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Abstract. Weinvestigate the parallel complexity of learning formulas from membership and equivalence queries.
We show that many restricted classes of boolean functions cannot be efficiently learned in parallel with a polynomial
number of processors.
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1. Summary of results

In Angluin et al. (1993) present a polynomial time algorithm for learning (boolean) read-
once formulas from membership and equivalence queries, and they pose the question of
whether it is possible to obtain significant speed-up by using parallelism. This paper ad-
dresses this question as well as the more general question of when learning problems tha
can be solved sequentially in polynomial time can be solved quickly in parallel.

The model of learning that we consider is “exact” learning with membership and equiva-
lence queries. We obtain both lower and upper bounds on the parallel complexity of several
learning problems in this model.

We first show that classes ouewariables that cannot be learned with poly(fggquiv-
alence queries cannot be learned efficiently in parallel from equivalence queries only. This
result implies that all the interesting classes known from the literature are not efficiently
learnable in parallel from equivalence queries only.

For parallel learning from membership and equivalence queries we show the following.
With respect to read-once formulas, we show that boolean read-once formulas with
variables require at least(n/logn) parallel steps to learn using a polynomial number of
processors.

We also show thaf2(n/logn) parallel steps are required for other learning problems
for which sequential polynomial time learning algorithms exist. These include the more
restricted learning problems of read-once monotone formulas and read-once DNF formulas.
Also, the lower bound holds for monotone DNF formulas and 2-DNF formulas (sequentially
learnable in polynomial time by Angluin (1987).

All lower bounds hold even if the PRAM model is “information theoretic”, that is, it
allows unlimited computational power and the equivalence oracle acaegtsoolean
formula (not necessarily one in the class being learned). This latter property is significant
because it implies that any of our lower bounds for a classf formulas immediately
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extends to any class of functions that contaihand to any learning from any class of
hypothesisH (in particular, proper learning).

We also extend the Halving algorithm that learns any ca$som log|C| equivalence
queries (Littlestone, 1988) to a parallel halving algorithm withrocessors that learns the
classC from O(log|C|/ log p) parallel steps of membership and equivalence queries. For
most of the above classes this bound is nearly tight.

A related work is by Vitter & Lin (1992) who investigate the parallel complexity of
learning in the PAC model (Valiant, 1984).

This paper is organized as follows. Section 2 contains some preliminary definitions.
Section 3 contains a lower bound for parallel learning from equivalence queries. Section 4
contains the upper bounds for parallel learning from membership and equivalence queries
and Section 5 contains a lower bound technique for classes that are learnable from mem-
bership and equivalence queries. In Section 6 we give lower bounds for parallel learning
classes of boolean functions and in Section 7 we give a lower bound for parallel learning
monotone read-once formulas. Section 8 contains conclusion and open problems.

2. Preliminary definitions

The learning criterion we consider éxact identification There is a formulaf called the
target formulawhich is a member of a class of formul@sdefined over the variable s&t
The goal of the learning algorithm is to halt and output a fornfufim C that is logically
equivalent tof . Note that the target is an (arbitrary) unknown formula chosen from the
target clas€ that is known to the learner.

In amembership queryhe learning algorithm supplies an assignneetd the variables
in V as input to anembership oracland receives in return the value 6ta).

In anequivalence quenthe learning algorithm supplies any formdiaas input to an
equivalence oracland the reply of the oracle is either “yes”, signifying thas equivalent
to f, or acounterexamplghich is an assignmettsuch thah(b) # f (b).

In the learning procedures given in this paper we assume that the algorithm has access tc
membership and equivalence oracles for a target forrhuieer a variable sdixy, . . ., X}
The functions inC are represented in some fixed representaoc {0, 1}*. For any
f € C lets(f) be the minimal size of string iR that represents. We say that a class
of boolean function€ over n variables isefficiently learnablan parallel if there exists
a parallel learning algorithm that learns afiye C with poly(n, s(f)) processors and
poly(logn, logs(f)) time. This definition is similar to the definition of efficient parallel
algorithms for solving problems in that the number of processors is polynomial in the input
size and the time is pollog) in the input size. In this paper all logarithms are base 2.

