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Abstract

The research described in this paper involved developigstormation techniques which increase the
efficiency of the noriginal program, theource by transforming its synthesis proof into one, taeget,
which yields a computationally more efficient algorithm. é&scribe a working proof transformation sys-
tem which, by exploiting the duality between mathematicaluiction and recursion, employs the novel
strategy of optimizing recursive programs by transformimductive proofs. We compare and contrast this
approach with the more traditional approaches to programsformation, and highlight the benefits of proof
transformation with regards to search, correctness, aatiaility and generality.

1 Introduction

As computer programs play an increasingly important role in all our lBgegre must depend more and more
on techniques, preferably automatic, for ensuring the high quaditjciencyand reliability) of computer
programs. Byefficientwe mean that a program is designed to compute a task with minimum overhgad an
with maximum space and time efficiency. Bsliable we mean that a program is ensured, or guaranteed in
some sense, to compute the desired, or specified, task.

The most promising technique being developed for the automatic@@veint of high quality software
areformal methodswhich are used to provide programs with, or prove that programs, lzartain properties:

a program may be proved terminate two programs may be proved equivalent; an inefficient program may
be transformednto an equivalent efficient program; a program maybefiedto satisfy some specification
(i.e. a program is proved to compute the specified function/relation) agorogram may beynthesizethat
satisfies some specification.

The research described herein addresses both the reliability and efficiency] as e automatability,
aspects of developing high quality software using formal methodsd&Yeribe novel theorem proving tech-
nigques for automatic program optimization. The target program is mf&ignt improvement on the source
(the efficiency criteria), and is guaranteed to satisfy the desired progreaifisption (the reliability criteria).

A further motivation behind exploiting proofs for the purposégmgram transformation is that proofs
will contain more information than the programs which they specifggPams need contain no more inform-
ation than that required for simple execution. Proofs, on the other,lrapdesent grogram design record
because they encapsulate the reasoning behind the program constructi@king explicit the procedural
commitments and decisions made by the synthesizer. This non-algaritifiormation, which includes the
relations between facts involved in the computation of the synthesizeplgmg is ideal for controlling the
transformations.

*This research was supported by SERC grant GR/F/71799, al€ Sflentship and an SERC Postdoctoral Fellowship to the firs
author, and an SERC Senior Fellowship to the second autheratithors would like to thank the many useful suggestiorderbg two
anonymous JAR referees. An earlier, and much shorter,orersfithis paper appears in the [25].



Further motivations include the advantages of proof transformatiomcerning search, control and cor-
rectness criteria, over the more traditional styles of program developridmaddress these in detail §@2.
Further applications (potential and real) of this research are discus§@d.in

1.1 Contents

In §?? we provide a background to proof transformation by discussingitiaity between proofs and pro-
grams. In§?? we describe properties of tr@ySTER system, and of (synthesis) proof refinement in general.
The duality between mathematical induction and recursion, in a constrsetitieg, is discussed §¥?.

In §?? we provide an overview of the central concepts pertaining to, and theegirep of, therTs §?7?
provides a high-level view of theTs design;§?? introduces one of our running examples, and illustrates
how specific recursion schemas correlate with the induction schemas usgdtfuess; ing?? we introduce
thetupling technique for removing redundant computation from recursive procedif?@serves as a gentle
introduction to program through proof transformation, and enables¢ader to maintain a high-level picture
when we come to the more detailed low-level expositions.

In §?? we provide details concerning: the motivations for proof transttiom; the abstraction of in-
formation from proofs for the purpose of optimization; how #1es constructs the synthesis and verification
components of an optimized proof; and the adaptation of the tupling itpeho the proofs as programs
paradigm.

In §??we explain, through detailed examples, the methodology aftises ??illustrates linearizing expo-
nential procedures through proof transformatig?? illustrates the removal of nested recursion schemas (i.e.
loop removal); and?? briefly describes a more complex example. We also discuss the overalirparfoe
of thepTs §??and§??.

In §??we compare the properties of th&swith existing program transformation techniques and systems.
We highlight the advantages of the former. In particular we compare quoaph to theinfold/foldtechnique
and the use oflependency grapanalysis fortupling program transformationsiVe also discuss applications
of the research, and some anticipated future directions for extendimy ®ystem.

Finally, in §??, we provide a concluding summary.

2 Background: The Duality Between Programs and Proofs

Constructive logic allows us to correlate computation with logicri@nce. This is because proofs of propos-
itions in such a logic require us to construct objects, such as furscsiod sets, in a similar way that programs
require that actual objects are constructed in the course of computingedom@' This duality is accounted

for by the Curry-Howard isomorphismvhich draws a duality between the inference rules and the functional
terms of the\-calculus [?, 7.

Such considerations allow us to correlate each proof of a proposititnargpecific\-term, A-terms with
programs, and the proposition with a specification of the programceéldiiferent constructive proofs of the
same proposition correspond to different ways of computing a specdgram specification. The reasoning
for this can be set out as follows:

I Thus we cannot, for example, compute (or constructivelygythat there are an infinity of prime numbers by assumingtmwerse
and deriving a contradiction, rather we must produce a @mogthat computes them (or a proof that we can always consnather
prime number greater than the ones known so far).



. proofs of propositions correspond to terms of the appatetype such that,
. the propositions are identified with the typetléir proofs;

. proofs are closely correlated with the terms of Mealculus;

so by 2 and 3: propositions are identified with the type efXttierms, and;
A-terms can be equated with functional programs;

. therefore, by 4 and 5, the propositions can be viewesgt@esof programs;

N o oA WwN R

. in other words, the propositions of thecalculus can be correlated with descriptions (specificet of
programs which specifwhattask is computed by the program, and;

8. the proofs of the propositions can be correlated with @og which determinbow the task is com-
puted;

9. hence, different proofs of the same proposition can beetaded with different programs for computing
the task specified by that proposition.

Thus by controlling the form of the proof we can control the efficiemdth which the constructed program
computes the specified goal. Here in lies the key to transforming ptbhafgield inefficient programs into
proofs that yield efficient programs.

A program specification is represented, schematically, as

F Vinputs, Joutput. spec(input, output) (1)

Existential proofs of such specifications must establish (construgliielv, for any input vector, an output
can be constructed that satisfies the specificatidinus any synthesized program is guaranteed correct with
respect to the specification. Furthermore, by finding a constructivd pf@¢@?) we canextractan algorithm,

alg such that,

F Vinput. spec(inputs, alg(input))

alg is known as thextract term(or extract program of the constructive proof.
So, for example, suppose we wish to compute a value for the integdolthe basé of our input, then
from a proof of the following specificatioh:

F V input :integer, 3 output :integer. ( 2°“P¥ <input A input < 2°0utPuitl)
we extract an algorithmlg which satisfies the following:
F Y input :integer. ( 20190Pu) < input A input < 20H(input) 1y

and which does the required job. Proving that a given extract algorittes datisfy the above is known as
verification

2.1 TheOYSTERSystem

The oYsTERsystem is an implementation of a constructive type theory which is basédaatin-Lof type
theory, [?]. OYSTERIs written in Quintus Prolog, and run at the Prolog prompt level,tss ¢ontrolled by
using Prolog predicates as commands. Proof tactics can be built as Prologrpsogicorporatin@YSTER
commands (which are simply Prolog predicates). An advantage of usinggPaslthe meta-language for
defining tactics is that the proof mechanisms can exploit the unificatiobhacidtracking properties of Prolog.

The main benefit of using type theory is that, recalling the previousosedt nicely combines typing
properties with the properties of constructivism, such that we can dattelate the propositions of the
calculus with specifications of programs and correlate the proofs of tpopitions with how the specification
is computed.

The main benefit of using a sequent calculus notation, as opposed to thgtafftae numerous natural
deduction systems, is that at any stage (node) during a proof develgmihéime dependencies (assumptions
and hypotheses) required to complete that proof stage are explicitlgmiesswithin ahypothesis list A

2Thus constructive logiexcludespure existence proofs where the existencewfput is proved but not identified.

3Typing is not, of course, restricted to integers. Types caméatural numbers, lists of natural numbers (or integees), strings,
trees and so forth. Throughout the course of this paper wieaften omit typing information so as to make formulae mogadable. In
general, only when it is not obvious, or when it is pertinenttte text, shall we explicitly label the types of objects.



sequent is of the fornfHYPOTHESES + [CONCLUSION, where, in the course of proving the conclusion,
refinements may either act upon the hypotheses (so calledrefinements) or act upon the conclusion (so
calledintro refinements).

A major motivation behind the development of thesTER system is that the language uniformity of the
logic programming environment allows for the constructiomufta-theoremsvhich express more general
principles, concerning the object level theorem proving. This allowsHe construction of programs, in
Prolog, that manipulate proofs inside the system itself. One suwttifin is the construction dgacticswhich
combine the object-level rules of the system in various ways and apgty tb proof (sub)goals. Within the
context of therTs, this allows for the construction of (meta-level) transformationi¢adhat operate upon the
(object level) source proofs to produce target proofs from whicmuipéd programs can be extractéed.

2.1.1 The Nature ofoysTERSynthesis through Proof Refinement

OYSTER proofs arerefinement proofsand are edited usingrafinement editorThe OYSTERproof starts with
the expression to be proved at the root of its proof tree, and corsthetree back towards the leaves: the
inference rules of the logic refinement rules- are applied in reverse to a goal, to reduceteding it to a
set of sub-goals which, in turn, require proving in order to comple¢eoverall proof. Thus, for example, if
the user tellOYSTERto applyV —introduction to a top-level goal statement, the system applies the rule in
reverse— the effect of this is not to introduce, but temovethe topmost connective (since the proof tree is
being developed backwards).

Any proof iscompletevhen the proof tree has been sufficiently developackwardssuch that all leaves
are accounted for —i.e., when every leaf node can be proved without progugirigrther sub-goals. We refer
to such proofs as beirgpal-directed The refinement editor allows proof trees tothaversed and refinement
rules (or combinations thereof called proof tactics) to be applied to chas#sn

The end-nodes, or leaves, of a proof will always correspond either tonatioequalities, well-formedness
goals or the discharge of assumptions (i.e. where each component ofalt@golusion matches with one of
the proof hypotheses).

2.1.2 Program Extraction

TheoysTERextract programs consist afcalculus function terms\(z, f,) wheref is some computed func-
tion andf, the output whery is applied to inputz. Since all type checking (well-foundedness checking) is
done during the proof development then the extract terms need notpartd,contain any typing information.
At any stage during the development of a proof it is possible toraatiwally access the extract term of the
proof constructed so far. Each construct in the extract term corresporadprimof construct. As such, the
extract term reflects the algorithmic ideas behind the proof of the theorem

There is a built-in evaluator for type theoretic terms, which alloassthe direct execution obYSTER
programs. Within type theory, each mathematical sentence, or propositioonsidered as a type, the ele-
ments of which are proofs of that sentencetyfe by definition, is a term which can behabitedby other
terms, or, equivalently, all types can have members. The existence of racteeirm, corresponding to a
particular proposition, is evidence that the proposition’s tygialabited, and this is equivalent to the propos-
ition being constructively proved. All constructs of a completed pthaf have an associated extract term of
computational significance are collectively referred to asthehesis componeat the proof.

However, establishing that all the extract terms assembled from theesiatcomponent of a proof will
indeed constitute a program that computes the specification embodied riootheode of a proof requires
verification the verification componertf a proof is not used in executing the extract term, but ensures that
the extract term satisfies the specification

Ideally, as with conventional computational description, Xhealculus extract terms should only contain
information about the function to be computed (whereas the proofgarikain additional information, such
as verification steps, which is not concerned with simple execution).dctipe, however, it is not so easy to
(automatically) abstract away all the verification information from thieaest.

2.2 The Induction-Recursion Duality

OYSTER provides primitive recursion schemas for the basic types: integatsral numbers and lists. The
recursion schemas enable one to define recursive functions through casseanualljere the cases are de-
termined by the structure of the type; and apply induction as an infereefiegment) rule. to each form of

4The language uniformity property has also led to the devetagt of an automatic proof planning systemam [?] (cf. §27?).



induction employed in the proof there corresponds a dual form of rexuf®]. Such dualities offer the user a
handle on the type, and efficiency, of recursive behaviour exhibitedégtracted algorithm. Thus applying
inductive inference enables the synthesis of the dual recursion in titaeeprogram (we return to this in more
detail in§??.

