

P1: NRM/SCM P2: NRMP1: NRM/SCM P2: NRM

Machine Learning 02-Bshouty December 11, 1996 13:59

Machine Learning 26, 25–41 (1997)
c© 1997 Kluwer Academic Publishers. Manufactured in The Netherlands.

Exact Learning of Formulas in Parallel

NADER H. BSHOUTY bshouty@cpsc.ucalgary.ca
Department of Computer Science, University of Calgary, Calgary, Alberta, Canada T2N 1N4

Editor: Wolfgang Maass

Abstract. We investigate the parallel complexity of learning formulas from membership and equivalence queries.
We show that many restricted classes of boolean functions cannot be efficiently learned in parallel with a polynomial
number of processors.

Keywords: parallel learning, exact learning, membership and equivalence queries

1. Summary of results

In Angluin et al. (1993) present a polynomial time algorithm for learning (boolean) read-
once formulas from membership and equivalence queries, and they pose the question of
whether it is possible to obtain significant speed-up by using parallelism. This paper ad-
dresses this question as well as the more general question of when learning problems that
can be solved sequentially in polynomial time can be solved quickly in parallel.

The model of learning that we consider is “exact” learning with membership and equiva-
lence queries. We obtain both lower and upper bounds on the parallel complexity of several
learning problems in this model.

We first show that classes overn variables that cannot be learned with poly(logn) equiv-
alence queries cannot be learned efficiently in parallel from equivalence queries only. This
result implies that all the interesting classes known from the literature are not efficiently
learnable in parallel from equivalence queries only.

For parallel learning from membership and equivalence queries we show the following.
With respect to read-once formulas, we show that boolean read-once formulas withn
variables require at leastÄ(n/ logn) parallel steps to learn using a polynomial number of
processors.

We also show thatÄ(n/ logn) parallel steps are required for other learning problems
for which sequential polynomial time learning algorithms exist. These include the more
restricted learning problems of read-once monotone formulas and read-once DNF formulas.
Also, the lower bound holds for monotone DNF formulas and 2-DNF formulas (sequentially
learnable in polynomial time by Angluin (1987).

All lower bounds hold even if the PRAM model is “information theoretic”, that is, it
allows unlimited computational power and the equivalence oracle acceptsany boolean
formula (not necessarily one in the class being learned). This latter property is significant
because it implies that any of our lower bounds for a classC of formulas immediately

P1: NRM/SCM P2: NRMP1: NRM/SCM P2: NRM

Machine Learning 02-Bshouty December 11, 1996 13:59

26 N.H. BSHOUTY

extends to any class of functions that containsC and to any learning from any class of
hypothesisH (in particular, proper learning).

We also extend the Halving algorithm that learns any classC from log|C| equivalence
queries (Littlestone, 1988) to a parallel halving algorithm withp processors that learns the
classC from O(log |C|/ log p) parallel steps of membership and equivalence queries. For
most of the above classes this bound is nearly tight.

A related work is by Vitter & Lin (1992) who investigate the parallel complexity of
learning in the PAC model (Valiant, 1984).

This paper is organized as follows. Section 2 contains some preliminary definitions.
Section 3 contains a lower bound for parallel learning from equivalence queries. Section 4
contains the upper bounds for parallel learning from membership and equivalence queries
and Section 5 contains a lower bound technique for classes that are learnable from mem-
bership and equivalence queries. In Section 6 we give lower bounds for parallel learning
classes of boolean functions and in Section 7 we give a lower bound for parallel learning
monotone read-once formulas. Section 8 contains conclusion and open problems.

2. Preliminary definitions

The learning criterion we consider isexact identification. There is a formulaf called the
target formulawhich is a member of a class of formulasC defined over the variable setV .
The goal of the learning algorithm is to halt and output a formulah from C that is logically
equivalent tof . Note that the targetf is an (arbitrary) unknown formula chosen from the
target classC that is known to the learner.

In amembership query, the learning algorithm supplies an assignmenta to the variables
in V as input to amembership oracleand receives in return the value off (a).

In an equivalence query, the learning algorithm supplies any formulah as input to an
equivalence oracleand the reply of the oracle is either “yes”, signifying thath is equivalent
to f , or acounterexamplewhich is an assignmentb such thath(b) 6= f (b).

In the learning procedures given in this paper we assume that the algorithm has access to
membership and equivalence oracles for a target formulaf over a variable set{x1, . . . , xn}.
The functions inC are represented in some fixed representationR ⊆ {0, 1}∗. For any
f ∈ C let s(f) be the minimal size of string inR that representsf . We say that a class
of boolean functionsC over n variables isefficiently learnablein parallel if there exists
a parallel learning algorithm that learns anyf ∈ C with poly(n, s(f)) processors and
poly(logn, logs(f)) time. This definition is similar to the definition of efficient parallel
algorithms for solving problems in that the number of processors is polynomial in the input
size and the time is poly(log) in the input size. In this paper all logarithms are base 2.

3. Lower bound for parallel learning from equivalence queries

In this section we give a lower bound for parallel learning from equivalence queries. We
show that if the class of conceptsC cannot be learned sequentially in poly(logn) queries
then it is not efficiently learnable in parallel even with unlimited computational power.
This shows that all the interesting classes considered in the literature that are efficiently

P1: NRM/SCM P2: NRMP1: NRM/SCM P2: NRM

Machine Learning 02-Bshouty December 11, 1996 13:59

EXACT LEARNING OF FORMULAS IN PARALLEL 27

sequentially learnable from equivalence queries only and all the classesC with log |C| ≥
ω(poly(logn)) are not efficiently learnable in parallel.