3. Lower bound for parallel learning from equivalence queries

In this section we give a lower bound for parallel learning from equivalence queries. We
show that if the class of concepfscannot be learned sequentially in poly(loggueries

then it is not efficiently learnable in parallel even with unlimited computational power.
This shows that all the interesting classes considered in the literature that are efficiently
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sequentially learnable from equivalence queries only and all the cl@segth log |C| >
w(poly(logn)) are not efficiently learnable in parallel.

Let C be a class of boolean functions andédgtbe the minimal number of equivalence
queries needed to learn the cl&@fom equivalence queries only. LEE (p) be the minimal
number of parallel equivalence queries steps needed toCzaith p processor. Our main
theorem is stated next.

Theorem 1. For any class of boolean functions C we have

ec
flog p1”

Ec(p) >

In particular, we have

ec
Ec(poly(n)) > @ (@)

and if & = w(poly(logn)) then there is no efficient parallel algorithm that learns C from
equivalence queries only

Proof. Let A be an algorithm that learns the clasn parallel inEc (p) parallel steps.
Each parallel step contains at most (w.l.0.g exaqgblgquivalence queries. We change the
algorithm A to a sequential algorithi8 as follows. Algorithm3 runs algorithmA until it
asksp equivalence queries in one parallel step. Het {hy, ..., h,} be the hypotheses of
the equivalence queries. The sequential algorithmill run the following procedure. In
this procedure the function Mdj) is the majority function of all functions ih. That is,

. 0 morethatlL|/2 functionsf € L satisfy f(a) = 0,
1 otherwise
SeqH).
1. L < H,B <~ 0.
2. Ask an equivalence queries with= Maj(L) and get a counterexamgie If the answer

is YES then outpuh.
. Eliminate fromL all h; that satisfyh(b) # h; (b).
. B« BU{b}
. If L = @ then returnB else goto 2.

g~ w

We claim that the procedufeq H) asks[log p] equivalence queries and returns coun-
terexamples for alh; € H. To show this notice that each time we ask an equivalence query
the counterexamplie will be a counterexample for at least half the hypothesds.iithis
is because Mdl-)(b) # f(b) and therefore at least half of the functiondimlo not agree
with f onb. Therefore the number of equivalence queries asked by the algdfitisrat
mostt = Ec(p)[log p]. Sincet > ec the result of the theorem follows. |
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4. Upper bounds for parallel learning from membership
and equivalence queries

In this section we generalize the sequential Halving algorithm for learning anyCksm
log|C| equivalence queries to a parallel Halving algorithm witiprocessors that learns
any classC with log|C|/ log p parallel membership and equivalence queries. Here and
throughout the paper when we say that the number of querieggsalways mean that it is

t + o(t). This, in particular, will be used to avoid (extra) floor and ceiling operations.

The model of computation (of the learner) will be any PRAM model with unlimited
computational power. We call this model UPRAM. All the computations computed by
the UPRAM are free and the parallel learning complexity will be the number of parallel
membership and equivalence query steps. A UPRAM witbrocessors can ask a total
number ofp membership and equivalence queries in one step. The equivalence queries
can be asked with any boolean functign A UPRAM with one processor will be called
a UPRAM. We define ME(p) to be the number of parallel steps needed to learn any
formulafrom the clas€ ina UPRAM with p processors using membership and equivalence
queries.

In the sequential Halving algorithm (Littlestone, 1988), the learning algorithm, at some
stage, knows that the targéte C is consistent with some labeled assignmehtsThe
learning algorithm then proceeds as follows. It defines the €4#g of all functions in
C that are consistent with the target on the assignmant$ C(A) contains one function
h thenh must be the target. In that case the algorithm outpwad halts. Otherwise the
algorithm asks an equivalence query with the hypothesigGA&)), the majority of all
the functions inC(A). A counterexampla to this hypothesis will be added #. Now it
is easy to see that

ICAI

IC(AU{(a, f@an}hl = 5

Therefore the worst case number of equivalence queries asked by the Halving learning
algorithm is at most lo¢C|.

Since each counterexample providesl bitinformation the information theoretic lower
bound for learningC is log|C|/(n + 1) equivalence queries.