2.2.1 Recursive Definitions

An important class of recursive definition is that which allows one tem&d (standard stepwise) recursion
over the natural numbers. The tegmnd allows one to construct such definitions. For example, additign,
over the natural numbers is defined as

v +y Y pind(e, y, [~, rec, s(rec)))

which states that if: is 0 thenz + y = y, otherwise if(z — 1) + y = rec thenz + y = s(rec), wheres is the
successor function.

e The first arguments, is the recursion argument.
e The second argument, is the (truth) value if the recursion argumenbis

¢ The third argument~, rec, s(rec)] is a triple and describes how to compute its value if it is of the form
s(z). The expressiomec, denotes the value of the function being defined when appliéad te 1).
The expressior(rec) denotes the value of the function being defined when applied Thusrec and
s(rec) correspond, respectively, to the inductioypothesisind inductiorconclusion®

Similarly, cv_ind, specified thus:
co_ind(z, [y, h, P()))

allows one to refer t@ourse of valuesecursion over the natural numbersnames the induction candidate
(the argument over which the recursion is defined). The second argumeltP(z)], is a triple which
defines thaecursive caséor the function being defined. The first two elements@endh where:y is any
natural numbetless tharthe recursive argument (i.e. < ). Hence, during the course of a progfcan be
instantiated to any desired valless than:. Furthermore, we can, depending on the function being defined,
have multiple values foy (as long as each is less than This is, in effect, how cases can be introduced into a
proof employing course of values inductiaf.(§?? below). h is the value of the function being defined when
applied toy. The third element of the triple?(x), provides thestep casealue for the function in terms of
the first two elements; andh, of the triple. Hence the third elemeiit(x), computes the output value for the
function/program being defined/synthesized. IS@) is a conditional function which branches according to
the value ofy (where the restriction < « holds).

2.2.2 Primitive Schemas

Employing any of the induction schemas in a (synthesis) proof willte the corresponding, dual, re-
cursion schema in the extract algorithm. So, for example, stepwisesienusver the natural numbers is
synthesized by applying stepwise induction, conventionally represémisdwheres is the successor (con-
structor) function):

F P(0) Yy : nat. P(y) F P(s(y))

F Vz : nat. P(x)

This states thaP holds of any natural numbet, iff one can establish thaP holds of0 (the base case), and
that, assumingd® holds of some natural numbgythat P holds ofs(y) (the step case).

Terms of the formu : P should be seen, in constructive terms, as denoting the existence abfopP
along with a corresponding extraction tefifh Depending on contexf? may be a hypothesis or (part of) a
goal conclusion. We refer to terms suchs#g) asinduction termgi.e. those terms consisting of the induction
constructor (or destructor) function applied to the induction vaepblhe proof extract construction resulting
from an application of stepwise induction is thénd construct shown in previously i§??.

Stepwise induction on the naturals, along with stepwise inductiothe integers and on lists, constitute
the primitive induction schemasand are built into theoYSTER system. Employing such induction as an
inference rule will split the proof into the corresponding cases. Eaoh w#shave a corresponding proof

5In general the value of the_ind function ats(i) can be any function of and of the value of the function &t In our example the
value depends only on the recursive value, and so the firstreggt of the triple is the anonymous variable



and extract component. The structure of the program extracted from thplet proof will mirror that
of the (instantiated) dual induction schema. This is a general observatiarach induction schema there
corresponds a dual recursion schema. Hence a reliable heuristic that appigghesis through inductive
theorem proving is that the behaviour of the induction variable kshmirror that of the recursive terms in the
function’s definition.

Standard stepwise induction is sometimes referred te¢ Bisuccesor induction, of+1)s induction for
short. This is to distinguish it from any number @fn)s inductions where: applications of the induction
constructor function are applied, in the conclusion, to the induat@oiable.§?? illustrates a+2)s stepwise
schema.

2.2.3 Non-Primitive Schemas

More sophisticated induction schemas can be established by performimgy lnigler proofs that appeal to
the primitive schemas in order to justify the sophisticated scheme. xAmple of a non-primitive scheme
is course of values inductidh.As with the primitive schemas, course of values recursion over the alatur
numbers is synthesized by applying course of values induction. Thiserie by employing the following
general induction

Vz :nat, Yy : nat. ((y < z) = P(y)) F P(z)
F Va : nat. P(x) '

This states thaP holds of any natural number, iff one can establish thatl holds of any natural number,
assuming thaP holds of any natural numbaey, less tharx. If two, or more, different values af are appealed
to then the induction becomes course of values.

Employing course of values induction as an inference rule does not autaityasplit the proof into a
separate base and step case. Rather, the resulting subgoal representsthlepaniof tree with the induction
hypothesis(y < z) — P(y), entered into the proof as a new assumption (which tacitly includes suergs
tion that the hypothesis itself has a proof). The onus for spijitthe proof into various cases, as defined by
the function being synthesized, then lies with the user.

The proof extract construction resulting from an application of coafsalues induction is thev_ind
construct shown i§??.

3 Optimization of Recursive Algorithms By Transforming Inductive
Proofs: an Overview

Rather than enter directly into the technicalities of program throughfpraxasformation, we shall first provide
an overview of the main concepts involved.§fP? we provide a high-level description of the proof transform-
ation system. I§?? we give a brief introduction to program synthesis by theorem pigawhie illustrate how
the efficiency of (recursive) program is dependent on the nature of tiietioh scheme employed and on the
subsequent proof commitments. Finally§iP?, we introduce the reader tapling.

3.1 ThepPTs Inductive Proof Transformation

Boyer and Moore have done extensive work on heuristics for indaigtioofs P, ?]. Relationships between
induction and recursion have been generalized such that most recursivarssutave a corresponding in-
duction schema which can be employed to synthesize programs exhilhiérdesired recursive behaviour
[?].

The computational efficiency of a recursive algorithm is directly relatetiedorm of the recursion. The
way in which an algorithm recurses on its input carcbatrolledby the way in which mathematical induction
is employed in the algorithm’s synthesis. This provides the theatainder-pinning of the transformation
system: recursive programs are optimized by transforming the iratusthema employed within the corres-
ponding synthesis proofs.

Fig. ?? schematically depicts the source to target meta-level transformation afmagtimization through
proof transformation consists in the automatic transformation eéurce induction proof to a target proof
whose induction schema has a more efficient associated complexity. Thanorgsost-conditions of the

6Other non-primitive examples incluaivide.and conquerinduction and induction based on the construction of nusasmproducts
of primes.



transformation correspond to the induction schema, and the recursa#ygat, of the source and target proofs.
The input consists of a complete source inductive synthesis prods.is depicted on the left hand side of the
diagram. The triangle labelgmoof treedepicts the tree shape of the refinement proof (recall that the proof, or
refinement, tree is constructed backwards from the specification toward thes)ed he source proof yields

a complex source algorithnexp which recurses witlexponentiabehaviour due to the fact that a particular
induction — course of values — is employed during the synthesis. 8iheextractrepresents the automatic
program extraction process.

The target proof is represented on the right hand side and is construcigdietely automatically, by the
PTS, from the source through the application of operators which map andrémesform portions of the source
proof. In particular, the source course of values induction is tramsfd into the more efficient stepwise target
induction, thus yielding a target extract algorithm that recurses otaita-structure in more efficiefinear
fashion.

The pTs controls the transformations by exploiting extra informatiomtedned in proofs which is ex-
traneous to that required for the simple execution of straightforgerdrams: a description of the task being
performed; a verification of the method, and; an account of the dependencieehetets involved in the
computation.

T
INPUT: SOURCE PROOF I OUTPUT: TARGET PROOF
obtained manually, or via I obtained automatically via
previous transformation I source proof transformation

]

SPECIFICATION Vz input 3y output spec(input,outpu*)

SOURCE INDUCTION
1 —
: AUT;MAT;C PSOOF:
TRANSFORMATION
extract I
SOURCE PROGRAM | TARGET PROGRAM
Eg. exponential | Eg. linear
l

TARGET INDUCTION
Eg. stepwise

Eg. course of value

extract

Figure 1: Recursive program optimization through induction scheamstormation.

With reference to fig.1, and recallii@?, the demands for efficiency of programs are succinctly expressed
by quoting from P] (italics added by the author):

The first criterion on which a program is judged is the correctness w#hect to its specification.
The second criterion is the efficiency of the program with respect to otlegrgmssatisfying the
same specificatiqrwhich is reflected by time and space complexity of the program.

Efficient programs obtained through proof transformation satisfi btese criteria: the target program neces-
sarily satisfies the specification from which it was constructed; bothcecamd target programs are derived
from the same specification, and; the recursive procedure traced by thepgergetm will be more efficient
than that of the source.

3.2 Proof Construction and the Induction-Recursion Duality

We can construct at least two proofs, witlimsTER from which two alternative recursive algorithms can be
extracted, each of which computes the Fibonacci function. The difference bethetmo syntheses is that
each employs a different induction schemata: course of values inductiandvitte course of values recursion
in the Fibonacci extract algorithm and stepwise induction will indstepwiseecursion.



3.2.1 Course of Values Induction

To employ course of values induction in the synthesis of an algorithiotwiakes as input requires appealing
to all, or a subset of, the output values obtained when the input is @og less tham.” Using a standard

functional notation, the Fibonacci function is usually defined by thieang course of values definition:

e source definition:

fib(0) = 1 )
fib(l) = 1 3)
fib(n+2) = fib(n+ 1)+ fib(n). 4)
We can give a formal specification for a program that computes the aboveidefas follows:
Vinput, Joutput. fib(input) = output (5)

where fib is defined through three lemmata corresponding to the three bran@®es?) and (?), of the
above course of values definition. Note thz®)(is an instance of the specification schen?®),(given in§??2.

The most natural way to synthesize a procedure for computing the &ilsonumbers is to employ the
course of values induction t@%). This is because it directly mirrors the course of values recursioipiet
by the standard Fibonacci definition. The induction schem@®becomes instantiated as follows:

H: (Vz,Vy.((y < z) = In'.fib(y) = n') F In" . fib(z) = n"
C:FVz,3n.fib(z) =n '

The proof of the induction conclusioty;, requires identifying an existentialitnessfor n. That is, an instan-
tiation forn must be provided that makéstrue. Since this is a course of values proffy(x) is constructed

as a conditional, branching according to the valug:dfrst with a value fory of z — 1, and subsequently with

a value ofr — 2. The resulting constructs fgfib(z — 1) and fib(z — 2) appear as two new hypotheses. These
are then added to obtain a witnessioii.e. + Vz, fib(z) = fib(z — 1) + fib(z — 2).

Fig. ??(a) depicts the computational trees foib(5) using course of values induction. Note especially the
redundant (repeated) nodes in the tree for course of values inductiomddnto calculatefib(n) one must
first calculatefib(n — 1) and fib(n — 2). Each of these sub-goals leads to another two recursive cafighon
and so on. In short the computational tree is exponential where thbanofirecursive calls ofiib approaches
2™, Such a procedure is termé@e recursivesince it resembles a tree where the branches split into two at
each level.

Fig. ??(a) can also be regarded asl@pendency grapipG, for the course of values recursive procedure
since it is a representation of a particular function call’s evaluationttaéeh shows the calling structure of the
subsidiary recursive calls. Strictly speaking, fi(a) is agroundeda, since it is constructed using grounded
function calls. AsymbolicbG, on the other hand, is based on symbolic function calls and is potgntifiliite
in size. The reader may wish to look ahead to fig§P®, which shows a portion of the symbolias for fibn.

(a) course of values tree: (b) stepwise tree:
fib(5) fib(5)

fib(4) }& (fib(a),fib(3))

}& fib(1) fib(1) fib(0) fib(1) fib(0) <fib(2)lfib(1)>
fib(1 fib(0 l

om O (fib(1).fib(0))

Figure 2: Computational tree fgiib(5) induced by (a) course of values induction, and, (b), stepwise induction

"Representations of the completed proofs are displayedexamined, ir§??.



3.2.2 Stepwise Induction and Tupling

Alternatively, we can also employ stepwise induction over the naturagrithesize a program that computes
the samespecification, ?7), as the previous course of values extract. This is achieved by emglayire
constructs, at the stepwise induction cases, in order to evaluate thea€id numbers. Tupling removes
redundancy by grouping together, merging potentially re-usable function calls — repeated computation —
that appear in the tree recursive process generated by the course of valugmddthi fig.2). The result

of tupling in this case idinearization the production of a stepwise recursive algorithm which computes the
Fibonacci functionfib, through an auxiliary linear procegs

o target definition:

fib(n) = m where <_,m> = g(n);
90) = (1,1);
gn+1) = (ul +u2,ul) where (ul,u2) = g(n).