Let C be a class of boolean functions and leteC be the minimal number of equivalence
queries needed to learn the classC from equivalence queries only. LetEC(p) be the minimal
number of parallel equivalence queries steps needed to learnC with p processor. Our main
theorem is stated next.

Theorem 1. For any class of boolean functions C we have

EC(p) ≥ eC

dlog pe .

In particular, we have

EC(poly(n)) ≥ Ä

(
eC

logn

)
and if eC = ω(poly(logn)) then there is no efficient parallel algorithm that learns C from
equivalence queries only.

Proof: LetA be an algorithm that learns the classC in parallel inEC(p) parallel steps.
Each parallel step contains at most (w.l.o.g exactly)p equivalence queries. We change the
algorithmA to a sequential algorithmB as follows. AlgorithmB runs algorithmA until it
asksp equivalence queries in one parallel step. LetH = {h1, . . . , hp} be the hypotheses of
the equivalence queries. The sequential algorithmB will run the following procedure. In
this procedure the function Maj(L) is the majority function of all functions inL. That is,

Maj(L)(a) =
{

0 more that|L|/2 functions f ∈ L satisfy f (a) = 0,

1 otherwise.

Seq(H).

1. L ← H, B ← ∅.
2. Ask an equivalence queries withh = Maj(L) and get a counterexampleb. If the answer

is YES then outputh.
3. Eliminate fromL all hi that satisfyh(b) 6= hi (b).
4. B ← B ∪ {b}
5. If L = ∅ then returnB else goto 2.

We claim that the procedureSeq(H) asksdlog pe equivalence queries and returns coun-
terexamples for allhi ∈ H . To show this notice that each time we ask an equivalence query
the counterexampleb will be a counterexample for at least half the hypotheses inL. This
is because Maj(L)(b) 6= f (b) and therefore at least half of the functions inL do not agree
with f on b. Therefore the number of equivalence queries asked by the algorithmB is at
mostt = EC(p)dlog pe. Sincet ≥ eC the result of the theorem follows. 2

P1: NRM/SCM P2: NRMP1: NRM/SCM P2: NRM

Machine Learning 02-Bshouty December 11, 1996 13:59

28 N.H. BSHOUTY

4. Upper bounds for parallel learning from membership
and equivalence queries

In this section we generalize the sequential Halving algorithm for learning any classC from
log |C| equivalence queries to a parallel Halving algorithm withp processors that learns
any classC with log |C|/ log p parallel membership and equivalence queries. Here and
throughout the paper when we say that the number of queries ist we always mean that it is
t + o(t). This, in particular, will be used to avoid (extra) floor and ceiling operations.

The model of computation (of the learner) will be any PRAM model with unlimited
computational power. We call this model UPRAM. All the computations computed by
the UPRAM are free and the parallel learning complexity will be the number of parallel
membership and equivalence query steps. A UPRAM withp processors can ask a total
number ofp membership and equivalence queries in one step. The equivalence queries
can be asked with any boolean functiong. A UPRAM with one processor will be called
a UPRAM. We define MEC(p) to be the number of parallel steps needed to learn any
formula from the classC in a UPRAM withpprocessors using membership and equivalence
queries.

In the sequential Halving algorithm (Littlestone, 1988), the learning algorithm, at some
stage, knows that the targetf ∈ C is consistent with some labeled assignmentsA. The
learning algorithm then proceeds as follows. It defines the classC(A) of all functions in
C that are consistent with the target on the assignmentsA. If C(A) contains one function
h thenh must be the target. In that case the algorithm outputsh and halts. Otherwise the
algorithm asks an equivalence query with the hypothesis Maj(C(A)), the majority of all
the functions inC(A). A counterexamplea to this hypothesis will be added toA. Now it
is easy to see that

|C(A ∪ {(a, f (a))})| ≤ |C(A)|
2

.

Therefore the worst case number of equivalence queries asked by the Halving learning
algorithm is at most log|C|.

Since each counterexample providesn+1 bit information the information theoretic lower
bound for learningC is log|C|/(n + 1) equivalence queries.

Before we present the parallel Halving algorithm we give the following definitions. For
a class of functionŝC, an integerr and an assignmenta we say thata is anr -assignment
with respect toĈ if more than|Ĉ| − |Ĉ|/r of the functions inĈ have value 0 fora or more
than|Ĉ|− |Ĉ|/r of the functions inĈ have value 1 fora. The classĈ is called anr -class if
every assignment is anr -assignment with respect to the classĈ. An r -strategy treefor the
classĈ is a tree whose internal nodes are labeled with pairs(C̃, a) whereC̃ ⊂ Ĉ, a is an
assignment and the leaves of the tree are labeled with(C̃, NIL) whereC̃ ⊂ Ĉ. The node
for classC̃ ⊂ Ĉ is defined as follows: IfC̃ is anr -class or|C̃| ≤ |Ĉ|/r then the node is
a leaf labeled with(C̃, NIL). Otherwise, leta be a witness that̃C is not anr -class. Then
the node is labeled(C̃, a), its left child is anr -strategy tree for̃C0 = { f ∈ C̃ | f (a) = 0}
and its right child is anr -strategy tree forC̃1 = { f ∈ C̃ | f (a) = 1}. Notice that since
C̃0 ∪ C̃1 = C̃ andC̃0 ∩ C̃1 = ∅ the set of classes in the leaves of the tree is a partition ofC̃.