Before we present the parallel Halving algorithm we give the following definitions. For
a class of function€, an integer and an assignmeatwe say that is anr-assignment
with respect tc€ if more than|C| — |C|/r of the functions irC have value 0 foa or more
than|C| — |C|/r of the functions irC have value 1 foa. The clas< is called arr -class if
every assignment is anassignment with respect to the cl&ssAnr- strategy tredfor the
classC is a tree whose internal nodes are labeled with p&rsa) whereC C C,aisan
assignment and the leaves of the tree are Iabeled(ﬁZuINIL) whereC c C. The node
for classC c C is defined as follows: If is anr-class ofC| < |C|/r then the node is
a leaf labeled WIU’(C NIL). Otherwise, lefa be a witness that is not anr-class. Then
the node is labeledC, a), its left child is arr -strategy tree fo€, = {f € C | f(a) = 0}
and its right child is am-strategy tree fo€; = {f € C | f(a) = 1}. Notice that since
CoUC; = € andCyn C; = @ the set of classes in the leaves of the tree is a partiti@h of
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(C ,NIL)Q(C ,NIL)
3 4

Figure L An example of a 3-strategy tree. The s€is C3 andC, are disjoint andC = C; U C3z U Cy.

We first prove the following.

Claim 1. The number of internal nodes in any r-strategy tree is at raost

Proof: Suppose/ are the nodes of the tree and &, for all v € V, be the class corre-
sponding to node. Letv be a leaf in the tree and lat, be the parent node af Sinceu,

is not a leaf we must hay€,, | > |C(A)|/r (otherwiseu, would be a leaf). Since the set
of all C,, for all leavesv is a partition forC(A), the number ofi, is at most and therefore
the number of leaves in the tree is at mast 2 a

In the parallel Halving algorithm the learning algorithm, at some stage, knows that the
targetf € C is consistent with some labeled assignméhtsThe learning algorithm then
proceeds as follows. L&t = p/2 wherep is the number of processors. The algorithm
will build a g-strategy tree fo€(A). The algorithm can do this because it has unlimited
computational power. The algorithm then asks one parallel step of membership queries
for all the assignments in the internal nodes of the tree. When the algorithm looks at the
answers of the membership queries, they will lead it to somevl@athe tree. If this leaf
is ag-class leaf we ask one equivalence query with the hypothesigdajvhereC, is
the class in the leaf. Since the class ig-class the counterexample guarantees a reduction
in the size of the clas€(A) by a factor ofg. If this leaf satisfiesC,| < |[C(A)|/q then
we do not need to ask the equivalence query. Therefore using at most two parallel steps we
reduce the size d€ (A) by a factor ofg.

Now, the number of membership queries asked in this step was the number of internal
nodes in the strategy tree and by Claim 1 this is at mqst2p.

Since every two parallel steps reduce the size of the class by a factothef number of
parallel steps is

[ 2log|C]|
~ logq

with p = 2q processors. This implies the following. Note that the bound in the following
theorem ig + o(t).
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Theorem 2. The parallel Halving algorithm learns any class C with p processors and

2log|C]|
logp

MEc(p) <

parallel steps.

The bound in Theorem 2 can be reduced by a factor of 2 if we ask membership queries
for all the internal nodes and equivalence queries with the majority of all of the classes in
the leaves in one step (at the expence of more equivalence queries).

Notice also that the parallel algorithm in Theorem 2 can be regarded &S||0lgg p
pairs of parallel steps where in each pair the first component contains apmashbership
queries and the second component contains at most one equivalence query. If we change
this algorithm to a sequential algorithm we get an algorithm that uses

_ _log|C|
=P log p

membership queries ad%—cp‘ equivalence queries. Therefore,df> 2 (and therefore
m > log|C|)

. m o - m
~iogici 2P = iog[C|

p
and the number of equivalence queries in the algorithm is

IOQICI< log |C|
logp ~ logm—loglog|C|

Let C be a class of boolean formulas. legt(m) be the number of equivalence queries
needed to learn the functions @using a URAM when onlyn membership queries are
allowed to be asked by the learner. Obviouslym') > ec(m) for m" < m and for classes
C < 2X whereX = {0, 1}" we haveec(2") = 0. The above gives the following upper
bound fore:. This upper bound is also proven in (Bshouty et al., 1993).