The auxiliary functiory(n) is constructed in terms @f{n — 1), where the first argumentin both cases takes the
“combined values” form (in effect, the tupling combines the values ofwtedtep cases of the less efficient
course of values definition). The linear trace for computfaly5) through the auxiliary procedural caj(5),

is depicted in fig??(b): the angled brackets in the stepwise sequence symbafire formationin that the
output of each recursive pass is some function of the arguments whthiorackets. The functionis defined

in terms of a tuple that consists of two components, each of which are npaflena subsidiary calls tgib:

the first corresponds to the sum 6fb(n — 1) and fib(n — 2), i.e. fib(n). The second tuple component
corresponds to the first argument of the first tuple compongnty, — 1). The tuple functional applies the
addition function to the first and second arguments. So the g@alis ultimately satisfied by defining it in
terms of the known course of values definition, i.e:

g(n) = ((fib(n —1) + fib(n —2)), fib(n — 1)). (6)

Note that the first tuple component is equivalent to the body of thersaeustep of the course of values
definition. Note also that there is no recourse to the origfiiadefinition andg(n) requires onlyn recursive
calls (stepping dowrto the base casg0)). In other words, the computational tree resulting from stepwise
induction islinear, with a branching rate df, and hence the resulting algorithm requires far less computational
effort in computingfib(n) than that synthesized by employing course of values induction.

Regarding synthesizing a program to compute the stepwise procelderst step is to apply stepwise
induction to (7?). This yields the following (instantiated) schema:

F 3t0. g(0) = ¢° Yy, 3t g(y) =t = Ft". g(s(y)) = t"
F vV, 3t g(x) =t '

As with the course of values proof, the proof requires establishitigeases for the existential quantifiers. In
this case we are required to find existential witnesses; ftbre tuple through whicly is defined. At the base
case of the induction, we simply employ symbolic evaluation udiegtérminating branches??) and (??),
of the source definition in order to provide a witnegk, 1), for t°. A witness at the induction step case is
provided by a process of unfolding the induction conclusion withghurce definitional equations (notably
(??) until a match is found with the induction hypothesis (i.e. thdyof (??)). This enables the unification
of conclusion and hypothesig%) there by providing a witness farin terms ofg (thus introducing recursion
into the program).

Greater detail concerning both the above proofs is providé@Mmwhere we describe how such stepwise
proofs are automatically constructed from source course of values proofs

3.3 Background to the Tupling Technique

ThepTsoperates by using information in the source course of values prooide ghe automatic construction
of the target stepwise proof. This research offers the first instandeedtipling technique being employed
within the context of proof transformation (as opposed to the diraasformation of programs).

Existing systems that automate tupling transformations, witigrcontext of program transformation, de-
pend on an analysis of such graphs so as to obtain dependency informatibrgwides subsequent transform-
ation [?]. In §??we illustrate how, within the context of proof transformation¢ck dependency information
can be read directly from the source proof thus circumventing the neexsfoonstruction and analysis.



Tupling, originally developed as an optimization techniquéjnif a form oftabulation albeit constructed
in real-time, since the tuple represents a record of previous recursige Tapling is an important means of
linearizing exponential procedures. It works by grouping togethea, §ingle recursive tuple function, the
separate recursive expressions in the source procedure. The main adwdrtadi@g over the most general
kind of table for redundant computatiomemo-tableg?], is that we store only the subsidiary calls of a
specified function, rather than calls from the whole program. In the caseeofo-tables there is a heavy
storage requirement as entries inserted during function execution, tmsuradly removed even if they are no
longer required.

Existing program transformation systems reported within theditee also employ the tupling technique
in order to remove redundancy from recursive procedures (€Jg[7, ?], and later inf]). However, these
systems do not operate within the proofs as programs framework.g&heral strategy of program trans-
formation employed by these systems originates fr@hapd is referred to as thenfold/foldstrategy. This
strategy basically consists in defining the target program in termsedddhrce, and then, by a process of re-
writing recursive definitions, deriving a recursive definition foe target program which is independent of the
source definition. This general strategy has since been incorporatedaiietywf guises and applications, in
many program transformation systems. The three most problematgistdye unfold/fold strategy, regarding
search, control and automation, are:

¢ the so callecturekastep: obtaining the initial definition of the target in terms of tharse ((??) in our
example of§?7?);

¢ the control problems associated with when to apply the re-writing syegiich eliminate any reference
to the source definition from the target recursive step, and;

e the principled application of lemmas (or laws) often required to proesiipat program derivations.

We shall return to a more detailed exposition of this related work?®in order to explain how proof
transformation offers a promising means of overcoming these probMmshall compare the work described
in this paper with that reported ir?[. a recent systemization and extension of the earlier transformation
strategies discussed ifi][

4 Proof Transformation Strategy

ThepTsis tuned to recognize the key positions within inductive proads kfave a decisive effect on the recurs-
ive behaviour of the extract algorithm. These key positions coomdpo the application of an induction rule,
the constructive type of the objects required to witness the inductises, the actual proof constructs intro-
duced to witness the induction cases, and finally the definitions chosempieate the verification component
of the proof.

Although the transformations involve using the source progitiolethe new construction of a target proof
by mapping, and then transforming, portions of the former, thecsproof, and extract, is itself preserved.
This is an intentional design factor since, for some applications, it mayeplesirable to have access to both
the source and target proofs at the termination point of the transtosm

4.1 Abstracting Salient Features of the Proof

Proof trees are internally represented witliimSTER as quite complex Prolog data-structufesdowever,
theseOoYSTER data-structures, and the corresponding proofs, contain large amduimf®mnation which

is irrelevant toboth execution and the tupling transformations. Hence inefficiency wouldtré®m this
additional information being subject to extensive manipulation éaburse of the transformations. To avoid
computational effort being expended on attempting to access individual Semaits thePTs processes, by
abstraction, th@YsTERinternal proof representations into more accessible list structures calietrees A
typical rule-tree will either explicitly contain, or contain labels whickoal for the direct accessing of, the
following information:

e Someof the assumptions (hypotheses) made during the proof.

8However, memo-tables do have the advantage of being moezajén their range of function applications.
9Within the pre-processedysTERrepresentation there are many Prolog variables hanging thetvarious (sub)lists and it is gener-
ally hard to follow what parts of information form semantiaits.
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e The branching structure of the proof.
e The rules applied along with any corresponding arguments.
¢ An account of the dependencies between facts in the proof:

— dependency information concerning inter-relations between (sub)godls; an

— dependency information concerning inter-relations between (sub)goalassudnptions (hypo-
theses).

So, recalling the Curry-Howard isomorphisfit,?, the rule-trees contain an account of the dependencies
between facts involved in the computation of théunction constructed by the corresponding proof.
Each rule entry consists of a refinement rule such that a rule-tree corgss(smematically) to:

apply(Ruley) then [apply(Rules) then] ... apply(Rule,,)] ... ],

and as such is akin both to a proof plan which combines a number of prowitacid/or rules into a large
tactic such that a complete proof can be (re)produced from the plan, anckédedos of a proof in which
the inference rules of the proof are recorded, but not the formulae ichwhey are applied. A source rule-
tree contains all the information required to reproduce faithfullysherce proof from which it is abstracted.
Similarly, at the termination point of a transformation, the targédtree contains all the information required
to produce the complete target proof (indeed, once constructed, targdteat are automatically applied as
large tactics to the specification goal there by producing a complete taoysj.pr

The fact that proofs are transformed indirectly via the transformatidime ruletree proof tactics (or proof-
plans) is not a necessary feature of the proof transformations bulhér exhployed for purposes relating to the
efficiency of the actual transformation process. We only mention them bestdblish that the internal proof
representations of thershave no effect other than to increase the efficiency of the transformatioes. In
this paper we are primarily concerned with how information in the soproef is used to construct the target
proof, and not with implementational detail. Hence, unless directly retewamshall in subsequent sections
describe the proof transformation process as passing directly fronsespuoof to target proof without the
intermediate creation of the ruteee abstractions.

4.2 Tactic Transformation: Conditionally Guided Proof Modification

The pTstransformations are, then, akin to meta-level tactic transformatiomiedun part by whether or not
certain syntactic properties are true of the source proofs. Such syrpactierties function as transformation
tactic pre-conditions. We can also predict the probable outcome of thieapm of a transformation tactic in
terms of syntactic properties of the target proof. A source to targetfivemation will be deemed successful
if the target proof satisfies the post-conditidfis.

We can give fairly high-level pre- and post-conditions for the ingucischema transformations. For
example, transformations from an exponential procedure to a linear pnecéattlude, amongst their pre-
conditions, that the dominant induction in the proof is a coursebfes induction (i.e the proof must contain
a cv_ind construct). Amongst the post-conditions will be the presence té@ndse construct in the target
proof. In§??we provide further pre- and post-conditions specific to the proglfrig transformations.

Similarly, transformations from a linear procedure to a logarithgiiccedure have as a pre-condition
that the dominant induction in the source proof is a stepwise schehmtafget must then satisfy the post-
condition of having aivide and conqueimduction. We do not cover logarithmic transformations in this
paper. A theoretical description of such transformations is giverPlingnd we discuss systemizing such
transformations in7].

4.3 Efficiency, Correctness and Automation

The presence of a program specification both provides a termination imonaitd guarantees that all proofs
tranformed by theeTsyield programs that are correct with respect to that specificatibriig.1). Traditional
program transformation systems have no such formal specification antthihimeans there is no immediate
means of checking that the target program meets the desired operational cBiepaoving that the target
program satisfies the original specification, we avoid the need to e$tdbés any re-write rules used are

101f the source proof satisfies the pre-conditions then onlgxiceptional cases will a complete target proof be produdgdhwiolates
the post-conditions.
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in themselves correctness (equivalence) preserving. This will, as a generataglire as much effort as
providing an explicit proof of correctness for the source to targesfamations. For example, many of the
systems that employ thenfold/fold strategy re-write the recursive step(s) of a source program thrthegh
application of variougqualitylemmas, each of which needs to be proved (by induction) if the source tt targ
transformation is to preserve equivaleneg].

Furthermore, there is no guarantee that unfold/fold style derivatiothactually lead to any optimization,
where as proof transformations replace an induction yielding an inefficdenirsion schema with one that
yields a (more) optimal schema. Thus target programs are guaranteed to edimpirntput-output relation
specified originally for the source, and to do so more efficiently.

Regarding automation, the proofs contain sufficient informationltwathe source to target proof trans-
formations to proceed withoatny user interaction. In other words, in forming proofs from sourceofspthe
PTsabstracts precisely that information which allows for the automatic oectin of the target proof.

4.4 Synthesis and Verification

Thesynthesis componeot the transformation process is concerned with the formation of tigetéuple, the
replacement of the source induction by a target induction with a moreesftisiduction rule (e.g., applying
stepwise in place of course of values induction) and/or merging a nestadtion structure in the source into
a single induction in the target, and the subsequent witnessing ¢éihet induction cases. Therification
componenis concerned with performing specific sequences of unfolding operatiohs atdtantiated induc-
tion step usindoth source and target equations. Symbolic evaluation and well-formedneiss @@ also
usually applied at the induction cases.

We categorize the proof constructs mapped and/or transformed fromuheesproof according to which
component of the proof is being transformed. The synthesis compankinvolve abstracting, and then
transforming, (sub) structures from the source in order to:

(i) constructthe target tuple;
(ii) determine the nature, and number, of elimination rule applicatiand perhaps most importantly;

(iii) witness the existential quantifier at the target induction cases &ppimg across structures from the
source induction cases.

The connection between (ii) and (iii) is that the elimination rules emgaowithin the proof, particularly
those used in order to supply the source induction witnessesderani account of the inter-relations between
(sub)goals and hypotheses. This dependency information is then usgojily witnesses for the target induc-
tion.

The verification component will involve abstracting, and then transfognall those source proof branches
associated with:

e tactics for controlling unfolding;
¢ well-formedness goals; (such as the applications of type-checking rates);

¢ the application of lemmas — lemmas used for the satisfaction of the sawlgetion cases are mapped
across and, after some simple transformations, used by the unfééditics in order to satisfy matching
target sub-goals.

Both synthesis and verification involve:

(1) the fairly extensive mapping, and subsequent transformatiamraftructs from the source proof; com-
bined with

(2) heuristic theorem proving strategies; and
(3) transformation techniques suchtapling.

With regard to (1), by matching target sub-goals with source subsgt@PTs determines to what extent
it needs to patch the corresponding source proof branches in order tothpptysuccessfully to the target
sub-goals.
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4.5 Tuple Construction

As well as the more general pre- and post-conditions for optimizing sa@iprograms through transforming
the source inductior§??, we also give lower-level pre- and post-conditions which are specifibgdactic
based proof tupling transformations:

1. Pre-condition There exist two or more induction termg(n), ..., f'(n — i), which share someommon
induction variable(s)n a function definition (where > 2).