P1: NRM/SCM P2: NRMP1: NRM/SCM P2: NRM

Machine Learning 02-Bshouty December 11, 1996 13:59

EXACT LEARNING OF FORMULAS IN PARALLEL 29

Figure 1. An example of a 3-strategy tree. The setsC1, C3 andC4 are disjoint andC = C1 ∪ C3 ∪ C4.

We first prove the following.

Claim 1. The number of internal nodes in any r-strategy tree is at most2r .

Proof: SupposeV are the nodes of the tree and letCv, for all v ∈ V , be the class corre-
sponding to nodev. Let v be a leaf in the tree and letuv be the parent node ofv. Sinceuv

is not a leaf we must have|Cuv
| > |C(A)|/r (otherwiseuv would be a leaf). Since the set

of all Cuv
for all leavesv is a partition forC(A), the number ofuv is at mostr and therefore

the number of leaves in the tree is at most 2r . 2

In the parallel Halving algorithm the learning algorithm, at some stage, knows that the
target f ∈ C is consistent with some labeled assignmentsA. The learning algorithm then
proceeds as follows. Letq = p/2 wherep is the number of processors. The algorithm
will build a q-strategy tree forC(A). The algorithm can do this because it has unlimited
computational power. The algorithm then asks one parallel step of membership queries
for all the assignments in the internal nodes of the tree. When the algorithm looks at the
answers of the membership queries, they will lead it to some leafv in the tree. If this leaf
is aq-class leaf we ask one equivalence query with the hypothesis Maj(Cv) whereCv is
the class in the leafv. Since the class isq-class the counterexample guarantees a reduction
in the size of the classC(A) by a factor ofq. If this leaf satisfies|Cv| ≤ |C(A)|/q then
we do not need to ask the equivalence query. Therefore using at most two parallel steps we
reduce the size ofC(A) by a factor ofq.

Now, the number of membership queries asked in this step was the number of internal
nodes in the strategy tree and by Claim 1 this is at most 2q = p.

Since every two parallel steps reduce the size of the class by a factor ofq, the number of
parallel steps is

t = 2 log|C|
logq

with p = 2q processors. This implies the following. Note that the bound in the following
theorem ist + o(t).

P1: NRM/SCM P2: NRMP1: NRM/SCM P2: NRM

Machine Learning 02-Bshouty December 11, 1996 13:59

30 N.H. BSHOUTY

Theorem 2. The parallel Halving algorithm learns any class C with p processors and

MEC(p) ≤ 2 log|C|
log p

parallel steps.

The bound in Theorem 2 can be reduced by a factor of 2 if we ask membership queries
for all the internal nodes and equivalence queries with the majority of all of the classes in
the leaves in one step (at the expence of more equivalence queries).

Notice also that the parallel algorithm in Theorem 2 can be regarded as log|C|/ log p
pairs of parallel steps where in each pair the first component contains at mostp membership
queries and the second component contains at most one equivalence query. If we change
this algorithm to a sequential algorithm we get an algorithm that uses

m = p
log |C|
log p

membership queries andlog |C|
log p equivalence queries. Therefore, ifp ≥ 2 (and therefore

m ≥ log |C|)

p = m

log |C| log p ≥ m

log |C|

and the number of equivalence queries in the algorithm is

log |C|
log p

≤ log |C|
logm − log log|C| .

Let C be a class of boolean formulas. LeteC(m) be the number of equivalence queries
needed to learn the functions inC using a URAM when onlym membership queries are
allowed to be asked by the learner. Obviously,eC(m′) ≥ eC(m) for m′ ≤ m and for classes
C ⊆ 2X whereX = {0, 1}n we haveeC(2n) = 0. The above gives the following upper
bound foreC. This upper bound is also proven in (Bshouty et al., 1993).

Lemma 1. For any class C of boolean functions, if m ≥ log |C| then we have

eC(m) ≤ log |C|
logm − log log|C| .

5. Lower bounds for parallel learning from membership and equivalence queries

In this section we develop a new technique for proving lower bounds for parallel learn-
ing from membership and equivalence queries. The lower bounds are for the worst case
complexity, i.e., a learner withp processors tries to learn a formula from some classC.

P1: NRM/SCM P2: NRMP1: NRM/SCM P2: NRM

Machine Learning 02-Bshouty December 11, 1996 13:59

EXACT LEARNING OF FORMULAS IN PARALLEL 31

An adversary chooses the target functionf ∈ C and answers the queries of the learner.
The learner can ask the adversary queries and the adversary provides the learner with true
answers. The adversary can change the formula during the learning process but this formula
should be consistent with all the answers of the queries already asked by the learner. The
adversary will change the formula so that it will be hard for the learner to learn it.

We show thatk independent equivalence queries can be simulated byk − 1 membership
queries and one equivalence query. We can therefore find lower bounds on the number of
equivalence queries needed to learn the above classes in parallel.

Our main theorem is:

Theorem 3. Let C be a class of boolean formulas. We have

MEC

(⌊
m

eC(m)

⌋)
≥ eC(m).

Proof: LetA be an UPRAM algorithm that learnsC using p = bm/eC(m)c processors
ande < eC(m) steps. We will show how to change this algorithm to a sequential algorithm
in the URAM model that usesm′ ≤ m membership queries ande equivalence queries.
Sincee < eC(m) ≤ eC(m′), we get a contradiction and the result follows.

