof.

In x??we briefly discuss directly exploiting proof plans for the purposesof proof transformation.

6.4 Applications and Future Research

In this section we consider the applications (potential and real), and future avenues of research, regarding proof
transformations.

6.4.1 Optimizing Recursion

The vast majority of commercial software involves the computation of recursive functions, and to prove theor-
ems about such functions it is necessary to use mathematical induction. To manipulate such proofs, whether or

32

not the aim is to optimize associated program constructs, requires the machinery for correct and well-founded
induction transformations. This research, albeit embryonic, makes a firstinroad into this requirement: the
more that theorem proving, and in particular inductive theorem proving, forms the basis of automatic program-
ming then the more that proof transformation becomes a viable means for providing automatic, correctness
guaranteed optimization.

Anticipated future applications of this research include the optimization of electronic circuit design and
the optimization of computer configurations. This is because both thesedesign problems can be formally cast
as processes of inference [?, ?]. Thus, we can apply the same automated theorem proving techniques that we
use for high quality software production.

6.4.2 Software Quality: Efficiency and Reliability

As stated at the outset,x??, the research described herein addresses both the reliability and efficiency, as well
as the automatability, criteria of developing high quality software using formal methods. Formal methods
allows us to employ the better understood techniques of theorem provingto guarantee these criteria.

In this paper we used simple examples of linearization and the removal of nested recursion to illustrate the
methodology. However, more complex optimizations are possible byusing different (non-primitive) induc-
tions to construct the target proof: in [?] we explain how linear procedures can be optimized to logarithmic
procedures through proof transformation by using the method ofmatrix multiplicationand replacing thestep-
wiseinduction employed in the source proof by a targetdivide and conquerinduction.

Future anticipated extensions include the systemization of more esoteric induction transformations in-
volving schemas such as induction based on the construction of numbers as products of primes [?].

6.4.3 An Aid for Synthesis

On empirical evidence alone, there appears to be an inverse relation between, on the one hand, the efficiency
of the recursive process generated by an extract, and on the other, the complexity of the proof from which it
was extracted.25 This evidence has been gleaned from a study of synthesizing several sorting algorithms in
the NUPRL system where the extracts corresponding to various synthesized sorting algorithms are compared
with the syntactic density of the associated proofs [?]. Further evidence is provided from research regard-
ing pruning inductive proof trees in order to adapt the associated extractprogram [?, ?]. So, for example,
transformations which increase the syntactic complexity of a source course of values proof, by performing
proof transformations that cut in (or sequence) an additional sub-proof, will decrease the complexity of the
recursive behaviour of the extract programs (from exponential to linear). One practical contribution of a proof
transformation system is, therefore, that it enables the synthesizer (human or mechanical) to construct short,
elegant proofs, without clouding the design process with efficiency issues, and then to transform them into
opaque proofs that yield efficient programs.

The inverse complexity relation is something which merits further attention but for which, as of yet, there
is only empirical justification and a quasi-theoretical foundation [?]. Intuitively speaking, however, the extra
complexity associated with a target proof can be thought of as additional information required to compute the
specified input/output relationefficientlyas opposed to simply ensuring that the specified input/output relation
is computed.

6.4.4 Exploiting Proof Planning

The automaticCLAM proof-planning systemformally encapsulates, in a meta-logic, the common shape of
inductive proofs discussed inx??. The system automatically constructs meta-levelproof plan represent-
ations from proof specifications [?]. These proof plans can then be used to guide the object level syn-
thesis/verification, with the advantage that the planning search space is considerably smaller than the object-
level OYSTERsearch space. The proof plans can then be used, as a general strategy, to guide the refinement of
specific specifications [?, ?]. Of particular significance is the systemization of the rippling re-writing process:
definitional equations are converted into appropriate re-write rules through a special annotation process. The
annotations mark the differences between the two sides of the equation. Theannotated rewrite rule so formed
can then be matched against proof (sub)goals and the (sub)goal rewritten accordingly.2625This is despite the fact that human theorem provers are usually trained to find short, elegant proofs rather than long opaque ones.26This very brief outline is only barely representative of thecurrent state of rippling, and of its use in automatic proof plan formation.
For full details the reader should consult [?].

33

Anticipated future research includes extending thePTSto be fully compatible with theCLAM system. This
means that any source to target proof transformations can exploit the proof planning facilities thus leading to
greater generality and automatability of the class of optimizations amenable to the system. At present thePTS

must constantly access the source proof in order to complete the target proof. The adapted version will need
only to access the source to obtain information such as tuple identification and induction witnesses. The target
proof can then be completed using the automatic reasoning systemized in theCLAM proof-planning system.

