Skip to main content
Log in

STMM: A Set Theory for Mechanized Mathematics

  • Published:
Journal of Automated Reasoning Aims and scope Submit manuscript

Abstract

Although set theory is the most popular foundation for mathematics, not many mechanized mathematics systems are based on set theory. Zermelo–Fraenkel (ZF) set theory and other traditional set theories are not an adequate foundation for mechanized mathematics. STMM is a version of von-Neumann–Bernays–Gödel (NBG) set theory that is intended to be a Set Theory for Mechanized Mathematics. STMM allows terms to denote proper classes and to be undefined, has a definite description operator, provides a sort system for classifying terms by value, and includes lambda-notation with term constructors for function application and function abstraction. This paper describes STMM and discusses why it is a good foundation for mechanized mathematics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Aczel, P.: Non-Well-Founded Sets, CSLI Publications, Stanford, 1988.

    Google Scholar 

  2. Barros, B. et al.: The Coq proof assistant reference manual, version 6.1. Available at ftp://ftp.inria.fr/INRIA/coq/V6.1/doc/Reference-Manual.dvi.gz, 1997.

  3. Beeson, M.: Formalizing constructive mathematics: Why and how? in F. Richman (ed.), Constructive Mathematics: Proceedings, New Mexico, 1980, Lecture Notes in Math. 873, Springer-Verlag, 1981, pp. 146-190.

  4. Beeson, M. J.: Foundations of Constructive Mathematics, Springer-Verlag, Berlin, 1985.

  5. Boyer, R. and Moore, J.: A Computational Logic Handbook, Academic Press, 1988.

  6. Burge, T.: Truth and Some Referential Devices, Ph.D. Thesis, Princeton University, 1971.

  7. Burge, T.: Truth and singular terms, in K. Lambert (ed.), Philosophical Applications of Free Logic, Oxford University Press, 1991, pp. 189-204.

  8. Char, B. W., Geddes, K. O., Gonnet, G. H., Leong, B. L., Monagan, M. B., and Watt, S. M.: Maple V Language Reference Manual, Springer-Verlag, 1991.

  9. Constable, R. L., Allen, S. F., Bromley, H. M., Cleaveland, W. R., Cremer, J. F., Harper, R. W., Howe, D. J., Knoblock, T. B., Mendler, N. P., Panangaden, P., Sasaki, J. T., and Smith, S. F.: Implementing Mathematics with the Nuprl Proof Development System, Prentice-Hall, Englewood Cliffs, New Jersey, 1986.

    Google Scholar 

  10. Craigen, D., Kromodimoeljo, S., Meisels, I., Pase, B., and Saaltink, M.: EVES: An overview, Technical Report CP-91-5402-43, ORA Corporation, 1991.

  11. Farmer, W. M.: A partial functions version of Church's simple theory of types, J. Symbolic Logic 55 (1990), 1269-1291.

    Google Scholar 

  12. Farmer, W. M.: A simple type theory with partial functions and subtypes, Ann. Pure Appl. Logic 64 (1993), 211-240.

    Google Scholar 

  13. Farmer, W. M.: Theory interpretation in simple type theory, in J. Heering et al. (eds), Higher-Order Algebra, Logic, and Term Rewriting, Lecture Notes in Comput. Sci. 816, Springer-Verlag, 1994, pp. 96-123.

  14. Farmer, W. M.: Reasoning about partial functions with the aid of a computer, Erkenntnis 43 (1995), 279-294.

    Google Scholar 

  15. Farmer, W. M. and Guttman, J. D.: A set theory with support for partial functions, Studia Logica (2000). Forthcoming.

  16. Farmer, W. M., Guttman, J. D., and Thayer Fábrega, F. J.: IMPS: An updated system description, in M. McRobbie and J. Slaney (eds), Automated Deduction-CADE-13, Lecture Notes in Comput. Sci. 1104, Springer-Verlag, 1996, pp. 298-302.

  17. Farmer, W. M., Guttman, J. D., and Thayer, F. J.: Little theories, in D. Kapur (ed.), Automated Deduction-CADE-11, Lecture Notes in Comput. Sci. 607, Springer-Verlag, 1992, pp. 567-581.

  18. Farmer, W. M., Guttman, J. D., and Thayer, F. J.: IMPS: An Interactive Mathematical Proof System, J. Automated Reasoning 11 (1993), 213-248.