Suppose that the first step inA makesr equivalence queries with distinct boolean
functionsg1, . . . , gr ands membership queries withr + s ≤ p. In the URAM model
we ask the same membership queries sequentially. For the equivalence query we define
S ← {g1, . . . , gr }. We now show how to change ther equivalence queries tor −1 member-
ship queries and one equivalence query. At stagej < r the setSwill containr − j + 1 ≥ 2
boolean functions. We choose any twogi1 andgi2 functions inS and find an assignment
a such thatgi1(a) 6= gi2(a) (this can be done for free in the URAM model). We then
use the membership query to findf (a). Obviously, there must be aj ∈ {1, 2} such that
f (a) 6= gi j (a) and we then provide the algorithmA with the counterexamplea for gi j and
defineS ← S\{gi j }. This process will stop afterr − 1 membership queries, i.e., when the
setScontains one element. For this element we use the equivalence oracle. We repeat this
procedure for each step.

This sequential algorithm uses at mostm′ = bm/eC(m)ce ≤ m membership queries and
e < eC(m) equivalence queries. 2

The results of Lemma 1 with Theorems 2 and 3 provide the following.

Corollary 2. Let C be a class of boolean formulas. For|C|1/2 ≥ p ≥ log5 |C| we have

MEC(p) ≥ eC

(
2p log |C|

log p + log log|C|
)

and for p< log5 |C| we have

MEC(p) ≥ eC

(
log6 |C|

3 log log|C|
)

.

P1: NRM/SCM P2: NRMP1: NRM/SCM P2: NRM

Machine Learning 02-Bshouty December 11, 1996 13:59

32 N.H. BSHOUTY

Proof: Let |C|1/2 ≥ p ≥ log5 |C| and

m = 2p log |C|
log p + log log|C| .

Sincep ≥ log5 |C|, we have,

log log|C|
logm

≤ log log|C|
log(p log |C|) − log log(p log |C|)

= 1
log(p log |C|)

log log|C| − log log(p log |C|)
log log|C|

≤ 1

5 − 1
= 1

4
.

By Lemma 1 we have,

m

eC(m)
≥ m(logm − log log|C|)

log |C|

≥ m logm

log |C|
(

1 − log log|C|
logm

)
≥ 2p(1 − o(1)) × 3

4
≥ p.

Therefore, by Theorem 3, we have,

MEC(p) ≥ MEC

(
m

eC(m)

)
≥ eC(m).

For p < log5 |C| we have

MEC(p) ≥ MEC(log5 |C|) ≥ eC

(
log6 |C|

3 log log|C|
)

. 2

6. Parallel complexity of boolean functions

In this section we present lower and upper bounds for learning classes of boolean functions
that are learnable from membership and equivalence queries. We show that even very
restricted classes are not learnable in polylog time with a polynomial number of processors
using a UPRAM and an unrestricted hypothesis space.

P1: NRM/SCM P2: NRMP1: NRM/SCM P2: NRM

Machine Learning 02-Bshouty December 11, 1996 13:59

EXACT LEARNING OF FORMULAS IN PARALLEL 33

6.1. Read-once DNF formulas

In this section we study the complexity of parallel learning read-once DNF formulas. A
read-once DNF formula is a disjunctive normal form formula where each variable appears
at most one. We prove the following.

Result 1. Let C be the class of read-once DNF over n variables. Then

O

(
n logn

log p

)
≥ MEC(p) ≥ Ä

(
n

logn + log p

)
.

In particular, with a polynomial number of processors there is no efficient parallel algorithm
for learning read-once DNF.

The latter negative result implies negative results for parallel learning read-once formulas
and polynomial size DNF.

The upper bound of the result follows from Theorem 2 and the fact that the number of
read-once DNF formulas is at mostnO(n). We now prove the lower bound.

In this paper we usexc = x for c = 1 andxc = x̄ for c = 0. We will also usev(i) to
denote thei th assignment andvi to denote thei th bit of the assignmentv. For instance,v(i)

j
is the j th bit in thei th assignment.

We first prove the following.

Lemma 3. Let C be the class of read-once DNF formulas. If m≥ n then

eC(m) ≥
⌊

n

2 + dlogme
⌋
.

Proof: In this proof we will define a read-once DNF that containsO(n/ logm) terms
each is of sizek > logm. Then we will show that as long as the number of member-
ship queries is less thanm the adversary can provide answers to the learner so that very
little information can be found about the terms making an equivalence query is necessary.
Then we show that the adversary can answer any equivalence query so that at most one
term is revealed. This gives theO(n/ logm) lower bound for the number of equivalence
queries.

Let k = 2 + dlogme andl = bn/kc. We will prove the lower bound for learning the
class

C′ = {(
xc1

1 ∧ · · · ∧ xck
k

) ∨ · · · ∨ (
xckl−k+1

kl−k+1 ∧ · · · ∧ xckl
kl

) ∣∣ (c1, . . . , ckl) ∈ {0, 1}kl
}
.

The learner will try to learn a formula hidden by the adversary. The adversary will de-
fine l setsS1 = S2 = · · · = Sl = {0, 1}k. The setSi will be the possible values of
(cki−k+1, . . . , cki) in the i th term of the formula. The adversary will answer 0 for all the
membership queries that the learner asks before the first equivalence query is asked. For

P1: NRM/SCM P2: NRMP1: NRM/SCM P2: NRM

Machine Learning 02-Bshouty December 11, 1996 13:59

34 N.H. BSHOUTY

each membership query with assignmenta = (a1, . . . , an) the answer 0 will eliminate the
elements

l⋃
i =1

{(
xc1

1 ∧ · · · ∧ xck
k

) ∨ · · · ∨ (
xaki−k+1

ki−k+1 ∧ · · · ∧ xaki
ki

) ∨ · · ·

∨(
xckl−k+1

kl−k+1 ∧ · · · ∧ xckl
kl

) ∣∣ (c1, . . . , ckl) ∈ {0, 1}kl
}

Therefore, the adversary will set

Si ← Si \{(aki−k+1, . . . , aki)}, i = 1, . . . , l ,

for each such assignmenta. Since the learner can ask onlym membership queries and each
membership query eliminates at most one element from each setSi and since the initial size
of Si is 2k ≥ 4m, no one of the terms will be found. This implies that the learner should
ask at least one equivalence query.