2'. Post-condition There must be present(constructed) a fixed sized tupleettreka tuple within which
common subsidiary function calls arising from the unfoldings of edcfi@), ..., f'(n —1i) are merged,
thus forming a recursive function without the original redundancy

Note that condition 1 is, in effect, a defining condition of course ofigalinduction. This means that any
proof employing one, or more, course of values induction schemes wiérghy be a good candidate for
optimization by tupling.
We shall refer to the tuple size, or the number of subsidiary calls tauingithin the tuple, a. In general,
i will provide an accurate, and the best, value dor Regarding the induction step of the course of values
schema,
v,y ((y < x) = Py)) F P(2),

the system evaluates the best tuple size by observing the source cbuatiges schema and determining the
number of times the induction hypothesis is invoked for differentealof the induction parametgrIn other
words, from a reading of how many distinct eliminations are performethe induction hypothesis of the
source, the system can automatically calculate the best valde fohe contents of the tuple are then those
recursive calls corresponding to tlkeseparate invocations gf

A quick and simple heuristic for constructing the explicit targeteéugefinition is simply to form the target
tuple structure by a direct 1-1 mapping of the function calls in thdybaf the source definition recursive
step. This is not, of course, guaranteed to produce the best tuple wbllitibt produce a target program any
less efficient than the source. The system will not produce an erroneoes paogram by employing this
heuristic, despite the fact that there are examples where an erroneousdugdere produced by mapping the
source recursive stép. This is simply because the target specification, identical to that of theesozannot
be satisfied by a proof employing an erroneous tuple function.

Functions which are constructed using schemas other than course of valuetidn can also satisfy con-
dition 1 in an implicit sense. For example, a functign,, synthesized using+-2)s stepwise induction may
well be a candidate for proof tupling since an invocatiorfpf(s(s(n))) will require two subsidiary calls on
fr2(s(n)) andfi2(n). We formally display thé+2)s schema and provide an example of proof tupling on an
instance off 5 in §?72.

Regarding the transformation of nested inductions consider thafisly schematic definition:

f(n) = fi(n) + fa(n = 1),

It may be the case that upon unfolding either, or each fof,and f», two or more induction terms,
fi(n), ..., fj(n — i), which share some common induction variable(s) are exhibited. Thisigase with
auxiliary recursive functions wherein the redundancy is not immediatalyous since it occurs amongst the
auxiliary recursive calls (viz. the computation of the function(s)hie body of the definition, which are not
self-recursive). Such “auxiliary redundancy” manifests itself in thes@proof in the form of a nested induc-
tion. The task of proof tupling on such nested induction structiwés fmerge” the computation associated
with the innermost induction with that of the outermost inductiblence the explicit definition for the target
tuple is determined by calculating the valuedf and the recursive calls to be tabulated, for the outer and
(each of the) nested inductions and then simply combining the resultssh@lkillustrate by example the
optimization of these kinds of inductively synthesized functiong?n

Itis worth noting that, in practice, tuples are represented iroth&r ERproofs by conjunctions of function
calls. That is, the program extraction process sets up a correspondeneeietmjunction proof constructs
and tuple program constructs. This approach has certain advantages to wisbhliveturn in§??.

TFor example, we would need to use the more rigorous appraedatermine the tuple definition for a variant of Fibonacdhwhe
following recursive step:
fibs(n) = fibs(n — 1) + fibs(n — 3)
The quick heuristic would erroneously produce a tuple o¢ izi.e. <fib3(n — 1), fiba(n — 3)>, whereas an analysis of a source
course of values proof fofibs would reveal thaB distinct invocations of (eliminations on) the inductionpoghesis are required. Thus
the correct tuple should béfibg(n — 1), fibz(n — 2), fiba(n — 3)>.
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Henceforth, we shall distinguish proof transformations which empléupling technique from program
tupling transformations by referring to the formerg@esof tuplingand the latter aprogram tupling

5 Proof Transformation: Examples

The proof transformations performed by thescan be broadly categorized in two ways:

1. Transformation of induction schemas: The source induction schema is replaced by a different, but
logically equivalent, target induction scherifa.

2. Transformation of nested inductions or Loop Removal: A nested application of induction in the
source is “merged” with the outermost induction to produce a targetfpvih a single induction. We
may also refer to such transformationslasp removal(since a recursion loop is removed from the
source).

Both 1 and 2 are automatic and involve essentially the same strateggystesn cuts in an extra go&, into
the “simple” proof of the program specificatio8, thus yielding two subgoals: the first being the original
goal S, with G as an additional hypothesis, and the second béiiigelf. The proof of (sub)goab is then
responsible for synthesizing the more efficient computation of thetioutput relation specified in S. In both
cases the need to treat the identificatiorGoas a eureka step is removed by exploiting the structure of the
source proof. Furthermore, the source proof provides the infoomatquired to witness the induction step of
the target proof (and thereby build recursion into the target program).

In this section we provide detailed analyses of three examples of pawdfarmation which involve
tupling. The first corresponds to linearization by the transfornmatibcourse of values induction schemas.
The second corresponds to the transformation of nested inductions.third example involves both the
transformation of a source induction scheme and the merging of nestadtions. As well as combining
aspects of the first two examples, it also illustrates the transformafi@ different induction schema; 2
succesor induction, than that in the first example.

The reader should bear in mind throughout this section that we regabtistruction of source proofs as
given (i.e. either as output from a previous transformation, or famnmteractive synthesis session within the
OYSTER System). The construction of target proofs, on the other hand, isratimgiven the source proofs
as input. Thus although a comprehensive explanation requires usvidgestep by step description of the
target proof constructions, the process is fully automated regard@myis

5.1 Example 1: Linearization

Remaining with the Fibonacci example, we provide representative figoresyhthesizing Fibonacci the
source course of values proof, fig.3(a), and for synthesizing the tatgetiseproof, fig.3(b). Taken as a
whole, fig.3 depicts the correctness guaranteed transformation of a céwedaes proof to a stepwise proof.
For the sake of clarity, we omit some of the type checking, subistit@nd elimination rules (such omissions
being indicated by a broken vertical arrow). We shall have course to adfenback to fig.3 throughout the
text. Thus to aid clarity we adopt the naming convention that symbgideamng in the text in calligraphic
font refer to either the correspondingly named formulae, proof branchiebgoarcs depicting proof map-
pings, of fig.3!* For example, we use the arc${1 to M8, that pass from fig.3(a) to fig.3(b) to depict those
(sub)structures of the source proof which are used to develop thet tamgof. These “mappings” will be
explained ing??. We shall first describe the nature of the source proof (i.e. fig.3{d)¢ nature of the target
proof construction, fig.3(b), will become evident when we discusegrdmsformation of the sourcg??).

5.1.1 The Source (Course of Values) Proof
The specificationFzs, for a program that computes the Fibonacci numbers, is shown below:
FIB:Vz, Jy. fib(z) = vy, @)

fib is defined through the use of three proved, and subsequently storadateoorresponding to the three
cases of the course of values definitigA?¥):

12By logically equivalent induction schemas we mean that #smeiated induction theorems are inter-derivable. Tha@antees that
any two proofs satisfying the same complete specificatidrdifiering only in which of the two schemas are employed farectionally
equivalent

13The same convention is adopted regarding the later exaraptbtheir corresponding proof figures.

14



lemma 1: fib(0) = s(0);
lemma 2: fib(s(0)) = s(0);
lemma 3:Vz, Jy;,Jya. & # 0 Az # 5(0) A fib(p(x)) = y1 A fib(p(p(x))) = y2 — fib(z) = y1 + y2,

wherep is thepredecessor function defined by induction over the naturals such fhatz — 1) = fib(p(z))
andfib(z —2) = fib(p(p(z))).'* Thep operator is usefully employed as a destructor function of a function’s
data-structure (as opposed to using the canonical successor furctiomuild constructor definitions). The
reason for specifying Fibonacci indirectly, through the use of progetas, is so that the proof specification,
(?7), does not constrain the dominant induction of the proof to coursalaes (since in the case of the target
proof we will wish to construct a stepwise proof 6f3).

Lemmas 1 and 2 define the base cases of the Fibonacci definition. Lemma 3 defireesutBive case and
is naturally a course of values definition: values are given for inpatsds(0), andfib(z) requires appealing
to a pair of output values obtained when the input is less thapecifically, fib(p(x)) and fib(p(p(z))). A
ramification of the induction-recursion duality is that the behavigiuthe induction variable should mirror
that of the recursive terms in the function definitio?s [Hence 7?), or 778, is most naturally proved by
course of values induction. The proof requires an initial applicatiaih®¥ — intro refinement. This has the
effect of removing the universal quantifiér. This is followed by applying course of values induction @n
(denoted, in fig.3(a) by CV induction)). The cases of the induction schema are then satisfied by setting up a
nested case analysis structure by performing two case-split refinemeets, tik second case-split is nested

14Depending on context, we shall subsequently use the postfation, e.g.(xz — 1), interchangeably with the prefix notation, e.g.
p(z) (similarly for, e.g.,z + 1 ands(z)).

15Recall, §??, that a feature of the goal-directed proofs is that intrdiduc(intro) rules have thejuantifier strippingeffect usually
associated with elimination rules in forwards proof systenConversely, eliminatione{im) rules have the effect of introducing an
existential instantiation in the hypotheses of sequents.
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Figure 3: Schematic Representation of Source to Target Proof Mappingibforacci
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within the first. The outermost case split corresponds te 0 V = # 0, and the innermost case to split to
z = s(0) Vo # s(0). By having the case splits nested in this way, we cover all the conditipacified in
the course of values definition. By using the-intro(w) rule, a suitable witnessy, is introduced at each
case, and then verification is performed by appealing to (unfolding withydhlevant lemma (with various
well-formedness goals being satisfied along the way). Within the dastvesk (fig.3) we have included key
hypotheses and (sub)goals (conclusions): the application of couvséuess induction yields the induction
hypothesisZy,,
Ty Vo' 2! <o — Fy' fib(2') =y,

and the induction conclusiofi,
Te: F Jy. fib(x) = y.

At the two base caseB1 andB2, we provide in both cases, a witness:{).

The goal at the induction step casg,is to reduce the induction conclusiafy, to terms which can be
unified with those in the induction hypothesis, there by proygdirwitness for the existential variabley-+n
the case of: — which introduces recursion into the step branch of the function. iStdshieved by:

¢ eliminating on the induction hypothesig,,, twice: first with a value for:’ of p(z), and subsequently
with a value ofp(p(z)).'® In fig.3(a) this is depicted by the term “Ind-Elims @g,”. The constructs
resulting from the eliminations appear as two new hypothédesand ., which provide outputs for
fib(p(x)) and fib(p(p(x))), namedy; andy, respectively; and,

e recursion is then built into the function being constructed by ugingnd?{, as unifiers, ofertilizers
to provide a witness for the step cagéh(z), namelyy, + yo. This completes the recursive branch
synthesis (sincg; +y» = fib(p(z)) + fib(p(p(z)))).

Thus, to witness a value for the induction step we appeal, twice, tatheefion hypothesig;;. These elim-
inations on the induction hypotheses, and the fact that they are ¢yplagorded in the sequent hypothesis
lists, will be seen to be crucial for the automatic construction of éingett induction §?7).

Upon completion of the synthesis component of the target proof, eatiidin is performed by appealing to
the stored lemmas: lemmas 1 and 2 for the base cases, and lemma 3 for the step case.

The unification of the induction conclusion with the hypothesis ieddertilization. Formulae are “un-
packed” - ounfolded- by replacing terms by suitably instantiated definitions. Fertilizaidacilitated by the
fact that the induction conclusion is structurally very similar to thduiction hypothesis except for those func-
tion symbols which surround the induction variable in the conolusiAn implemented rewriting technique
known agrippling exploits this property of inductive proof by proliferating theopess of unfolding such that
recursive terms are gradually removed from the recursive branches urdiich m fertilization — can be found
with the induction hypothesi€]. In §??we say a little more concerning the general inductive proof strategy
and how this has positive ramifications regarding the completeness pfalf transformation system.

5.1.2 The Source (Course of Values) Extract Program

The complete extract program results from the combination of all tharaép proof branch constructions
appearing at the proof branch leaves of the first base case, second base case, Gk segpectively. We
indicate, in fig.4, the input/output associated with each case computatioe-calculus representation of the
complete extract progranef; §??for an explanation of thev_ind proof construct). The program construction
associated with a case analysis is of the fentr, y, P, Q), which specifies the required decision procedure:
if x = y thenP, otherwise().

complete extract
i 274 pase 15t base step case
—~ —— % ~
Az.cv_ind(z, [z", Ty, eq (2, 0,5(0), eq (z',5(0),5(0), Ta(p(z')) + Zae(p(p(z"))))])
~— ~—
15t case—split 2nd case—split

Figure 4: The course of values extract fars

16Following these eliminations, the proof also requires ussiablish that botp(z) < = andp(p(z)) < = are true.
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The A-calculus functional program extracted from the course of values inguptivof will compute the
Fibonacci numbers according to the course of values definition (correspiodhe three lemmas). The proof
reflects the same inefficiency generated by the extract program. This colld ntiierwise since the proced-
ural commitments and/or decisions made during the synthesis detetimimature of the recursive process
generated by the synthesized (extract) program. The extract program dibttasorder to compute the step
branch of the recursion the induction hypothe$ig, is evoked twice. This means that the recursive process
generated by the extract program will be exponential (i.e. the tree reeuregpresented by the dependency
graph of fig.?2(a), §?7).