Lemma 1. For any class C of boolean functigniém > log |C| then we have

ec(m) < 091C!
~ logm —loglog|C|’

5. Lower bounds for parallel learning from membership and equivalence queries

In this section we develop a new technique for proving lower bounds for parallel learn-
ing from membership and equivalence queries. The lower bounds are for the worst case
complexity, i.e., a learner witlp processors tries to learn a formula from some class
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An adversary chooses the target functibne C and answers the queries of the learner.
The learner can ask the adversary queries and the adversary provides the learner with trug
answers. The adversary can change the formula during the learning process but this formulg
should be consistent with all the answers of the queries already asked by the learner. The
adversary will change the formula so that it will be hard for the learner to learn it.

We show thak independent equivalence queries can be simulatéd-b§ membership
queries and one equivalence query. We can therefore find lower bounds on the number of
equivalence queries needed to learn the above classes in parallel.

Our main theorem is:

Theorem 3. Let C be a class of boolean formulas. We have

m
MEe Qmp = ee(m.

Proof: Let.A be an UPRAM algorithm that learrs usingp = |[m/ec(m)| processors
ande < ec(m) steps. We will show how to change this algorithm to a sequential algorithm
in the URAM model that uses’ < m membership queries arelequivalence queries.
Sincee < ec (M) < ec(M'), we get a contradiction and the result follows.

Suppose that the first step iA makesr equivalence queries with distinct boolean
functionsg;, ..., g ands membership queries with4+ s < p. In the URAM model
we ask the same membership queries sequentially. For the equivalence query we define
S« {01, ..., 0}. We now show how to change thequivalence queries to- 1 member-
ship queries and one equivalence query. At stage the setSwill containr — j +1> 2
boolean functions. We choose any tgo andg;, functions inS and find an assignment
a such thatg, (a) # gi,(a) (this can be done for free in the URAM model). We then
use the membership query to firfda). Obviously, there must be pe {1, 2} such that
f(a) # g;(a) and we then provide the algorith# with the counterexample for g;; and
defineS <- S\{g;, }. This process will stop after— 1 membership queries, i.e., when the
setScontains one element. For this element we use the equivalence oracle. We repeat this
procedure for each step.

This sequential algorithm uses at most= |m/ec (M) |e < m membership queries and
e < ec(m) equivalence queries. O

The results of Lemma 1 with Theorems 2 and 3 provide the following.

Corollary 2. Let C be a class of boolean formulas. F&{*? > p > log® |C| we have

2plog|C|
log p + loglog|C]|

MEc(p) > ec(

and for p < log® |C| we have

log® |C]| )

MEc(p) = ec<73loglog|0|
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Proof: Let|C|¥2> p > log®|C| and

. 2plog|C|
~ log p +loglog|C|

Sincep > log® |C|, we have,

loglog|C]| - loglog|C|
logm ~ log(plog|C|) — loglog(plog|C|)
_ 1
~ log(plog|C]) _ loglog(plog|C|)
loglog|C]| loglog|C|
1 1
< — = —,
- 5-1 4

By Lemma 1 we have,

m m(logm — loglog|C|)
ec(m) — log[C]|

- mlogm loglog|C]|
~ log|C] logm

> 2p(1—o(1)) x g
z P

Therefore, by Theorem 3, we have,

m
MEc(p) > MEC(@) > ec(m).

For p < log® |C| we have

log® |C| )

5 _8 el
MEc(p) = MEc(log” |C)) = ec(slog i0gIC]

6. Parallel complexity of boolean functions

In this section we present lower and upper bounds for learning classes of boolean functions
that are learnable from membership and equivalence queries. We show that even very
restricted classes are not learnable in polylog time with a polynomial number of processors
using a UPRAM and an unrestricted hypothesis space.
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6.1. Read-once DNF formulas
In this section we study the complexity of parallel learning read-once DNF formulas. A

read-once DNF formula is a disjunctive normal form formula where each variable appears
at most one. We prove the following.