Let g be the boolean function that is used for the first equivalence query. Ifg 6≡ 0 then
the adversary finds an assignmentb = (b1, . . . , bn) such thatg(b) = 1 and then providesb
as a counterexample. In this case the equivalence query eliminates only one element in each
setSi , i.e., the adversary will setSi ← Si \{(bki−k+1, . . . , bki)} for i = 1, . . . , l . If g ≡ 0
then the adversary provides any counterexample(b1, . . . , bn) where(b1, . . . , bk) ∈ S1 and
sets

S1 ← {(b1, . . . , bk)}.

This is the case where the adversary has no other choice but to provide information about
one of the terms.

After w equivalence queries the adversary assumes that the learner knows

S1, S2, . . . , Sw

(and therefore the firstw terms). SupposeSi = {(cki−k+1, . . . , cki)} for i = 1, . . . , w, i.e.,
xcki−k+1

ki−k+1∧· · ·∧xcki
ki is thei th term of the target formula fori = 1, . . . , w. The adversary will

act as follows. If the learner asks a membership query witha = (a1, . . . , an) the adversary
returnsb = (ac1

1 ∧ · · · ∧ ack
k) ∨ · · · ∨ (ackw−k+1

kw−k+1 ∧ · · · ∧ ackw

kw). If b = 1 then no information
is gained by the learner. Ifb = 0 then this assignment will eliminate at most one element
in each setSi , i > w. If the learner asks an equivalence query with a functiong then we
have the following cases.

Case I. If

g(ξ1, . . . , ξsk−k, csk−k+1, . . . , csk, ξsk+1, . . . , ξn) = 0

for someξi ands ≤ w then the adversary returns the assignment

(ξ1, . . . , ξsk−k, csk−k+1, . . . , csk, ξsk+1, . . . , ξn).

In this case the learner can learn nothing about the other terms in the formula.

P1: NRM/SCM P2: NRMP1: NRM/SCM P2: NRM

Machine Learning 02-Bshouty December 11, 1996 13:59

EXACT LEARNING OF FORMULAS IN PARALLEL 35

Case II. If g(ξ1, . . . , ξn) = 1 and(ξ
c1
1 ∧ · · · ∧ ξ

ck
k) ∨ · · · ∨ (ξ

ckw−k+1
kw−k+1 ∧ · · · ∧ ξ

ckw

kw) = 0 for
someξi then the adversary will return(ξ1, . . . , ξn) as a counterexample. In this case the
counterexample eliminates at most one element from eachSi , i > w. The setsSi will
be updated by the adversary.
If Cases I and II do not apply then the following case does.

Case III. If g(x1, . . . , xn) ≡ (xc1
1 ∧· · ·∧xck

k)∨· · ·∨(xckw−k+1
kw−k+1∧· · ·∧xckw

kw) then the adversary
provides the counterexample(c̄1, . . . , c̄kw, bkw+1, . . . , bn) where(bkw+1, . . . , bkw+k) ∈
Sw+1 and sets

Sw+1 ← {(bkw+1, . . . , bkw+k)}.

In this case the adversary assumes that the learner knows now the firstw + 1 terms and
continues as before. This implies thatl is a lower bound for the number of equivalence
queries used in the program. 2

Proof of result 1: For C′, defined in the proof of Lemma 3, we have|C′| ≤ 2n. By
Corollary 2 and Lemma 3 we have

MEC(p) ≥ eC

(⌈
2p log |C′|

log p + log log|C′|
⌉)

≥ Ä(2p log |C′|)

≥ Ä

(
n

logn + log p

)
. 2

6.2. k-DNF formulas

In this subsection we show that the class of 2-DNF (disjunctive normal forms where each
term contains at most two literals) is not efficiently learnable in parallel using a polynomial
number of processors.

Result 2. Let C be the class of 2-DNF formulas over n variables. Then

O

(
n2

log p

)
≥ MEC(p) ≥ Ä

(
n

logn + log p

)
.

In particular,

MEC(poly(n)) = Ä

(
n

logn

)
.

Proof: We prove the result for 2-CNF. The result then follows from duality. Consider the
following boolean function

(x1 ≡ x2 ≡ · · · ≡ xk)

= (x̄1 ∨ x2) ∧ (x1 ∨ x̄2) ∧ (x̄2 ∨ x3) ∧ (x2 ∨ x̄3) ∧ · · · ∧ (x̄k−1 ∨ xk) ∧ (xk−1 ∨ x̄k).