It is clear, therefore, that there is a one-to-one correspondence betweenirighmsextract and terms
in the proof from which it was extracted. However, it should also n@aclear that the correspondence
is not bi-directional: the course of values proof contained many stefshvelne not reflected in the extract
program. Notably, due to the absence of anything resembling a hyjmlisgsthe extract program does not
contain a record of the dependencies between facts involved the computaticthodéat contain a complete
representation of the verification component(s) of the proof (requbeddtablishing the correctness of the
computation). This provides a graphic illustration of how proafatain information which is extraneous to
that required for simple execution, but valuable for understandiegthgram design.

5.1.3 The Target Proof Construction: Exploiting Source Dependencyriformation

Regarding fig.3(a), if one looks at the source proof branch correspgtaithe step case of the course of values
induction then we can represent the proof nodes constituting theesistbart of this branch as in fig.5 below.

induction hypotheses 7y : Vo'.z' <z — ' .fib(z') =9’
refinement Ind-Elims onZy
resultant hypotheses  #;: p(z) <z — Ty;. fib(z —1) = y;

Ha: p(p(z)) <z — 3Jya. fibp(p(z))) = y»
induction conclusion  Z¢: F Jy. fib(x) = y

witnessing refinement ‘ d—intro(y: + y2) ‘

fertilized conclusion: F fib(z) = y1 +y

Figure 5: Elimination and Witnessing Steps of Source (Course afeglProof

Fig.5 represents the elimination and subsequent witnessing stepaefpuithe fertilization of the induc-
tion conclusion with the hypothesis. From this information,ritgscan extablish that the source proof satisfies
the pre-condition for proof tuplingg??): that there are two or more induction terms which share the common
variable,z, at the induction step of the proof construction.

In order to identify the (eureka) tuple, thers records the maximum difference between the induction
term in the induction conclusion and temallesbf the subsidiary calls used to witness a valuefof Since
p(p(z)) < p(x), and the induction term is greater tham(p(z)) by 2 then the required tuple siz@, is 2.

So in order to calculatgib(z), for anyzx, thePTsSmust “store”, or tabulate, 2 subsidiary callgib(p(x)) and
fib(p(p(x))). Thus, in order to determine the size and contents of a target (tuplejtidefithepTsobserves:
how many times the hypothesis;;, is evoked in order to provide a witness at the induction conclugign
and; the greatest number of applicatioRsn the case of Fibonacci, of the induction constructor/destructor
function the proof employs when eliminating on the induction hiapets in order to synthesize constructs
for the induction witnesses. This procedure completely identifies alicéxgefinition, G, for the auxiliary
recursive procedure through which Fibonacci can be defined:

G: Se((ﬂu,ﬂv. fib(s(z)) =u A fib(z) = v, tuple:(u,v))

Hence, by having access to thesTERinternal proof representations of the source elimination and witngssin
steps, theTshas all the information needed for the automatic generation of the taplettefinition (depicted
by M5 of fig.3). Following the mapping across of the initial portiorighee source proof — the specification
and thev—intro applications —g is cut into the target proof as a new fact. In effetts a nested specification
goal that states the existence of a tuple of two componentsdi.e.,2). Such new facts are cut into proofs,

17By smallest we mean that subsidiary call which has the gseéiast) number of applications of the induction destiugonstructor)
function applied to the induction variable.
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as a new sub-goal, by a generalized version ok#gpienceor seq, rule. The generalizegkq rule allows one
to cut in, orsequence, a new fact into a proof by introducing a new node in the preefwith two subgoals
where: the first subgoal represents the original proof tree with thefaet as an additional hypothesis (which
in constructive terms amounts to an additional hypothesis that thanerof of the new fact), and; the second
subgoal is responsible for constructing a proof of the new fact.s€guencing; into the developing target
proof produces the corresponding two sub-goals:

¢ the first (sub)goal, at proof bran@h in fig.3(b), will be the originalFzsgoal, with the universal quan-
tifier removed, and witl§ as an additional hypotheses, and

¢ the second (sub)goal, branfh, will require provingg itself.

Stepwise induction is applied at the second subgoal in order to preveetjuenced in god (this is
denoted, in fig.3(b), by “stepwise ind!) to G": i.e. stepwise induction on' is applied toG). At the
base case an —intro rule is applied which has the effect of decomposing the goal into the segagé
components. Such decomposition of the tuple will always be contrbljetthe tuple size®. ThepTsthen
maps across the base case witnedsesds(0), from the source proof in order to witness a base case value
for each of the tuple constituentsandv (M1 and M2, fig.3). The base case is then verified by mapping
across and applying the source base case lemmas and well-formedness tactics.

At the induction step we have the following goal to prove (of thierf hypothesi$- conclusion):

Ju, Jv.fib(s(z')) = u A fib(z') =v F Fu',F'. fib(s(s(z"))) = u' A fib(s(z')) = ',

i.e., regarding figs.3(b) and 5, ters must establish thaf;, - Z¢. The PTs must then provide withesses
for ' andv’ in the conclusion. Furthermore, it must do so in terms:@ndv in the hypothesis. This will
both introduce recursion into the target function and eliminate all eefes to the sourcgib function from the
target definition. An application of—intro splits the induction conclusion, into separate conjuncts producing
two new sub-goals (the number of applicationg:afro being determined bg):

FoJu'. fib(s(s(z'))) = o' (8)
Fo 30 fib(s(z')) = 9

A witness foru/, in (??), is required which is equal tgib(s(s(z'))): since, in this examplep = 2,
then a value fon' is obtained by appealing to those two subsidiary calls which take reeuasguments
that differ from s(s(z)) by, respectively,l and2 applications of the successor functieni.e. fib(s(x))
and fib(s(s(x))).!® These subsidiary calls are precisely those labell@hdv in the induction hypothesis.
However, to avoid all charges of eurekas, #Hies must automatically determine what function to apply:to
andv in order to construct the witness faf. This is done by observing the witnessing step of the source
proof: a call to the main function requiresidingthe ® subsidiary callsdf. the witnessing refinementslot
of fig. 5). Thus the identity of the first tuple component is preddy substituting the subsidiary calls in
the target induction hypothesis for those in the source inductionlasion (depicted by4, fig.3), there by
witnessing a value fou' of u + v. A similar analysis of the source proof could be performed to identiéy
second component of the target tuple correspondin8® However, a witness;, for v’ is provided by one
of the target hypotheses and can hence be directly appealed to in order to \aitvedas for the remaining
component. Once the witnessing steps have been completeted, the atsthrdr fertilized, conclusion is
verified by appealing to the same tactics for unfoldamg the same lemma, lemma 3, as used to verify the
source induction step\3, fig.3). This completes the construction of the target proof, fig,3¢hich is then
passed on to theysTERautomatic program extraction proce§87).

So, by utilizing the eliminations and witnesses in the source prahiétion, theeTsis able to automate
the difficult tuple construction process which, within existinggmam transformation, systems has constituted
a eureka step. We elaborate on this performance advantgge.in

5.1.4 pTsLemma Translation

Regarding the use of lemmas, thesis equipped with a simple translation procedure that turns a destructo
type lemma of the form:

fitz) = fo(fi(z —a), fi(z — b)), whereb> a,

18|n the general case, # = n then a tuple of size is constructed, and the value ofsubsidiary calls would be required to construct
a witness for the 1st component,— 1 for the second, and so forth.
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into a constructor version of the following form:

fHz+b) = fo(fi(z+ (b—a)), fi(z)).

Hence there is no problem in using source proof lemmas that define admrf¢ti) in terms ofpredecessors
of z, since, if necessary, we can translate it into the equivalent lemma that dgfiries terms ofsuccessors
of z.

5.1.5 The Target (stepwise) Extract Program

The lambda calculus extract program, shown in fig.6, for the target &egwoof is somewhat more esoteric
than the more standard representation of the stepwise recursive Fibtimgicaie gave irg??. The basic
explanation of the_ind proof construct was provided §??. The unfamiliar construct is theread function.
The spread function takes a pair (first argument) and a list (second argument) spegtfyd variables and a
term which may include them; on execution the function returns this vatmthe variables substituted by the
elements of the pair.

complete extract

~
base case step case

—_—— P ~
Aa:.((Atuple.spread((u, v>, [~,y,9])) (pind(z, <s(0), s(O)), [x', Te, spread(Za, [u', v, (u' +v") Au']D]))

Figure 6: The stepwise extract ferzs

So, regarding fig.6, the innermastread term (that constructed through thig branch of fig.3(b)) specifies
that the two components,anduv, of the pair (tuple)Zy, whose existence is assumed through the induction
hypothesis, are substituted, respectivelyf@ndv in the term(u + v) A u. The outermost spread term (that
constructed through the, branch of fig.3(b)) specifies that the output for Fibonacci is obtainedbstguting
the second element of the tuple, synthesized thrdagHor y in the root node specification. Note that the
stepwise extract, as in the stepwise proof, contains only a singleagen of the induction hypothesis, .
The recursive process generated by the stepwise extract is hence linear.

It is the use of tupling which allows us to construct such a linear psocté®e solution for Fibonacci
corresponds t@ in the above extract (i.e., the second argument of the first tuple coemporParametes
acts as an accumulator since its value in successive invocations accumulatead(®) wdithe function. So,
the process generatedlisear recursivesince, withu andw initialized to1 and0 respectively, the procedure
applies the simultaneous “transformations” shown on the I.h.sheofdllowing informal equivalence (where
A —— B meansP “transforms” toB),

{u — u+v

v s u } = {(u, 7)> — <u + 1),71,>} whereu = fib(i) andv = fib(i — 1), (for somei).

This represents a single recursive call where to ob(taim v, u> we require a single evocation of the induction
hypothesis construction, correspondingtouv).

So after applying this “transformation’ times thenu andv will be equal tofib(s(n)) and fib(n) re-
spectively, i.e., (schematically),

u —— u-+ov
v — U

} x n = (fib(s(n)) + fib(n), fib(s(n))).

5.1.6 Scope of Induction Schema Transformations

In this section we provide an indication of the performance ofthgas currently implemented. Although the
pTsshould currently be regarded as in an embryonic form, it is capableesdiiring, through the transforma-
tion of source proof induction schemas, a large class of program characteyizdtht Cohen describes as the
common generator redundan@gGR, class of programs?]. This class is represented by the below schematic
definition for a functionf, with n self-recursive calls, and wheti, ds, ..., d,,, aredescent functiondescent
functions are those functions which are applied to the main recursivenangts used in subsidiary calfs.

f(z) <« if b(xz)then c(x)
else h(z, f(di(x)), ..., f(dn(x))).

1930, for example, there are two subsidiary recursive calisred in the Fibonacci source course of values proof in dileatisfy the
induction stepp(z) andp(p(z))). The corresponding two descent functions for the two siidnsidalls are in both cases the predecessor
functionp.

20



The cGR class of programs are those programs where there extismanon descent functipfy in terms of
which each ofiy, ds, ..., d,, can be defined. This means each descent function is related to each other through
§ in that each is cashed out in terms of applydrcertain number of times, i.el; = §’ andd, = 67, where
0™ is to be interpreted as the applicationjof times.

The general schematic function, shown above, forate class of programs can hence be re-represented
by S1 below?®

(S1) f(z) <« if b(z) then c(z) 4
else h(er, f(5(2)), .. /(5 (x)))

For the sake of brevity, we illustrated the transformation procesma fairly simple bi-linear instance 6fi,
namely Fibonnacci. However, tirarswill optimize any instance of1.2! For further examples the reader is
referred to f].

5.2 Example 2: Optimization By Transforming Nested Inductions

With the Fibonacci example @f?? the optimization was achieved through transforming the source iiwgtuct
schema into a different schema with a more efficient computational rule.owellustrate, by example, how
the PTsis capable of transforming a source proof that involves a nested apptidattinduction to a target
proof with a single induction.