Result 1. Let C be the class of read-once DNF over n variables. Then

nlogn
O( log p ) > MEc(p) = Q(

n
logn+logp/

In particular, with a polynomial number of processors there is no efficient parallel algorithm
for learning read-once DNF.

The latter negative result implies negative results for parallel learning read-once formulas
and polynomial size DNF.

The upper bound of the result follows from Theorem 2 and the fact that the number of
read-once DNF formulas is at mas?™. We now prove the lower bound.

In this paper we usg&® = x for ¢ = 1 andx® = x for ¢ = 0. We will also usev to
denote theth assignment ang to denote théth bit of the assignment. For instancev}')
is the j th bit in theith assignment.

We first prove the following.

Lemma 3. Let C be the class of read-once DNF formulas. Ifm then

2 | o+ g |

Proof: In this proof we will define a read-once DNF that contaldé/logm) terms
each is of siz&k > logm. Then we will show that as long as the number of member-
ship queries is less than the adversary can provide answers to the learner so that very
little information can be found about the terms making an equivalence query is necessary.
Then we show that the adversary can answer any equivalence query so that at most one
term is revealed. This gives th@(n/logm) lower bound for the number of equivalence
queries.

Letk = 2+ [logm] andl = |n/k]. We will prove the lower bound for learning the
class

C={(XT A AXE) Vv (Xl A AXE) | (Cas -y ca) € {0, ).

The learner will try to learn a formula hidden by the adversary. The adversary will de-
finel setsS, = S = --- = § = {0, 1JX. The setS will be the possible values of
(Cki—k+1, - - - » Cki) in theith term of the formula. The adversary will answer O for all the
membership queries that the learner asks before the first equivalence query is asked. Fol
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each membership query with assignmant (ag, ..., a,) the answer 0 will eliminate the
elements

1

V(XL A AXE) | (e ca) € {0, 1)
Therefore, the adversary will set
S <_S\{(aki7k+17'-'9aki)}1 I :17-~-,|,

for each such assignmeat Since the learner can ask omymembership queries and each
membership query eliminates at most one element from eachaetl since the initial size
of § is 2 > 4m, no one of the terms will be found. This implies that the learner should
ask at least one equivalence query.

Let g be the boolean function that is used for the first equivalence quegy#l0 then
the adversary finds an assignmbnt (by, ..., by) such thag(b) = 1 and then providels
as a counterexample. In this case the equivalence query eliminates only one elementin eacl

setg, i.e., the adversary will s <« S\{(bki_k+1,...,bx)}fori =21,...,1. Ifg=0
then the adversary provides any counterexarple. . ., b,) where(by, ..., by) € S and
sets

S <« {(by,...,)}.

This is the case where the adversary has no other choice but to provide information about
one of the terms.
After w equivalence queries the adversary assumes that the learner knows

(and therefore the firat terms). Suppos& = {(Cj_k+1,...,Cki)}fori =1,..., w,i.e.,
X A+ A s thei th term of the target formula for= 1, ..., w. The adversary will
act as follows. If the learner asks a membership query avith(ay, . . ., a,) the adversary

retunsb = @ A+ AQF) V-V (@D A Aage). If b= 1then no information

is gained by the learner. If = 0 then this assignment will eliminate at most one element
in each sef§,i > w. If the learner asks an equivalence query with a functjaghen we
have the following cases.

Case l. If
9(&1, - - s Esk—k» Csk—k+1 - - - » Csks Eskr1, - - -5 6n) =0
for someg; ands < w then the adversary returns the assignment
(61, .- Esk—ks Csk—k+1s - - - » Csks Esket1s - - - &n)-

In this case the learner can learn nothing about the other terms in the formula.
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Case Il If g€, ..., &) =L andER A - AEF) V-V (EC T A - AEX) = O for
someg; then the adversary will retur@a, . . ., &) as a counterexample. In this case the
counterexample eliminates at most one element from &aéh> w. The setsS will
be updated by the adversary.