P1: NRM/SCM P2: NRMP1: NRM/SCM P2: NRM

Machine Learning 02-Bshouty December 11, 1996 13:59

36 N.H. BSHOUTY

This function satisfies(x1 ≡ x2 ≡ · · · ≡ xk) = 1 if and only if x1 = x2 = · · · = xk. For a
vectorξ ∈ {0, 1}k we define

fξ (x1, . . . , xk) = (xi1 ≡ · · · ≡ xir ≡ 1) ∧ (xj1 ≡ · · · ≡ xjs)

where{i1, . . . , i r } = {i | ξi = 1} and{ j1, . . . , js} = { j | ξ j = 0}. This formula is a 2-CNF
and satisfiesfξ (x1, . . . , xk) = 1 if and only if x = ξ or x = (1, 1, . . . , 1). The adversary
will define the class

C = { fξ (1) (x1, . . . , xk) ∧ fξ (2) (xk+1, . . . , x2k) ∧ · · ·
∧ fξ (l) (xlk−k+1, . . . , xlk) | ξ (1), . . . , ξ (l) ∈ {0, 1}k}

wherek = dlog 2ne and l = bn/kc. After w equivalence queries the adversary assumes
that ξ (1), . . . , ξ (w) are known. The adversary also definesSw+1, . . . , Sl of possible
ξ (w+1), . . . , ξ (l), respectively. As in the proof of Lemma 3 it can be shown that each
membership query eliminates at most one element from exactly oneSi , i > w, and using
equivalence queries the learner can learn at most one vector fromξ (w+1), . . . , ξ (l). 2

6.3. Other classes

In this subsection we give three bounds for parallel learning classes of boolean functions with
a polynomial number of processors. The classes arek-term DNF formulas fork = O(logn)

(DNF with at mostk terms), monotone DNF formulas (DNF with no negated variables)
and DNF formulas.

Result 3. Let KDNF, MDNF and DNF be the classes of k-term DNF formulas for k=
O(logn), the class of polynomial size monotone DNF formulas and the class of polynomial
size DNF formulas, respectively. Then

MEKDNF(poly(n)) = k,

MEMDNF(poly(n)) ≥ poly(n),

MEDNF(poly(n)) = poly(n).

Proof: All the results follow from (Bshouty et al., 1993). 2

7. Parallel complexity of monotone read-once formulas

In this section we investigate the parallel complexity of monotone read-once formulas,
MROF. It is known from (Angluin et al., 1993) that the class of MROF is learnable from
membership queries only, i.e.,eMROF(poly(n)) = 0. Therefore the technique used so far
that relies heavily on the lower bounds foreC cannot be applied for this class. The negative
results for MROF are based on the following.

P1: NRM/SCM P2: NRMP1: NRM/SCM P2: NRM

Machine Learning 02-Bshouty December 11, 1996 13:59

EXACT LEARNING OF FORMULAS IN PARALLEL 37

Theorem 4. Any UPRAM algorithm with p processors that learns a class C in t steps
can be changed to a UPRAM algorithm with p(p − 1)/2 processors that learns C in2t
steps where in each odd step(steps1, 3, 5, . . .) the algorithm asks p(p− 1)/2 membership
queries and in each even step the algorithm asks one equivalence query.

Proof: The proof is similar to the proof of Theorem 3. We have{g1, . . . , gs} boolean
functions used for the equivalence query in some step andp − s membership queries. For
every 1≤ i < j ≤ s ≤ p we find an assignmenta(i j) such thatgi (a(i j)) 6= gj (a(i j)) and
then use membership queries to findf (a(i j)). It can be easily shown that this provides
counterexamples for allgi except at most one. For this one we use the equivalence query
in the following step. The number of membership queries used for this step is

s(s − 1)

2
+ (p − s) ≤ p(p − 1)

2
. 2

The proof of this result is based on Theorem 4.

Result 4. Let C be the class of monotone read-once formulas over n variables. Then

O

(
n logn

log p

)
≥ MEC(p) ≥ Ä

(
n

log p

)
.

In particular,

MEC(poly(n)) ≥ Ä

(
n

logn

)
.

Proof: The upper bound follows from Theorem 2 and the fact that the number of read-once
formulas is bounded above bynO(n).

For the lower bound we use Theorem 4. The adversary defines the vectorsv(1) =
(x1, . . . , xk), . . . , v

(l) = (xlk−k+1, . . . , xlk) wherek = 2+2dlog pe andl = bn/kc. Notice
thatlk ≤ n so the variables are all from{x1, . . . , xn}. Define

f(ξ1,...,ξk)(x1, . . . , xk, y) =
(∨

j ∈{i ≤k|ξi =0}
xj

)
∨

(∧
j ∈{i ≤k|ξi =1}

xj ∧ y

)
.

This function satisfies

f(ξ1,...,ξk)(x1, . . . , xk, y) =


1 If xj = 1 for somej ∈ {i ≤ k | ξi = 0}.
0 If xj = 0 for all j ∈ {i ≤ k | ξi = 0}

andxj = 0 for somej ∈ {i ≤ k | ξi = 1}.
y If (x1, . . . , xk) = (ξ1, . . . , ξk).

The adversary defines the set of monotone read-once formulas as follows.

C = { fξ (1) (v(1), fξ (2) (v(2), . . . , fξ (l) (v(l), 1))) · · ·) | ξ (1), ξ (2), . . . , ξ (l) ∈ {0, 1}k}.

P1: NRM/SCM P2: NRMP1: NRM/SCM P2: NRM

Machine Learning 02-Bshouty December 11, 1996 13:59

38 N.H. BSHOUTY

Notice that

fξ (1) (v(1), fξ (2) (v(2), . . . , fξ (l) (v(l), 1))) · · ·)
= fξ (r) (v(r), fξ (r +1) (v(r +1), . . . , fξ (l) (v(l), 1))) · · ·) (?)

if

ξ (1) = v(1) · · · ξ (r −1) = v(r −1).

ObviouslyC is a subset of monotone read-once formulas and learning a function inC is
equivalent to learningξ (1), ξ (2), . . . , ξ (l).

We assume that the learner asksp(p−1)/2 membership queries in the odd parallel steps
and one equivalence query in the even parallel steps.