    Google Scholar 

  19. Farmer, W. M., Guttman, J. D., and Thayer, F. J.: The IMPS user's manual, Technical Report M-93B138, The MITRE Corporation, 1993. Available at http://imps.mcmaster.ca/doc/.

  20. Farmer, W. M., Guttman, J. D., and Thayer, F. J.: Contexts in mathematical reasoning and computation, J. Symbolic Comput. 19 (1995), 201-216.

    Google Scholar 

  21. Gödel, K.: The Consistency of the Axiom of Choice and the Generalized Continuum Hypothesis with the Axioms of Set Theory, Ann. Math. Stud. 3, Princeton University Press, 1940.

  22. Gordon, M.: Set theory, higher order logic or both? in J. Grundy and J. Harrison (eds), Theorem Proving in Higher Order Logic: 9th International Conference, TPHOLs'96, Lecture Notes in Comput. Sci. 1125, Springer-Verlag, 1996, pp. 191-202.

  23. Gordon, M. J. C. and Melham, T. F.: Introduction to HOL: A Theorem Proving Environment for Higher Order Logic, Cambridge University Press, 1993.

  24. Kunen, K.: Set Theory: An Introduction to Independence Proofs, North-Holland, 1980.

  25. Lamport, L. and Paulson, L. C.: Should your specification language be typed? ACM Transactions on Programming Languages and Systems 21 (1999), 502-526.

    Google Scholar 

  26. McCune, W.: OTTER 2.0, in M. E. Stickel (ed.), 10th International Conference on Automated Deduction, Lecture Notes in Comput. Sci. 449, Springer-Verlag, 1990, pp. 663-664.

  27. Megill, N. D.: Metamath: A Computer Language for Pure Mathematics, 1997. Available at http://www.shore.net/_ndm/java/mm.html.

  28. Mendelson, E.: Introduction to Mathematical Logic, Van Nostrand, 1964.

  29. Monk, L. G.: PDLM: A Proof Development Language for Mathematics, Technical Report M86-37, The MITRE Corporation, Bedford, Massachusetts, 1986.

    Google Scholar 

  30. Montague, R.: Semantic closure and non-finite axiomatizability, in Infinitistic Methods, Pergamon, 1961, pp. 45-69.

  31. Nederpelt, R. P., Geuvers, J. H., and De Vrijer, R. C. (eds): Selected Papers on Automath, Stud. Logic Found. Math. 133, North-Holland, 1994.

  32. Novak, I. L.: A construction for models of consistent systems, Fund. Math. 37 (1950), 87-110.

    Google Scholar 

  33. Owre, S., Rajan, S., Rushby, J. M., Shankar, N., and Srivas,M.: PVS: Combining specification, proof checking, and model checking, in R. Alur and T. A. Henzinger (eds), Computer Aided Verification: 8th International Conference, CAV '96, Lecture Notes in Comput. Sci. 1102, Springer-Verlag, 1996, pp. 411-414.

  34. Paulson, L. C.: Set theory for verification: I. From foundations to functions, J. Automated Reasoning 11 (1993), 353-389.

    Google Scholar 

  35. Paulson, L. C.: Isabelle: A Generic Theorem Prover, Lecture Notes in Comput. Sci. 828, Springer-Verlag, 1994.

  36. Quaife, A.: Automated deduction in von Neumann-Bernays-Gödel set theory, J. Automated Reasoning 8 (1993), 91-147.

    Google Scholar 

  37. Rosser, J. B. and Wang, H.: Non-standard models for formal logics, J. Symbolic Logic 15 (1950), 113-129.

    Google Scholar 

  38. Rudnicki, P.: An overview of the MIZAR project, Technical report, Department of Computing Science, University of Alberta, 1992.

  39. Schock, R.: Logics without Existence Assumptions, Almqvist & Wiksells, Stockholm, Sweden, 1968.

    Google Scholar 

  40. Shoenfield, J.: A relative consistency proof, J. Symbolic Logic 19 (1954), 21-28.

    Google Scholar 

  41. Tarski, A.: Ñber unerreichbare Kardinalzahlen, Fund. Math. 30 (1938), 68-89.

    Google Scholar 

  42. Wolfram, S.: Mathematica: A System for Doing Mathematics by Computer, Addison-Wesley, 1991.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Farmer, W.M. STMM: A Set Theory for Mechanized Mathematics. Journal of Automated Reasoning 26, 269–289 (2001). https://doi.org/10.1023/A:1006437704595

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006437704595

Navigation