7 Summary

We described the fundamentals of a working synthesis proof transformation system. The novel aspect of
this research is that program optimization is achieved through the transformation ofsynthesisproofs. In
particular, recursive programs are optimized by transforming inductive synthesis proofs. Techniques from
the field of program transformation may be used to transform the computational content of a proof. An
important technique for transforming exponential behaviour into linear behaviour istupling. ThePTS, unlike
other existing transformation systems, performs this technique on(synthesis) proofs. The system satisfies the
desirable properties for a transformation system of correctness, generality, automatability and the means to
guide search through the transformation space.

The benefits of the proof transformation approach include the fact that extra information contained in the
proofs, but not programs, can be exploited to automatically guide thetransformations. In particular: proofs
contain a verification component, and; dependency information abstracted from the source proof guides the
transformations without the need for any extensive dependency graph analysis.

The source and target programs of traditional program transformation systems do not have a formal spe-
cification present, nor, as mentioned above, a verification component. This means there is no immediate means
of checking that the target program meets the desired operational criteria. Regarding proof transformation, all
transformed programs are correct with respect to their specifications, and we ensure that the target computes
the same specified input/output relation as the source (only more efficiently).

With the more traditional program development systems which employ the unfold/fold technique, it is the
automationof the lemma generating procedures and,in particular, the subsequent folding with the lemmas,
that have proved, to date, difficult to automate. We described how, withinthe context of proof transformation,
target tuple definitions can be automatically generated by analysing source definitions. The problem offolding
has been circumvented within the proof transformations since, due to thesequent calculus notation and the
manner in which proofs are refined, we need use only unfolding: recursiveterms, corresponding to source
proof induction terms, are eliminated from the target recursive branches,corresponding to the target proof
induction branches, by unfolding until fertilization applies.

The source and target programs of traditional program transformation systems do not have a formal spe-
cification present. This means there is no immediate means of checking that the target program meets the
desired operational criteria. Regarding proof transformation, all transformed programs are correct with re-
spect to their specifications, and we ensure that the target computes the same specified input/output relation as
the source (only more efficiently).

An important commitment regarding the recursive behaviour of an extract program is the choice of induc-
tion schemata (and how the cases are satisfied). By exploiting the common structure ofOYSTERinductive syn-
thesis proofs we can transform the induction schema employed in a proofyielding an inefficient program into
a schema such that the new target proof yields a more efficient program. Transformation is achieved through
the application ofproof transformation tacticsto internal representations of theOYSTERproofs. Since we can
provide a general proof plan for inductive (synthesis) proofs, thenwe can build general transformation tactics
for optimizing the recursive programs that they synthesize.

References
[1] David A. Basin. Extracting circuits from constructive proofs. Research Paper 533, Dept. of Artificial Intelligence, Edinburgh, 1991.

Also appeared in Proceedings of the IFIP-IEEE International Workshop on Formal Methods in VLSI Design, Miami USA, 1991.

[2] B. Bjerner. Time Complexity of Programs in Type Theory. PhD thesis, University of Göteborg, 1989.

[3] R.S. Boyer and J.S. Moore.A Computational Logic. Academic Press, 1979. ACM monograph series.

[4] R.S. Boyer and J.S. Moore.A Computational Logic Handbook. Academic Press, 1988. Perspectives in Computing, Vol 23.

[5] A. Bundy, A. Stevens, F. van Harmelen, A. Ireland, and A. Smaill. Rippling: A heuristic for guiding inductive proofs.Artificial
Intelligence, 62:185–253, 1993. Also available from Edinburgh as DAI Research Paper No. 567.

34

[6] A. Bundy, F. van Harmelen, J. Hesketh, and A. Smaill. Experiments with proof plans for induction.Journal of Automated Reasoning,
7:303–324, 1991. Earlier version available from Edinburghas DAI Research Paper No 413.

[7] A. Bundy, F. van Harmelen, J. Hesketh, A. Smaill, and A. Stevens. A rational reconstruction and extension of recursion analysis.
In N.S. Sridharan, editor,Proceedings of the Eleventh International Joint Conference on Artificial Intelligence, pages 359–365.
Morgan Kaufmann, 1989. Also available from Edinburgh as DAIResearch Paper 419.