After 2w steps, the adversary assumes that the learner knowsξ (1), . . . , ξ (w), two bits
in ξ (w+1) but nothing aboutξ (w+2), . . . , ξ (l). We will show thatp(p − 1)/2 membership
queries might help the learner to knowξ (w+1) but nothing aboutξ (w+2), . . . , ξ (l). Therefore
the learner must ask an equivalence query. Then we will show that asking an equivalence
query will help the learner to know at most two bits inξ (w+2).

In step 2w + 1 the learner asksm = p(p − 1)/2 membership queries. LetQ =
{a(1), . . . , a(m)} be these queried vectors. The adversary will look at the firstkw entries of
each vectora(i) and define

G = {
a(i)

∣∣ (a(i)
1 , . . . , a(i)

kw

) 6= (ξ (1), . . . , ξ (w))
}

and

E = Q\G.

Suppose thatξ (w+1)
j1

andξ
(w+1)
j2

are the bits that are known for the learner inξ (w+1). The
assignments inG are the assignments that have answers independent ofξ (w+1), . . . , ξ (l) (see
property (?)). Therefore the assignments inG will give no information to the learner. The
adversary will then look at the bits(a(i)

kw+1, . . . , a(i)
kw+k) of eacha(i) ∈ E. Since at most two

bits inξ (w+1) are known to the learner and 2k−2 ≥ p2 > p(p−1)/2 there existsη ∈ {0, 1}k

such thatη j 1 = ξ
(w+1)
j 1 , η j 2 = ξ

(w+1)
j 2 and for alla(i) ∈ E, (a(i)

kw+1, . . . , a(i)
kw+k) 6= η. The

adversary then decides thatξ (w+1) = η and then for alla(i) ∈ E the value of f (a(i)) will
depend onξ (w+1) but be independent onξ (w+2), . . . , ξ (l).

At step 2w + 2 we assume the learner knowsξ (w+1). We will show now that an equi-
valence query will reveal at most two bits inξ (w+2). The learner asks one equivalence query
with some functiong. We have the following cases forg.

Case I.

g(x1, . . . , xlk) 6≡ fξ (1) (v(1), fξ (2) (v(2), . . . , fξ (w+1) (v(w+1), h) · · ·)

for anyh(v(w+2), . . . , v(l)).

P1: NRM/SCM P2: NRMP1: NRM/SCM P2: NRM

Machine Learning 02-Bshouty December 11, 1996 13:59

EXACT LEARNING OF FORMULAS IN PARALLEL 39

This case is equivalent to

(∀h)(∃u(1), . . . , u(w+1))

g(u(1), . . . , u(w+1), x(w+1)k+1, . . . , xlk)

6≡ fξ (1) (u(1), fξ (2) (u(2), . . . , fξ (w+1) (u(w+1), h) · · ·)

Let h′ = g(ξ (1), . . . , ξ (w+1), x(w+1)k+1, . . . , xlk). Then forh = h′ we have

(∃z(1), . . . , z(w+1))

g(z(1), . . . , z(w+1), x(w+1)k+1, . . . , xlk)

6≡ fξ (1) (z(1), fξ (2) (z(2), . . . , fξ (w+1) (z(w+1), h′) · · ·).

If (z(1), . . . , z(w+1)) = (ξ (1), . . . , ξ (w+1)) then we get a contradiction. Therefore, for
some(z(1), . . . , z(w+1)) 6= (ξ (1), . . . , ξ (w+1)) we have

g(z(1), . . . , z(w+1), x(w+1)k+1, . . . , xlk) 6≡ fξ (1) (z(1), fξ (2) (z(2), . . . , fξ (w+1) (z(w+1), h′) · · ·).

Now since (z(1), . . . , z(w+1)) 6= (ξ (1), . . . , ξ (w+1)) by the property in (?) we have
fξ (1) (z(1), fξ (2) (z(2), . . . , fξ (w+1) (z(w+1), h′) · · ·) = τ for someτ ∈ {0, 1}. The adver-
sary chooses some vectora = (z(1), . . . , z(w+1), x(0)

(w+1)k+1, . . . , x(0)
lk) such thatg(a) 6= τ

and returns the assignmenta as a counterexample. In this case the learner can lean
nothing aboutξ (w+2).

Case II.

g(x1, . . . , xlk) ≡ fξ (1) (v(1), fξ (2) (v(2), . . . , fξ (w+1) (v(w+1), h) · · ·)

for someh(v(w+2), . . . , v(l)).
Now we have the following subcases.

1. h(η(w+2)k+1, . . . , ηlk) for some(η(w+2)k+1, . . . , η(w+2)k+k) 6= (0, . . . , 0). Then the
adversary returns

a = (ξ (1), . . . , ξ (w+1), η(w+2)k+1, . . . , ηn)

as a counterexample (hereg(a) = 0). Let η(w+1)k+h 6= 0 for 1 ≤ h ≤ k. The
adversary will also assume thatξ

(w+2)
h = 0. This bit makes sure thatf (a) = 1 where

f is the target function.
2. h(0, . . . , 0, η(w+3)k+1, . . . , ηlk) = 1 for someηi . Then the adversary returns

a = (ξ (1), . . . , ξ (w+1), 0, . . . , 0, η(w+3)k+1, . . . , ηn)

as a counterexample (hereg(a) = 1). The adversary will also assume thatξ
(w+2)
1 = 1.

This bit makes sure thatf (a) = 0.