Our second example concerns the optimization of a program that compefastifst function, fctl, with
the following definition:

fetl(0) = [; (10)
fctl(n) = fact(n) :: fetl(n —1), (11)
where the auxiliary functiorfact is defined as follows:
fact(0) = 1 (12)
fact(n) = nx fact(n —1). (13)

Here redundancy does not occur directly due to any self-recursive call het eahong the auxiliary recursive
fact calls. This redundancy is exhibited by the symbolic dependency g@pfctil, the initial portion of
which is shown in of fig.8. Recall fror§?? that asymbolicDG is based on the calling structure of subsidiary
symbolic function calls (and is therefore potentially infinite in siz&€he multiple evocations of subsidiary
calls, the redundancy pattern, is exhibited by more than one arrowetirattny particular node.

fetl(n — 1)

fact(n —1)

X ‘ fetl(n — 2)

Figure 8: The symbolioG for fctl(n)

A program for computing this inefficient procedure is synthesized frioenfollowing specificationF L,
for the factlist function:
FL: Ve, Il:list. fetl(z) = L.

As with the Fibonacci examplétl is defined through the use of lemmas, four in this case, which correspond
to the terminating (?) and (??)) and recursive {?) and (7)) branches of the above definitions. However,

20ThecGReclass also covers the class of programs, referred to by Catémeexplicit redundancyglass, wherel; = ds.
21n fact S1 is a slight simplification sincé may differ depending on which subsidiary call to which it jspéed. thus the\IPTS
will also, for example, transform a source proofs of thedwiing functionf’(n) = f'(n —1) X (f'(n — 3) + f'(n — 4)).
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unlike the source synthesis proof for the Fibonacci functjfir] is defined by a stepwise recursion schema
— sincefctl function does not invoke itself more than once at each recursive call — asdtiseréfore most
naturally synthesized using stepwise induction.

In fig.7 we provide a diagram that, as with fig.3, depicts the sourceaagdttproofs, and the (sub)structure
mappings between thefd. The redundancy manifests itself in the source proof, fig.7(a), ifictma of the

22The same conventions apply to fig.7 as did to fig.3: symbol&éntéxt in calligraphic font refer to the corresponding swfskin
fig.7; terms such as “step(= s(z’))” denote that the induction variable, in the hypothesis is instantiated £¢z’) in the conclusion,
and; terms such as “stepwise ifi).) to G” mean stepwise induction orf is applied toG. We also, due to space constraints, abbreviate
some formulaes with. ., and omit some of the¥ —intro applications.
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Fig.7(a): INPUT: SOURCE PROOF (}'L: b Va, 3. fetl(z) = l)
(NESTED INDUCTION)

outer
stepwise ind¢)

/

S introl() T peiiGG ) S
e ST lr

AR N ! G SeC(Vur:'7 z.fet(s(z')) = z) |
vi e

nested g T o Skt A Sl ol __a
stepwise ind¢') to G 1

stept’ = s(a""))

Fig.7(b): OUTPUT: TARGET PROOF C}‘L: F Ve, 3l. fetl(z) = l)
(SINGLE INDUCTION) M5

r Go: SEC(V:C, Ju, Jv. fct(s(z)) = u A fetl(z) = v, tuple: <u, v>) Il

base¢ = 0

() S [3-intro(s(0) x fet(0)] i Tma: 3u,3v. fet(s(a') —u Afetl(@’) =v,...
Lemmmes V """ ' Ezcg: F 3u, Jv. fet(s(s(z'))) = u' A fetl(s(z')) =v', .o

J—intro([])

Figure 7: Schematic Representation of Source to Target Proof Mappingadtist
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nested stepwise inductioN,Z, required to synthesize an extract term for the auxiliuyt call. The nested
induction requires a prior sequencing step, at the induction step ofitleeinduction, to cut in the specification
goal G, for the fact sub-routine:

Gi: seqVz', 3z fet(s(z')) = 2).

The nested schema means that for each recursive pass corresponding to tmestuteduction,OZ, the
source program must fully recurse on the innermost schema. This irefliscted by the dual nested recursion
schema construct of the source proof extract program, a simplified erpeg®n of which is shown in fig.9:
thep_ind function defines stepwise recursion and is evoked by the applicatior cbthesponding induction.
The nesteg_ind structure mirrors the nested induction structure of the sourcefprbhus if the induction
variable,z’ is 0 then the output isil, otherwise the output is :: I, wherez is provided by the induction
hypothesig,, of thenestednduction onz”, and! is provided by the induction hypothesig, ;, of theouter
induction onz’. So the nested inductive proof provides an outpufpr fact(s(z')), which is then used in the
computationg :: I, for fctl(s(z)) (i.e. z :: | serves as a witness for the outer induction conclugion.

complete extract

- fetl base fetl step fact base fact step S
I i) 1 = " "
Az. pind(z, [] [z, 1, (Az.2 :: L (p-ind(z’, 5(0) , [z7, 2, s(s(z7)) x 2]))))])

Figure 9: The Source Extract fgictl

So the task of theTstransformation is to remove this nested induction, and thereby thexdedicy caused
by the nested recursion, by effectively specifying the auxiliary call atatel lof the outermost induction.

5.2.1 Exploiting Dependency Information for the Target Constructin

As with the source to target transformation of self-recursive funstithe optimization of the source auxiliary
recursivef ctl function involves proof tupling and the exploitation of dependenfiyrmation contained in the
source proof. The step case existential withesses of the inner and mdietions of thefctl source proof
are expressed in terms of the source induction hypotheses (hecessaréyttsg A-function constructed is
recursive). These witnesses are directly exploited in order to satisfyitigle step case of the target proof.

In fig.10 we have represented the witnessing steps of both the sawafemductions (i.e. the outer and
inner inductions of fig.7(a)). Fig.10(a) corresponds to the witingssf the existential variable at the step case
of thenestednduction, and fig.10(b) to that of thmutermosinduction.

ref: ref: stepwise ingr) | then| sed 3z. fet(s(2')) = =)

hyps: Jz. flct(s(m”)) :”Z ) hyps: z. fet(s(z')) = z and 3" :list. fetl(z') =1
conc B3z fet(s(s(z"))) = 2 conc b3 list. fetl(s(z')) =1

next ref: ‘ J—intro(s(s(z")) x 2)

nextref: |I—intro(z:1)
nextconc + fet(s(s(z"))) = s(s(z")) x z nextconc + fetl(s(z')) =z :: 1

9(a) Step witness fofact (atN'Z). 9(b) Step witness fofctl (at OT).

Figure 10: The witnessing steps of the soufed proof

The pTsis able to determine from the above witnessing steps of the sourog arad from the subsequent
unfoldings with the lemmas, that the recursive definition of theetrgple requires tabulating two function
calls (i.e.® = 2): there is one elimination performed on the respective induction tingsis at each of the two
inductions in order to provide a witness at the respective step casesiifthaducing recursion in the main
and auxiliary functions being constructed). The actual witnesses telltighi# first is an occurrence of the
auxiliary fact function which takes the same argumentas in the head of the definition. The other tabulation
is a subsidiaryfctl call which takes the predecessor;- 1, of the argument in the head of the definition.
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The two arcs corresponding 1015 of fig.7. depict the mapping of information from the source proasider
to identify the requisite tuple. The target definition is given thpdthesis labeluple and, as in the Fibonacci
example, is expressed as a conjunction and sequenced into the target proefwafatg, :

Go: sec{(vm, Ju, Jv. fet(s(x)) =u A fetl(z) = v), tuple : (u,v>).

Stepwise induction is then performed on the sequenced in goal (whendietion variableg, is the same
as that for the outermost application of induction in the source proof

At the induction step of the target proof(z) in the hypothesisZys, is instantiated te(s(z)) in the
conclusionZ¢s, yielding:

(T, W' fet(s(s(z)) =u' A fetl(s(z)) = '), tuple: (u',v"). (14)

Both the tuple components (conjuncig)andy’, of (??), unfold to terms that are provided by mappings from
the source proof:

e fact(s(s(x))) is equivalent tas(s(z)) x fact(s(x)) where fact(s(z)) matches the hypothesis =
fact(s(z)). Hence we require a witness value for the first tuple componestg«f:)) x u. This is
obtained by mapping across the witness for the source nested inductisubstitutingu’ for z. In
fig.7 this corresponds t813.

e fctl(s(x)) is equivalent tofact(s(z)) == fetl(z) where fact(s(xz)) matches the hypothesis =
fact(s(x)), and wherefctl(x) matches the hypothesis= fcti(z). Hence we witness a value for
the second tuple component®f:: v. ThePTs obtains this witness simply by substituting the target
hypothesis labelsy’ andv’, for the labels,z and!’, in the step case witness of thetermostsource
induction (depicted by\4 of fig.7)

As with the previous examples, the base case witnesses are mapped aweass,ome, from the source,
as are the lemma applications required for verifying both the base andatepwvitnessesM{1 and M2 of
fig.7).

The completed target proof constructed by tes, corresponding to fig.7(b), is then passed on to the
OYSTERextraction process.

5.2.2 The Target (stepwise) Extract Program

The target program construction is shown below in fig.11.

complete emtract

base

——
Az. ((Atuple. spread(<u, 1)>, [~,y,y]))(p-ind(z, <s(0), []>, (2", Ga: <'u,, 1)>, spread(Ga, [u',v', (s(s(z")) x u') A (u' 2 0")])])))

step

Figure 11: The target extract fgictl

Note that just as the source proof — fig.7(a) — contained two stepwisetions, with the nested induction
being applied at the step case of the outermost induction, and the taogétpfig.7(b) — contains only a
single induction (on a tuple structure), so the source extractranog fig.9 — contains a dual nested recursion
schema, with the nested recursion being applied at the step case of the atiterooosion, and the target
extract program — fig.11 — contains only a single dual recursion (ople &tructure).

5.2.3 Scope of Loop Removal Transformations

The situation for proof tuplinguxiliary recursivefunctions is different from that of functions which contain
only self-recursive calls in the body of the definitiomGR functions which areauxiliary recursive fit the
following schematic definitio$2:

S2 f(z) < if b(z) then k(x) ' ‘
else h(z, f1(0*(x)), ..., fn(d?(x)))

25



where there is at least one auxiliary function call in the bod§af So for a bi-linear instances 62, such as
the factlist function, the following holds(f = f1 V f = fa) A fi # f.. ThePTsis, however, capable
of performing tupling transformations on any instance$ 2f

As we illustrated in§??, thePTswill also transform functions where, regardit%, one or more of the
functions, f1, ..., f,, in the body o0fS2 is an instance of1. This increases the performance of #es since
the scope of transformable functions is not soley those that padaii or S2, but in addition those that
pertain to some combination 6fl andS2. A thorough account of example transformations can be found in

[].

5.3 Example 3: Loop Removal By Transformation of(+1)s to (+2)s Induction

Consider the following variant of actlist:

factlist(s(n)) = facta(s(n)) :: factlist(n) (15)

where the auxiliary functiorfact. is a(+2)s recursive function thus:

factz(0) = s(0);
facts(s(0)) = s(0);
facta(s(s(n))) = s(s(n)) x facta(n),
and where theTsconstructs a target tuple of lengdhwhere one component is the subsidigntlist call
and the remaining two components are 2rgibsidiary calls for th¢act computation.

(+2)s induction is best suited to construct the auxiligiyct, function sincefact, is naturally a(+2)s
definition. The schema fdr+2)s induction is as follows:

F P(0) F P(s(0)) Yo : pnat. P(v) F P(s(s(v)))
F VY : pnat. P(x) '

So in order to synthesize a program which computesfihélist varient (??), we must construct a proof
where in a(+2)s induction is nested within (at the step case of) an o{#dr)s induction. The neste(h2)s
inductive proof is almost identical to the nestedl )s proof of example 2¢f. fig. 9(a)). The only difference
is that the recursive argument in the goal conclusion is two, rather thanapplications of the successor
function out of step with the recursion argument in the inductionotlygsis. In fig.12 below we show the
corresponding+2)s induction node:

refinement ‘ (+2)s induction(z')

induction hypothesis ~ 3z. factz(z'") = 2
induction conclusion  + 3z'. facta(s(s(z"))) =2’

witnessing refinement ‘H—intro(s(s(z”)) X z) ‘

fertilized conclusion: F facta(s(s(z"))) = s(s(z")) x z

Figure 12: Source nestéd-2)s induction (for facts construction).

To perform the proof tupling transformations on such a nested inmlyd¢hepTsneeds to tabulat2 fact,
function calls, along with th¢actlist call. That the target tuple includ@sfact, function calls is determined
by precisely the same reasoning that is used to form a target tuple féilibaacci example: the body of
the step case definition fgiact, contains a self recursive call tbuct, that is2 applications of the common
generator function, in this case out of step with the head of the definition. This is clearly illustrabgd
replacingz in thenext conclusionslot, of fig.12, by the hypothesis that it labels thus:

F facta(s(s(2"))) = s(s(z")) x factay(x).