If Cases | and Il do not apply then the following case does.
Case lll. If g(Xy, ..., Xn) = (XPA- - AXF)V- -V (x0T A- - AxE) then the adversary

provides the counterexamplé,, . .., Ckw, bkwt1, - - -, bn) Where(bxy, 11, - . ., Dkwik) €
S,+1 and sets

Sur1 < {1, -+ Brug) }-

In this case the adversary assumes that the learner knows now the-firtterms and
continues as before. This implies thas a lower bound for the number of equivalence
queries used in the program. O

Proof of result 1: For C’, defined in the proof of Lemma 3, we haj@’| < 2". By
Corollary 2 and Lemma 3 we have

2plog|C/|
ME
o(P) = ecq|09p+log |09IC’I—D

> Q(2plog|C'})

n
Q ——— ).
= <Iogn+|ogp) =

6.2. k-DNF formulas

In this subsection we show that the class of 2-DNF (disjunctive normal forms where each
term contains at most two literals) is not efficiently learnable in parallel using a polynomial
number of processors.

Result 2. Let C be the class of 2-DNF formulas over n variables. Then

logp) = © Pz logn+logp/

In particular,

n
MEc (poly(n)) = 9(@)

Proof: We prove the result for 2-CNF. The result then follows from duality. Consider the
following boolean function

X1=Xo=---=X)
= X1 VX) AKXV XA RV X)) A X2V K Aveo A (Rker VX)) A (Rk—1 VX
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This function satisfiegx; = x, =--- = x¢) = lifandonly ifx; = x, = --- = x. Fora
vectoré € {0, 1} we define

fe(Xg, ... X)) =X, ==X, =DAXj, = =Xj,)
wherefiq, ..., i} ={i | & =1} and{js, ..., Js} = {j | § = 0}. This formula is a 2-CNF
and satisfieds (X1, ..., %) = lifandonlyifx = £ orx = (1, 1,...,1). The adversary

will define the class

C= {fé(l)(Xl, ce Xk A fg(z) (Xkas oo ey XoK) A e
A feo Gikkrns -0 TEY, L 6D €40, 1)

wherek = [log 2n] andl = |n/k]. After w equivalence queries the adversary assumes
that é®, ..., €™ are known. The adversary also defin8gs,,..., S of possible
gwtd g0 respectively. As in the proof of Lemma 3 it can be shown that each
membership query eliminates at most one element from exacthione- w, and using
equivalence queries the learner can learn at most one vectogftam, ..., £®. O

6.3. Other classes

Inthis subsection we give three bounds for parallel learning classes of boolean functions with
a polynomial number of processors. The classek-éeem DNF formulas fok = O(logn)

(DNF with at mostk terms), monotone DNF formulas (DNF with no negated variables)
and DNF formulas.

Result 3. Let KDNF, MDNF and DNF be the classes of k-term DNF formulas fogk
O(logn), the class of polynomial size monotone DNF formulas and the class of polynomial
size DNF formulasrespectively. Then

MExpne(poly(n)) =k,
MEwpnr(poly(n)) > poly(n),
MEpnr(poly(n)) = poly(n).

Proof:  All the results follow from (Bshouty et al., 1993). O

7. Parallel complexity of monotone read-once formulas

In this section we investigate the parallel complexity of monotone read-once formulas,
MROF. It is known from (Angluin et al., 1993) that the class of MROF is learnable from
membership queries only, i.evror(poly(n)) = 0. Therefore the technique used so far
that relies heavily on the lower bounds &y cannot be applied for this class. The negative
results for MROF are based on the following.
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Theorem 4. Any UPRAM algorithm with p processors that learns a class C in t steps
can be changed to a UPRAM algorithm witligp— 1)/2 processors that learns C it
steps where in each odd stégtepsl, 3, 5, . . .) the algorithm asks (p — 1) /2 membership
queries and in each even step the algorithm asks one equivalence query.

Proof: The proof is similar to the proof of Theorem 3. We hdgg, ..., gs} boolean
functions used for the equivalence query in some steppanrds membership queries. For
every 1<i < j <s < pwe find an assignmert’)) such that; (@'’) # g; @) and

then use membership queries to fida®). It can be easily shown that this provides
counterexamples for aff except at most one. For this one we use the equivalence query
in the following step. The number of membership queries used for this step is

s(s—1) p(p—1)
5 +(p_S)ST-

The proof of this result is based on Theorem 4.