P1: NRM/SCM P2: NRMP1: NRM/SCM P2: NRM

Machine Learning 02-Bshouty December 11, 1996 13:59

40 N.H. BSHOUTY

3. If h(x(w+2)k+1, . . . , xlk) = x(w+2)k+1 ∨ · · · ∨ x(w+2)k+k, then the adversary returns

a = (ξ (1), . . . , ξ (w+1), 1, 0, . . . , 0)

as a counterexample (hereg(a) = 1) and definesξ (w+2)
1 = ξ

(w+2)
2 = 1 to make sure

that f (a) = 0.
In case II the adversary’s counterexample depends only onξ (w+1) and two bits in

ξ (w+2). Therefore to learn the function the learner needs at leastl parallel steps. 2

8. Conclusion and open problems

We showed that any class of boolean functions that cannot be learned with poly(logn)

equivalence queries cannot be learned efficiently in parallel. In other words, if a class is
efficiently learnable in parallel with a polynomial number of processors then it is efficiently
learnable in parallel with one processor. This shows that we cannot speed up learning
algorithms that use only equivalence queries. On the other hand, many efficient parallel
learning algorithms are known for the PAC-learning model (Vitter & Lin, 1992). It would
be interesting to prove that certain classes can be efficiently probabilisticly exactly learned
using counterexamples. A classC is probabilisticly exactly learnable (PEC-learnable) ac-
cording to a distributionD if it is exactly learnable withD-equivalence queries. Here the
answer of theD-equivalence query with a hypothesish is a counterexamplea that is chosen
according to the distributionDA whereDA is the projection of the distributionD on the set
of all counterexamplesA = {x | f (x) 6= h(x)}.

We then give a technique for proving lower bounds for parallel exact learning using
membership and equivalence query. This technique is based on the fact that any two inde-
pendent equivalence queries can be changed to one equivalence query and one membership
query. This implies that a lower bound for the number of equivalence queries in any learn-
ing algorithm that uses a polynomial number of membership queries is a lower bound on
the number of parallel steps of the algorithm. We then give lower bounds for the number
of equivalence queries needed to learn certain classes showing that they are not efficiently
learnable in parallel. These classes include read-once DNF,k-DNF,k-term DNF, monotone
DNF and any class that contains one of them.

This approach cannot be used for monotone read-once formulas because this class
is learnable from membership queries only. Here we developed a second technique to
show that parallel membership queries and equivalence queries cannot speed up the learn-
ability of a subclass of monotone read-once formulas by more than anO(logn) fac-
tor. We then show ann/ logn lower bound for the parallel steps needed to learn this
class.

An interesting open problem is to show parallel PEC-learnability of the above classes.
Also, finding a parallel PAC-learning algorithm with membership queries for read-once
formulas and automatas would be interesting. An efficient parallel PAC-learning algorithm
with membership queries for decision trees can be found in Bshouty (1996).

P1: NRM/SCM P2: NRMP1: NRM/SCM P2: NRM

Machine Learning 02-Bshouty December 11, 1996 13:59

EXACT LEARNING OF FORMULAS IN PARALLEL 41

Acknowledgments

Research supported in part by WSERC of Canada. A preliminary version of this paper
appears in (Bshouty & Cleve, 1992).

References

Angluin, D. (1987). Queries and concept learning.Machine Learning, 2(4):319–342.
Angluin, D., Hellerstein, L., & Karpinski, M. (1993). Learning read-once formulas with queries.Journal of ACM,

40(1):185–210.
Balcázar, J.L., D́iaz, J., Gavald`a, R., & Watanabe, O. (1994). An optimal parallel algorithm for learning DFA. In

The 1994 Workshop on Computational Learning Theory(pp. 208–217).
Bshouty, N.H. (1996). Toward the learnability of DNF formulae. InProceedings of the 28th Annual ACM Sympo-

sium on Theory of Computing(pp. 131–140).
Bshouty, N.H., & Cleve, R. (1992). On the exact learning of formulas in parallel.Proceedings of the 33rd Annual

Symposium on Foundations of Computer Science(pp. 24–27).
Bshouty, N.H., Goldman, S., Hancock, T., & Matar, S. (1993). Asking questions to minimize errors. InThe 1993

Workshop on Computational Learning Theory(pp. 41–50).
Bshouty, N.H., Hancock, T.R., & Hellerstein, L. (1995). Learning boolean read-once formulas over generalized

basis.Journal of Computer and System Sciences, 50(3):521–542.
Bshouty, N.H., Hancock, T.R., Hellerstein, L., & Karpinski, M. (1994). An algorithm to learn read-once threshold

formulas and transformations between learning models.Computational Complexity, 4:37–61.
Hancock, T. (1990). Identifyingµ-formula decision trees with queries. InThe 1990 Workshop on Computational

Learning Theory(pp. 23–37).
Hancock, T., & Hellerstein, L. (1991). Learning read-once formulas over fields and extended bases. InThe 1991

Workshop on Computational Learning Theory(pp. 326–336).
Littlestone, N. (1988). Learning quickly when irrelevant attributes abound: A new linear threshold algorithm.

Machine Learning, 2(4):285–318.
Maass, W., & Tur´an, G. (1990). On the complexity of learning from counterexamples and membership queries.

In Proceedings of the 31st Symposium on Foundations of Computer Science(pp. 203–210).
Maass, W., & Tur´an, G. (1992). Lower bound methods and separation results for on-line learning models.Machine

Learning, 9:104–145.
Maass, W., & Tur´an, G. (1994). Algorithms and lower bounds for on-line learning of geometrical concepts,

Machine Learning, 14:251–202.
Valiant, L.G. (1984). A theory of the learnable.Communications of the ACM, 27:1134–1142.
Vitter, J.S., & Lin, J. (1992). Learning in parallel.Information and Computation(pp. 179–202).

Received May 23, 1995
Accepted July 3, 1996
Final Manuscript July 22, 1996