Hence, the optimization of théact, function requires a tuple of two components (i®.~= 2), where the
tabulations would correspond facts (s(n)) andfacts(n). Sincefacts appears as the auxiliary function call
of factlist, then the required target tuple contains three componentsii-e.3), and therTs sequences the
following goal into the target proof:
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((Fu, Jo, Jw. facta(s(z)) =u A facts(z) =v A fetl(z) = w), tuple: (u,v, w)).
Note that, in effect, in performing the above source to target transftbomwe havéoth

e transformed a source proof with a nested induction to a target prabfansingle induction (employed
on atuple); and

¢ in doing so, transformed the (nestéd)2)s induction into a standar@t1)s stepwise induction.

Hence proof tupling on source proofs that contain a nested inductioctste, where either of the induc-
tions is in itself susceptible to optimization through tuplirggtantamount to combining the transformation of
induction schemas with the merging of nested inductions.

6 Merits and Applications of Proof Tupling and Comparisons with
Program Tupling Transformations

In §?? we mentioned that one of the most influential strategies for progransformation is thenfold/fold
technique P]. This technique is employed within Darlington’s interactiver program transformation system,
and used by Chin to perforautomatictupling transformations?.

In §?? we identified three key steps for transformation usinguhtld/foldstrategy. These steps corres-
pond to the most difficult aspects as faraagomations concerned, and iRLP, and similar systems, require
some form of user guidance:

¢ Lemma generation: the introduction of an appropriate function definiti terms of the source defin-
ition. The provision of such explicit definitions, where the targetiefined in terms of the source,
generally constitute the well knoweurekastep in unfold/fold transformations, and are notoriously
difficult to automate P]. The unfold/fold strategy is motivated by the observation thaiicant op-
timization of a (declarative) program generally implies the use of a newsiruschema. This process
usually depends on theserproviding the requisite explicit target definition. The strateggrt proceeds
to evaluate the recursive branches of the target definition, primaributgh unfolding with the source
definitions, until a fold (match) can be found with the explicit defori.

¢ Folding: when to fold the eureka definition with the source definitidhis requires using matching as
a means of testing for the successful folding of the target functionitefiwith the source definition.

¢ Application of laws: for example, when to apply associativity.

In subsequent sections we discuss the differences, and advantages, s dpperoach to optimization
has over unfold/fold style program development.

6.1 The Reduced Workload Regarding Dependency Analyses

To understand how the proof tupling approach circumvents the needdage@nd analyze dependency graphs
we shall briefly describe an existing program transformation systatrethploys the tupling technique.
Recently, Chin, a student of Darlington’s, has described several metbodsitomatic program trans-
formation within theHoPE" system P]. By an analysis obymbolic dependency graphsased on7], Chin
is able to describe an automatic procedure for finding a pamatiching tupledy the unfolding of selected
calls to the source program, and then using matching as a means of testsugdessful folding. This is a
significant achievement and represents the first successfull attempt to aaithenaiotoriously difficult un-
fold/fold eureka steps. Chin’s automatic tupling method is best destby example (we shall remain with
the Fibonacci function).
The initial portion of the symbolioG for Fibonacci is shown below in fig.13. As with the symbahc
for the factlist function, fig.9, redundancy is exhibited by momrtlone arrow directed at any particular node.
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fib(n — 2)

Figure 13: The symbolioG for fib(n)
The main idea taken fron?] is that:

An appropriate eureka tuple can be found if and only if there exiptegressive sequencé cuts
thatmatchone another, in the function’s dependency graph.

A cutis defined as a subset of nodes across a dependency graph that when removaddeithe graph
into two disconnected halfs. Arogressive sequena# cuts is a sequence of cuts ordered according to size
(i.e., according to the number of nodes in the subset). A pair ofroatshif a consistent substitution can be
obtained when each function call of the first cut is matched with the corresmpfuhction call of the second
cut??

The finding of an appropriateureka tupledepends on the notion of a continuous sequence of cuts. This is
defined in [7] as follows:

“A continuoussequence of cutsuty, cuts, ..., cut y, iS a successive series of cuts which starts
with the root node as its first cut. This sequence successively obtaimeit cut by giving up a
subset of nodes... from thepmost sebf the current cut in order to acquire the children for the
next cut.”

The topmost set of a cut is defined as a set of nodes whose ancestors aesant prthe cut itself.

Returning to the example and starting with the main function calln8lainalysis replacegib(n), the first
cut, with its two subsidiary callgfib(n — 1), fib(n — 2)). This gives us the second cut. The analysis then
proceeds by unfolding only that call in a cut whichnist a subsidiary call of the other call, i.e., the topmost
item. So, since the function caflib(n — 2) is a subsidiary call offib(n — 1), only fib(n — 1) is unfolded.
This gives the third cut(fz'b(n —2), fib(n — 3)>. The third cut matches the second cut, thus providing the
analysis with a matching tuple.

Chin’s process is essentially the same as that described for Darlingttiolsl/foldtupling technique: the
unfold/fold steps required for the tupling transformation are aekdeby locating a pair of matching tuples
by the unfolding of appropriately selected calls and then using matchingresas of testing for successful
folding.

The main difference between Chin’s and Darlington’s systems is thatsh@fusuch selection ordering
allows for a considerable degree of automation, since once this anslysiseds the main task of the tupling
transformation — finding a successful fold — will have been achieved.

6.1.1 Comparison with Proof Tupling

Chin’s DG analysis tells us two things:

1. firstly, the number®, of subsidiary calls of the main function calls required to form theeipe., the
determination of the tuple size); and

2. secondlywhichsubsidiary calls are to be tabulated.

An advantage oproof tuplingis thatbothof these things, required for the tuple formation, are containecsin th
source proof. This means that they can readily be abstracted from thegmekploited for the construction
of the target tuplevithout any additional dependency graph construction and analysis procedureswilThis

23These terms are formally defined ][
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always be the case for tupling transformations since the eliminagierfermed on the induction hypothesis
in the source will always provide an accurate measure of what recursive alla)aequired to compute the

source course of values procedure, and (b) require tabulation in ordenfmute the target stepwise procedure.
Returning to the Fibonacci example, the required information is readttijrfrom the witness,

J—intro(y1 + y2),

of the source induction step. Iy STER notation this witness is specified in terms of the eliminations on the
induction hypothesig,:

(intro(Zy of p(x) + Iy of p(p(x)))),

This tells us precisely the number @f,and the identity ofp(z) andp(p(z)) the eliminations o, performed
in the source induction in order to introduce recursion in the sofumeetion. In the general case, the dominant
function of the first tuple component will always be that employed aittthection step of the source (where the
number of tuple elements corresponds to the number of source proaialioms on the induction hypothesis).

Note also that no extensive search is involved in the analysis of threesproof in order to determiné
and to witness a value for the tuple components. The portions afdhice proof that are accessed for the
analysis correspond to specific semantic units: the specification, thieatppi of induction, the induction
base and step cases, the unfolding step, and the witnessing rule. Theseadserepresented as distinct
sub-lists within the rule-tree abstractiors®®) and therTsknows precisely where to look in order to access
any of the aforementioned units. For example, the induction step willys correspond to that rule applied
at the deepest node of the decision tree employed to separate the variousScaseihin the rule-tree, the
induction step occurs as the last case of a nested case analysis.

So, unlike program tupling, theTs proof tupling optimizations do not require the construction opa-(
tentially infinite) dependency graph, nor does it require any procedursséoching the dependency graph in
order to find amatching tuple

6.1.2 Tuples As Conjunctions

Within the object-leveloYSTER proofs the tuples are represented simply as conjunctions (hence a tuple
<A, B, C) is represented ad A B A C). Hence, we bypass the need to invent new data-types for tuples
solely for the purposes of transformation. This means we avoid tagetthat (program) tupling techniques
rely heavily on the somewhat ad hoc requirement to introduce tuples,ontedotes or similar objects, and
that we do not require arbitrarily complex tabulating constructs.eéample, program transformations within
Darlington’sFPE environment automate, to some extent, the construction of the eurgkabuincorporating

a large table and managing systeth However, this causes considerable inefficiency since it has the effect of
carrying round potentially huge open-ended tuple structures whogthlestailored to the functions needs.

6.2 Further Advantages Regarding Search, Control and Correctness

The fact that thee Tstransformation tactics are (partially) specified at the meta-level, in tefsyaactic pre-
and post-conditions, reduces the amount of search that would be inubthedarget proof were constructed
at the object-level. In other words, since we can regard the rule-tregsthter with pre- and post-conditions,
as proof plans then a general advantage of perfortaictic transformations-i.e., meta-level transformations
on the object-level tactics — is that the transformation space is equitalamlanning search space which is
far smaller than the object-level search space.

As well as the way that dependencies are sought during tupling transformmaturther factors which
play a beneficial role regarding search and control include the means by Wisidhrget recursive step is
completed, and the form of equation development used all have a sign#itacit on the amount of search
involved during the transformation.

We shall consider in turn how thersreduces the search involved with each of these factors in comparison
with previous program tupling systems (notakty P

6.2.1 Derivational Form: Folding Vs. Fertilization

Darlington’sNLP, and Chin’sHOPE", tuple analysis is motivated by the desire to find a matching tuplelwhi
can be used fdolding. This can involve extensive search. To illustrate this property,ig@al, in fig.14, the
unfold/fold derivation of the efficient Fibonacci procedure:
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e Equational def. offib:

(1) fib(0) =1 Given
(2)  fib(1) =1 Given
(3) fib(z +2) = fib(z + 1) + fib(z) Given

e Derivation of auxilliary tuple functiom:

4)  g(z) (fib(z + 1), fib(z)) Eureka — Definition
(5)  g(0) = (fib(1), fib(0)) Instantiation
(6) = (1,1) Unfolding with 1 and 2
(7) (z+1) = (fib(z +2), fib(z + 1)) Instantiate 4
(8) = (fib(z + 1) + fib(z), fib(z + 1)) Unfold with 3
(9) = (u+v,u) where (u,v) == (fib(x + 1), fib(z)) Abstract
(10) = (u+v,u) where (u,v) == g(z) Fold with 4
e Derivation of fib in terms ofg:
(11) fib(z+2) = wu+ovwhere (u,v) == (fib(z + 1), fib(x)) Abstract 3
(12) = wu+ v where (u,v) == g(z) Fold with 4

Figure 14: Unfold/Fold development of efficient Fibonacci

The development of the target terminating branch is straightforwaregaRling the recursive branch,
unfolding must be performed in order to obtain the explicit defmifi(8), from the eureka definition (4). A
fold step is now required so as to introduce a recursion into (8). €aech for a fold involves observing that
all the components necessary to match the above equation are present withitiahdefinition, (4), for the
auxiliary functiong. Hence (8) is re-written using unfolding amdhere abstractionto (10) which easily folds
with the eureka definition (4) yielding the desired optimized recurd@f@ition (10)*

The derivation of fig.14 illustrates how, within unfold/fold Eysystems, the head of the developing equa-
tions remains constant, and it is only the body that is modified, eewrite rules are only applied to the left
hand side of equations. This form of equation development, togettiethe formal definition of folding7):

If E = E'"andF = F' are equations and there is some occurrencl'iof an instance of’,
replace it by the corresponding instancefbbbtainingF"”’; then add the equatiofi = F",

means that, throughout the equation development, the same equatios hetathied. Hence folding with the
source equations is a necessary requirement at some point in order thuggra recursion into the tail of the
developing equations. There is not, however, any procedure for kigomien to halt unfolding and introduce

a fold (nor when to perform #rced folg. Thus the folding requirement presents control problems, and is
one primary reason why user guidance is usually required in such systesnder to avoid flawed attempts
at folding. The other reason being the provision of the eureka stepsmonding to the generation of the
auxiliary tuple. Note that, regarding fig.14, the control problepiridact, doubled since following the first
fold, (10), further (forced) folding is required, at steps (11) ar®) (1o expresgib in terms ofg.

An advantage of theTstransformations is that they inherit the properties of theorem pgnvinductive
proofs are driven by the heuristic requirement to find a fertilizatithe: proof construction is developed in a
bi-directional manner since both sides of the induction conclusion caerimeitten in the search for matching
(unifiable) terms. The simplest way to illustrate this is to employanetriables (in upper-case) for those
“unknown” portions of the proof (corresponding to the initial ekia step and the witnessing steps). We also
adopt the standard conventional notation for tuples, rather thaowseeRS conjunctive representation, and
use awhere construct to refer to the induction hypothesis. These changes do nahalterdirectional form
of the proof development, but rather makes it easier to see and comparéevithfold/fold style derivation
of fig.14. A characterizing feature of tupling proofs is that the recersigfinition will consist of some, as
of yet unknown, function(s) applied to the tuple components ofridedtion hypothesis?]. Hence we shall
use the meta-variables to represent such functions in our comparatsteailian, fig.15 below, of the target
Fibonacci proof (we show only the induction step case of the auxiliewgfp corresponding to steps (4) to
(14) of fig.14).