Result 4. Let C be the class of monotone read-once formulas over n variables. Then

nlogn n
O( log p ) = MEe(®) = Q(Iog p)'

In particular,

n
MEc (poly(n)) > Q(m)

Proof: The upperbound follows from Theorem 2 and the fact that the number of read-once
formulas is bounded above ImP™.

For the lower bound we use Theorem 4. The adversary defines the vettors
X1y + e s Xy - o5 00 = (Xik—kt, - - - » Xik) Wherek = 2+ 2[log p] andl = |n/k]. Notice

thatlk < n so the variables are all frofixy, ..., X,}. Define
fe... ék)(Xl,'-~,Xk,Y)=< \/ Xj)v( A\ xj/\y>.
jeti<kig=0) jeli=kig=1)

This function satisfies

1 Ifx;=1forsomej efi <k|§ =0}

0 Ifx;=0forallje{i<k|&=0)
andx; = 0 forsomej € {i <k |& = 1}.

y If X, %) = (1, - )

fer . 0(Xe, s X, Y) =

The adversary defines the set of monotone read-once formulas as follows.

C={fro?, fea@?,..., frn @V, 1)) --) 16D, 6@ . £V {0, 1)%.
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Notice that
fgu)(v(l), feo (U(z), R fé(l)(v(l), D) -9
= foo (", feen Y, fa0®, 1)) ) (%)

ED — @ gD _ 0

ObviouslyC is a subset of monotone read-once formulas and learning a functiénsn
equivalent to learning®, @ ... 0,

We assume that the learner agk® — 1) /2 membership queries in the odd parallel steps
and one equivalence query in the even parallel steps.

After 2w steps, the adversary assumes that the learner kadWs. ., €™, two bits
in £+ put nothing about™*+?, ..., £®. We will show thatp(p — 1)/2 membership
queries might help the learner to kng#+? but nothing abou @ +2, ..., £, Therefore
the learner must ask an equivalence query. Then we will show that asking an equivalence
query will help the learner to know at most two bitsiff 2.

In step v + 1 the learner asksn = p(p — 1)/2 membership queries. L&) =
{a®, ..., a™} be these queried vectors. The adversary will look at theKirséntries of
each vectoa) and define

G= {a(i) | (aii)’ o, a|(<iu),) 75 (%.(1)’ o S(U)))}
and
E=Q\G

Suppose that"** and&{**" are the bits that are known for the learnegit+V. The
assignments it are the assignments that have answers independgtitidf, ..., £ (see
property &)). Therefore the assignments@will give no information to the learner. The
adversary will then look at the bi(aﬁ'lzﬂ, ...,al) ) of eacha® € E. Since at most two
bits in& @*Y are known to the learner ani2 > p? > p(p—1)/2 there existy < {0, 1}
such thatyj; = &1V, nj2 = &3 and for alla® € E. (&) ;.....ag.) # n. The
adversary then decides thigt'+? = 5 and then for ala® e E the value off (a®) will
depend org ™“*+D but be independent aff**2, ... D,

At step v + 2 we assume the learner know&' . We will show now that an equi-
valence query will reveal at most two bitsgf’+?. The learner asks one equivalence query
with some functiory. We have the following cases fgr

Case I.
O(X1, ..., Xk) & fg(l)(v(l), fg(z)(v(z), e, f$(11:+1)(v(w+1), h)--)

foranyh(v®*2, ... o).
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This case is equivalent to

(vh)@Eu®, ..., u@+D)
gu®, U X ke - XKD

E= fé(l) (U(l), fé(Z) (U(z), e, fg(u,url) (U(w+1), h)--)
Leth' =gE®, ..., @™ Xoi1ki1s - - -5 Xik). Then forh = h’ we have