[8] A. Bundy, F. van Harmelen, C. Horn, and A. Smaill. The Oyster-Clam system. In M.E. Stickel, editor,10th International Conference
on Automated Deduction, pages 647–648. Springer-Verlag, 1990. Lecture Notes in Artificial Intelligence No. 449. Also available
from Edinburgh as DAI Research Paper 507.

[9] R.M. Burstall and J. Darlington. A transformation system for developing recursive programs.Journal of the Association for
Computing Machinery, 24(1):44–67, 1977.

[10] W.N. Chin. Automatic Methods for Program Transformation. PhD thesis, Imperial College, 1990.

[11] N. H. Cohen. Eliminating redundant recursive calls.ACM Transactions on Database Systems, 5 No. 3:265–299, 1983.

[12] H.B. Curry and R. Feys.Combinatory Logic. North-Holland, 1958.

[13] J. Darlington. A Semantic Approach to Automatic Program Improvement. PhD thesis, Dept. of Artificial Intelligence, Edinburgh,
1972.

[14] J. Darlington. An experimental program transformation and synthesis system.Artificial Intelligence, 16(3):1–46, August 1981.

[15] J. Darlington. A functional programming environment supporting execution, partial evaluation and transformation. InPARLE 1989,
pages 286–305, Eindhoven, Netherlands, 1989.

[16] W.A. Howard. The formulae-as-types notion of construction. In J.P. Seldin and J.R. Hindley, editors,To H.B. Curry; Essays on
Combinatory Logic, Lambda Calculus and Formalism, pages 479–490. Academic Press, 1980.

[17] Helen Lowe. The Use of Theorem Proving Techniques in Expert Systems for Configuration. In J.-C. Rault, editor,Proceedings
of the Eleventh International Workshop on Expert Systems and their Applications, Avignon. EC2, May 1991. Also available from
Edinburgh as DAI Research Paper 536.

[18] P. Madden. A NuPRL synthesis of several sorting algorithms: Towards an automatic program transformation system. Research
Paper 356, Dept. of Artificial Intelligence, Edinburgh, 1987.

[19] P. Madden. The specialization and transformation of constructive existence proofs. In N.S. Sridharan, editor,Proceedings of the
Eleventh International Joint Conference on Artificial Intelligence. Morgan Kaufmann, 1989. Also available as DAI Research Paper
No. 416, Dept. of Artificial Intelligence, Edinburgh.

[20] P. Madden.Automated Program Transformation Through Proof Transformation. PhD thesis, University of Edinburgh, 1991.

[21] P. Madden. Formal methods for automated program improvement. In B. Nebel and L. Dreschler-Fischer, editors,KI-94: Advances in
Artificial Intelligence. Proceedings of 18th German AnnualConference on Artificail Intelligence, Saarbrueken, Germany, September
1994. Springer-Verlag. A longer version is available from the Max-Planck-Institut as MPI-I-94-38.

[22] P. Madden. Linear to logarithmic optimization via proof transformation. Research paper MPI-I-94-240, Max-Planck-Institute für
Informatik, 1994.

[23] Z. Manna and R. Waldinger. A deductive approach to program synthesis.ACM Transactions on Programming Languages and
Systems, 2(1):90–121, 1980.

[24] Per Martin-Löf. Constructive mathematics and computer programming. In6th International Congress for Logic, Methodology and
Philosophy of Science, pages 153–175, Hanover, August 1979. Published by North Holland, Amsterdam. 1982.

[25] D. Michie. Memo functions and machine learning.Nature, 218:19–22, 1968.

[26] A. Pettorossi. A powerfull strategy for deriving programs by transformation. InACM Lisp and Functional Programming Conference,
pages 405–426, 1984.

[27] A. Stevens. A rational reconstruction of Boyer and Moore’s technique for constructing induction formulas. In Y. Kodratoff, editor,
The Proceedings of ECAI-88, pages 565–570. European Conference on Artificial Intelligence, 1988. Also available from Edinburgh
as DAI Research Paper No. 360.

[28] H. Tamaki and T. Sato. A transformation system for logicprograms that preserves equivalence. Technical Report TR-018, ICOT,
1984.

[29] H. Tamaki and T.Sato. A transformation system for logicprograms which preserves equivalence. Technical Report ICOT Research
Center Technical Report, ICOT, 1983.

[30] S. S. Wainer. Logical and recursive complexity. Technical Report 31/90 (Preprint Series), Center for TheoreticalComputer Science,
University of Leeds, 1990.

35