24 Abstraction consists of replacing parts of an expressiothé body of an equation, by variables, and then definingeti@sables in
awhereclause. The combination of unfolding and abstraction isetomes referred to a®rcedfolding.
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g(s(n)) = <M1 (u,v),Mg(u,v)>, where <u,v> = g(n);

unfold g unfold g;
(fib(s(s(n))), fib(s(n))) = (Mi(u,v), Ma(u,v)), where (u,v) = {fib(s(n)), fib(n));
unfold fib

<(f1b(9('n)) +f1b('n)),f1b(9(n))> = <M1(71,,U),M2(u, 1))>, where <u, 1)> = <fzb(s’(n)),f1b(n)>,
fertilize (u/fib(s(n)), v/fib(n))
<71,+U,71,> = <M1(71,,U),M2(u, 1))>;
instantiation My = du,v.u+v andMs = du,v . u.

Figure 15: Parallel development of induction conclusion

The important feature to note is the “parallel” development of both heddbady towards a unifiable pattern,
such that induction terms may be eliminated from the conclusion. Thissrthahsince we can modify both
sides of the equation we can avoid the decision(s) as to when, and withteliald. That is, we can limit
the process to the iterative application of unfolding with equatioréihdions. This significantly reduces the
search space, and on the available evidence is much easier to control (it iglgretiat is formally captured
by the rippling technique?? and§??).

6.2.2 Law Application

A notorious problem with unfold/fold is that there is no prinégdimeans of applying semantic laws. That
many unfold/fold transformations may require the numerous and wbatearbitrary application of laws, for
which any overall strategy is difficult to characterize, means that user-inemastiusually required. Thus
an advantage of operating within a proof theoretic framework is the cltyaioi automatically form and
apply rewrites from semantic laws. By semantic laws we usually mean éansonch as thassociativity of
append rather than the lemmas used for the purposes of verification in our egamgkeveral examples of
such principled law application can be found #.[

6.2.3 Correctness

More recentincarnations of the unfold/fold strategy have been shobad¢orrectness guaranteed for specified
classes of functiongf{. [?] and [?]). However, each extension to the class of functions requires a corrdisgon
extension to the correctness procedures, and this leads to a considerdbitead (proportional to the
range of transformations — generality— of the system).

This is not a problem regarding tirg's, and any future extensions thereof: synthesis proofs must contain a
verification proof that the extract term computes the task described bgéldisation. Thus, extract programs
are correct with respect to the complete specifications of the synthesis frmm which they are extracted.
Hence the correctness afl transformations is ensured without having to additionally preyit extend, any
correctness criteria, or proof, each time we extend the range of programisith the transformations are
applicable.

Stricktly speaking, we have only addresgedtial correctness. Total correctness involves providing ter-
mination conditions in addition to ensuring that the output progcomputes the desired function. As stated in
the previous section, a problem with controlling unfold/folartsformations is knowing when to stop unfold-
ing and introduce the crucial fold step into the derivation. This can leadhtinfinite regression of unfolding
and lemma applications. In the case of proof transformation, termmatimply corresponds to the comple-
tion of the target proof: when the rewriting of the induction cosam has been successfully driven toward
fertilization with the hypothesis. Unlike folding, fertilizatiaa well-founded.

6.3 Generality: Exploiting Proof Plans

In §?? we remarked that since the majority inductive proofs pertain to the ¢tommaal) pattern that theTs

design need not be altered for disparate inductive proof transfornsgtiouns the majority of proofs employing
course of values induction can be transformed into an equivalent, buteffimient, stepwise inductive proof).
That there is a high degree of similarity in the overall shape of tdadtiveproof trees(and in the strategy
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employed in inductive proofs) requires some explanation if our claiomeerning the generality of thers
design are to be justified. This will also be relevant to the subsegeetibn on future research.

Inductive proofs, including the source and target Fibonacci proo¥syiably involve a process whereby
formulae are unfolded by replacing terms by suitably instantiated defisit The proliferation of this process
such that recursive terms are gradually removed from the recursive brantlyethe repeated unpacking of
induction terms — is part of the (heuristic) process knowrigding. A simple examples of this would be the
application of the recursive branch of thgpend definition:

append(e :: l1,1s) = e ::append(ly,ls)

The termsappend(ly1,12) would unify (fertilize) with the respective induction hypothesishus the goal of
rippling is precisely that of the induction step: to reduce the indincitep case to terms which can be fertilized
with those in the induction hypothesis, or those in subsequeivatiens of the induction hypothesis.

( Vz input 3y output spec(input,outp@)

<= specific to synthesis

additional cases (if any w N

777777777777 ( BASE CASE )

additional cases (if any)

STEP CASE )

<= specific to synthesis

rippling
(iterative unfolding)

:__(nested) induction _,
fertilization

Figure 16: Proof plan for induction strategy

This common pattern to inductive theorem proving allows for the canson of a general inductioproof
plan, specified at the meta-level, which can then be used for guiding a whole gawhiject-level proofs. In
fig.16 we have represented the key decisions and choice commitments nmaadeadtypical inductive proof.
These will involve applying one of the numeroogsTERinduction rules and then witnessing the existential
quantifier, usingd — intro, at each of the induction cases (where, as indicated in fig.16, the applicatioa of
intro rules are specific to inductiveynthesiproofs). We have indicated, within dashed boxes, that, following
the witnessing steps of the (outermost) induction, there may ocautlaEefnestednduction. These will take
the same format as the outermost induction. Finally, we must vdriflythe instantiated schema will yield a
recursive schema that will compute the input-output relation specifititei main conjecture.

The fact that inductive proofs invariably pertain to this common fanoréases our expectations that there
will be no need to build into theTsad hoc and diverse mechanisms for dealing with substantially different
patterns of proof.

In §??we briefly discuss directly exploiting proof plans for the purposigsroof transformation.

6.4 Applications and Future Research

In this section we consider the applications (potential and real), anctfatenues of research, regarding proof
transformations.

6.4.1 Optimizing Recursion

The vast majority of commercial software involves the computation ofredeeifunctions, and to prove theor-
ems about such functions it is necessary to use mathematical induction. Tfutagmsuch proofs, whether or
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not the aim is to optimize associated program constructs, requires thémaactor correct and well-founded
induction transformations. This research, albeit embryonic, makes aniiogtd into this requirement: the
more that theorem proving, and in particular inductive theorem pro¥arms the basis of automatic program-
ming then the more that proof transformation becomes a viable meansofdding automatic, correctness
guaranteed optimization.

Anticipated future applications of this research include the optimimadfoelectronic circuit design and
the optimization of computer configurations. This is because both tre=ggn problems can be formally cast
as processes of inferenc® [?]. Thus, we can apply the same automated theorem proving techniques that we
use for high quality software production.

6.4.2 Software Quality: Efficiency and Reliability

As stated at the outsé??, the research described herein addresses both the reliability and efficien@fl as w
as the automatability, criteria of developing high quality softwaseng formal methods. Formal methods
allows us to employ the better understood techniques of theorem primvingarantee these criteria.

In this paper we used simple examples of linearization and the removaltefimesursion to illustrate the
methodology. However, more complex optimizations are possiblesinyg different (non-primitive) induc-
tions to construct the target proof: iff][we explain how linear procedures can be optimized to logarithmic
procedures through proof transformation by using the methadatfix multiplicationand replacing thetep-
wiseinduction employed in the source proof by a targeide and conqueinduction.

Future anticipated extensions include the systemization of more esotduction transformations in-
volving schemas such as induction based on the construction of numbecglastp of primesT].

6.4.3 An Aid for Synthesis

On empirical evidence alone, there appears to be an inverse relation betwelea omethand, the efficiency
of the recursive process generated by an extract, and on the other, the xityrgfléhe proof from which it
was extracted? This evidence has been gleaned from a study of synthesizing severagjsgorithms in
the NUPRL system where the extracts corresponding to various synthesizedysalgiorithms are compared
with the syntactic density of the associated pro@js [Further evidence is provided from research regard-
ing pruning inductive proof trees in order to adapt the associated extragtam [?, ?]. So, for example,
transformations which increase the syntactic complexity of a sourceseati values proof, by performing
proof transformations that cut in (or sequence) an additional sub-pralbfdiecrease the complexity of the
recursive behaviour of the extract programs (from exponential &atin One practical contribution of a proof
transformation system is, therefore, that it enables the synthesizeathammechanical) to construct short,
elegant proofs, without clouding the design process with efficiersyyets, and then to transform them into
opaque proofs that yield efficient programs.

The inverse complexity relation is something which merits furthearditbn but for which, as of yet, there
is only empirical justification and a quasi-theoretical foundati®@n [ntuitively speaking, however, the extra
complexity associated with a target proof can be thought of as addititieaimation required to compute the
specified input/output relaticefficientlyas opposed to simply ensuring that the specified input/output relation
is computed.

6.4.4 Exploiting Proof Planning

The automaticcLAM proof-planning systenfiormally encapsulates, in a meta-logic, the common shape of
inductive proofs discussed i§??. The system automatically constructs meta-lgwelof plan represent-
ations from proof specifications?] These proof plans can then be used to guide the object level syn-
thesis/verification, with the advantage that the planning search spacesid@@ily smaller than the object-
level oysTERsearch space. The proof plans can then be used, as a general strategy, toegwfieeiment of
specific specifications?[ ?]. Of particular significance is the systemization of the rippling réing process:
definitional equations are converted into appropriate re-write rulesitir a special annotation process. The
annotations mark the differences between the two sides of the equatioanibated rewrite rule so formed
can then be matched against proof (sub)goals and the (sub)goal rewrittediaglyc®

25This is despite the fact that human theorem provers are lydtaihed to find short, elegant proofs rather than long ojgaones.
26This very brief outline is only barely representative of therent state of rippling, and of its use in automatic proahgformation.
For full details the reader should consu#.[
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Anticipated future research includes extendingrhisto be fully compatible with theLAM system. This
means that any source to target proof transformations can exploit toégamning facilities thus leading to
greater generality and automatability of the class of optimizations amemetble system. At present tirg's
must constantly access the source proof in order to complete the targét phe adapted version will need
only to access the source to obtain information such as tuple identifi@iginduction withesses. The target
proof can then be completed using the automatic reasoning systemizedtinatlieproof-planning system.

7  Summary

We described the fundamentals of a working synthesis proof tranaf@mmsystem. The novel aspect of
this research is that program optimization is achieved through the tranafion of synthesigroofs. In
particular, recursive programs are optimized by transforming indectixnthesis proofs. Techniques from
the field of program transformation may be used to transform the catipoal content of a proof. An
important technique for transforming exponential behaviour imedr behaviour isupling. TheprTs unlike
other existing transformation systems, performs this techniqueyarthesis) proofs. The system satisfies the
desirable properties for a transformation system of correctness, gépexatiomatability and the means to
guide search through the transformation space.

The benefits of the proof transformation approach include the fact tivat ieformation contained in the
proofs, but not programs, can be exploited to automatically guidéréimsformations. In particular: proofs
contain a verification component, and; dependency information abstractadHeosource proof guides the
transformations without the need for any extensive dependency graptsianal

The source and target programs of traditional program transformaggiaras do not have a formal spe-
cification present, nor, as mentioned above, a verification component. This theasis no immediate means
of checking that the target program meets the desired operational criteriardregproof transformation, all
transformed programs are correct with respect to their specifications, andsweeehat the target computes
the same specified input/output relation as the source (only more effjgien

With the more traditional program development systems which empewunfold/fold technique, it is the
automationof the lemma generating procedures aimdparticular, the subsequent folding with the lemmas,
that have proved, to date, difficult to automate. We described how, vittkinontext of proof transformation,
target tuple definitions can be automatically generated by analysing sountiéiale$i The problem ofolding
has been circumvented within the proof transformations since, due tetiuent calculus notation and the
manner in which proofs are refined, we need use only unfolding: recuesines, corresponding to source
proof induction terms, are eliminated from the target recursive brandoesssponding to the target proof
induction branches, by unfolding until fertilization applies.

The source and target programs of traditional program transformati&iaras do not have a formal spe-
cification present. This means there is no immediate means of checking thatgbe grogram meets the
desired operational criteria. Regarding proof transformation, all foamed programs are correct with re-
spect to their specifications, and we ensure that the target computes thepsaifiedinput/output relation as
the source (only more efficiently).

An important commitment regarding the recursive behaviour of araekgrogram is the choice of induc-
tion schemata (and how the cases are satisfied). By exploiting the conmucini®e ofoy STERinductive syn-
thesis proofs we can transform the induction schema employed in ayieddihg an inefficient program into
a schema such that the new target proof yields a more efficient progransfdmawation is achieved through
the application oproof transformation tacticto internal representations of tlier STERproofs. Since we can
provide a general proof plan for inductive (synthesis) proofs, themran build general transformation tactics
for optimizing the recursive programs that they synthesize.
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