@3z, ...,z

g(z(l), ceey Z(w+1)» X(w+l)k+la ey Xlk)
£ few (2P, fr0(2?, ..., frun (@, 0) -0,
If (z®,..., 2wy = D, . @Dy then we get a contradiction. Therefore, for
some(z®, ..., zw+Dy £ D . @Dy we have
g(z(l), R Z(w+l), X(w+Dk+1s - - - » XIk) F fgu) (Z(l), fg(z) (Z(Z), R fg(m+1) (Z(U)+l), h).-.).
Now since (zV, ..., zw*tD)y =« D . g@+Dy py the property in £) we have
few (20, fe0 (2@, ..., frwrn (ZWTD W) ...) = ¢ for somer € {0, 1}. The adver-
£ £ £
sary chooses some vecte= (z, ..., 20+ xQ 1oL ) suchthag(a) #

and returns the assignmeatas a counterexample. In this case the learner can lean
nothing aboutg ®+2).
Case Il

O(X1, ..., XK) = f;(l)(v(l), fg(zy(v(z), R f$(11:+1)(v(w+1), h)--)

for someh(v®*?, ... v").
Now we have the following subcases.

1. h(n(u)+2)k+la ey nlk) for 50me(’7(w+2)k+1, ey 77(w+2)k+k) # (0, ey 0) Then the
adversary returns

1 1
a= (E( )a BRI E(er )a 77(w+2)k+1a LRI nﬂ)

as a counterexample (hegga) = 0). Letnuikth # 0forl < h < k. The
adversary will also assume tfiq;ii”*z) = 0. This bit makes sure thdt(a) = 1 where
f is the target function.

2. h(0, ..., 0, nw+3k+1s - - - » mk) = 1 for somen;. Then the adversary returns

a=ED, . gD 0,0 nwidkit, - )

asacounterexample (hag&) = 1). The adversary will also assumetbﬁt*z) =1
This bit makes sure thdt(a) = 0.
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3. I h(Xa42)kt1s - - -+ Xik) = Xw+2k+1 V * -+ V Xwt+2kt+k, then the adversary returns
a=@ED, .. @D 10,...,0

as a counterexample (hegéa) = 1) and defineg"*? = £{"*? = 1 to make sure
that f (a) = 0.

In case Il the adversary’s counterexample depends ongf*orP and two bits in
£@+2_ Therefore to learn the function the learner needs at lgzstallel steps. o

8. Conclusion and open problems

We showed that any class of boolean functions that cannot be learned witthogoly
equivalence queries cannot be learned efficiently in parallel. In other words, if a class is
efficiently learnable in parallel with a polynomial number of processors thenit is efficiently
learnable in parallel with one processor. This shows that we cannot speed up learning
algorithms that use only equivalence queries. On the other hand, many efficient parallel
learning algorithms are known for the PAC-learning model (Vitter & Lin, 1992). It would
be interesting to prove that certain classes can be efficiently probabilisticly exactly learned
using counterexamples. A cla€sis probabilisticly exactly learnable (PEC-learnable) ac-
cording to a distributiorD if it is exactly learnable withD-equivalence queries. Here the
answer of théD-equivalence query with a hypothekis a counterexamplethat is chosen
according to the distributiob 5 whereD 4 is the projection of the distributioD on the set

of all counterexampleg = {x | f(x) # h(x)}.

We then give a technique for proving lower bounds for parallel exact learning using
membership and equivalence query. This technique is based on the fact that any two inde-
pendent equivalence queries can be changed to one equivalence query and one membersh
query. This implies that a lower bound for the number of equivalence queries in any learn-
ing algorithm that uses a polynomial number of membership queries is a lower bound on
the number of parallel steps of the algorithm. We then give lower bounds for the number
of equivalence queries needed to learn certain classes showing that they are not efficiently
learnable in parallel. These classes include read-once BRNF, k-term DNF, monotone
DNF and any class that contains one of them.

This approach cannot be used for monotone read-once formulas because this clas:s
is learnable from membership queries only. Here we developed a second technique to
show that parallel membership queries and equivalence queries cannot speed up the learn
ability of a subclass of monotone read-once formulas by more tha®@gn) fac-
tor. We then show am/logn lower bound for the parallel steps needed to learn this
class.

An interesting open problem is to show parallel PEC-learnability of the above classes.
Also, finding a parallel PAC-learning algorithm with membership queries for read-once
formulas and automatas would be interesting. An efficient parallel PAC-learning algorithm
with membership queries for decision trees can be found in Bshouty (1996).
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