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Abstract. We analyze the “query by committee” algorithm, a method for filtering informative queries from a
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1. Introduction

Most of the research on the theory of learning from random examples is based on a paradigm
in which the learner is both trained and tested on examples drawn at random from the same
distribution. In this paradigm the learner is passive and has no control over the information
that it receives. In contrast, in thequeryparadigm, the learner is given the power to ask
questions. What does the learner gain from this additional power?

Study of the use of queries in learning (Valiant,1984, Angluin,1988), has mostly concen-
trated on algorithms forexact identificationof the target concept. This type of analysis
concentrates on the worst case behavior of the algorithm, and no probabilistic assumptions
are made. In contrast, we are interested in algorithms that achieve approximate identifica-
tion of the target, and our analysis is based on probabilistic assumptions. We assume that
both the examples and the target concept are chosen randomly. In particular, we show that
queries can helpacceleratelearning of concept classes that are already learnable from just
unlabeled data.

This question was previously studied by (Eisenberg & Rivest,1990) in the PAC learning
framework. They give a negative result, and show that, for a natural set of concept classes,
which they call “dense in themselves”, queries are essentially useless. They show that giving
the learner the ability to ask membership queries (questions of the type “what is the label
of the pointx?”) in this context does not enable the learner to significantly reduce the total
number of labeled examples it needs to observe. The reason is that if the learner observes
only a small number of examples,either passively or actively, then it can not be sensitive
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to slight changes in the target concept and in the underlying distribution. An adversary can
alter the distribution and the target in a way that will not cause the learner to change its
hypothesis, but will increase the error of this hypothesis in a significant way. In this paper
we show how some concept classes that are dense in themselves can be learned efficiently if
we allow the learner access to randomunlabeledexamples. This added capability enables
the learner to maintain its sensitivity to the input distribution, while reducing the number
of labels that it needs to know.

Baum(Baum,1991), proposed a learning algorithm that uses membership queries to avoid
the intractability of learning neural networks with hidden units. His algorithm is proved
to work for networks with at most four hidden units, and there is experimental evidence
(Baum & Lang,1992) that it works for larger networks. However, when Baum and Lang
tried to use this algorithm to train a network for classifying handwritten characters, they
encountered an unexpected problem(Baum & Lang,1992). The problem was that many of
the images generated by the algorithm as queries did not contain any recognizable character,
they were artificial combinations of character images that had no natural meaning. The
learning algorithm that is analyzed in this paper uses random unlabeled instances as queries
and in this way may avoid the problem encountered by Baum’s algorithm.

In the lines of work described above, queries are explicitly constructed. In contrast,
our work is derived within thequery filteringparadigm. In this paradigm, proposed by
(Cohn, Atlas & Ladner,1990), the learner is given access to a stream of inputs drawn at
random from the input distribution. The learner sees every input, but chooses whether or
not to query the teacher for the label. Giving the learner easy access to unlabeled random
examples is a very reasonable assumption in many real-life contexts. In applications such as
speech recognition, it is often the case that collecting unlabeled data is a highly automatic
process, while finding the correct labeling of the data requires expensive human work.
Our algorithm uses all of the unlabeled examples and in this way overcomes the problems
pointed out by Rivest and Eisenberg. Learning becomes an interactive process: rather than
requesting the human to label all the examples in advance, we let the computer choose the
examples whose labels are most informative. Initially, most examples will be informative for
the learner, but as the process continues, the prediction capabilities of the learner improve,
and it discards most of the examples as non-informative, thus saving the human teacher a
large amount of work.

In (Cohn, Atlas & Ladner,1990) there are several suggestions for query filters together
with some empirical tests of their performance on simple problems. In (Seung, Opper &
Sompolinsky, 1992) the authors suggested a filter called “query by committee,” (QBC)
and analytically calculated its performance for some perceptron-type learning problems.
For these problems, they found that the prediction error decreases exponentially fast in the
number of queries. In this work we present a more complete and general analysis of query
by committee, and show that such an exponential decrease is guaranteed for a general class
of learning problems.

The problem of selecting the optimal examples for learning is closely related to the
problem of experimental design in statistics (see e.g. (Fedorov,1972, Atkinson,1992)).
Experimental design is the analysis of methods for selecting sets of experiments, which
correspond to membership queries in the context of learning theory. The goal of a good
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design is to select experiments in a way that their outcomes, which correspond to labels,
give sufficient information for constructing a hypothesis that maximizes some criterion of
accuracy. One natural criterion is the accuracy with which the parameters that define the
hypothesis can be estimated (Lindley,1956). In the context of Bayesian estimation a very
general measure of the quality of a query is the reduction in the entropy of the posterior
distribution that is induced by the answer to the query. Similar suggestions have been
made in the perceptron learning literature(Kinzel & Ruj´an,1990). A different experimental
design criterion is the accuracy with which the outcome of future experiments, chosen from
some constrained domain, can be predicted using the hypothesis. This criterion is very
similar to criteria used in learning theory. Both criteria are important for us in this paper.
We show that while in the general case the two are not necessarily related, they are related
in the case of the query by committee algorithm. Using this relation we prove the efficiency
of the algorithm for some specific concept classes.

The results presented in this paper are restricted to a rather limited set of learning problems.
The main restriction is that the concepts are assumed to be deterministic and noiseless. In
the summary we list what we think are the natural extensions of our analysis.

The paper is organized as follows. In Section 2 we present the Bayesian framework
of learning within which we analyze our algorithm. In Section 3 we present some simple
learning problems and demonstrate a case in which the information gain of a query is not the
relevant criterion when we are interested in prediction quality. In Section 4 we describe the
query by committee algorithm. In Section 5 we prove that there is a close relation between
information gain and prediction error forQBC. Using this relation we show in Section 6
that the prediction error decreases exponentially fast with the number of queries for some
natural learning problems. In Section 7 we give a broader view on using unlabeled examples
for accelerating learning, and in Section 8 we summarize and point to some potential future
directions.

2. Preliminaries

We work in a Bayesian model of concept learning (Haussler, Kearns & Schapire,1994). As
in the PAC model, we denote byX an arbitrary sample space over which a distribution
D is defined. In this paper we concentrate on the case whereX is a Euclidean spaceRd.
Each concept is a mappingc : X → {0, 1} and a concept classC is a set of concepts. The
Bayesian model differs from the PAC model in that we assume that the target concept is
chosen according to aprior distributionP overC and that this distribution is known to the
learner. We shall use the notation Prx∈D(·) to denote the probability of an event whenx is
chosen at random fromX according toD.

We assume that the learning algorithm has access to two oracles:SampleandLabel. A
call to Samplereturns an unlabeled examplex ∈ X, chosen according to the (unknown)
distributionD. A call to Label with input x, returnsc(x), the label ofx according to
the target concept. After making some calls to the two oracles, the learning algorithm is
required to output a hypothesish : X → {0, 1}. We define the expected error of the
learning algorithm as the probability thath(x) 6= c(x), where the probability is taken with
respect to the distributionD over the choice ofx, the distributionP over the choice of
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c and any random choices made as part of the learning algorithm or of the calculation of
the hypothesish. We shall usually denote the number of calls that the algorithm makes to
Samplebym and the number of calls toLabel by n. Our goal is to give algorithms that
achieve accuracyε after makingO(1/ε) calls toSampleandO(log 1/ε) calls toLabel.

In our analysis we find it most convenient to view the finite number of instances that are
observed by the learning algorithm as an initial segment of an infinite sequence of examples,
all drawn independently at random according toD. We shall denote such a sequence of unla-
beled examples by~X = {x1, x2 . . .}, and use〈 ~X, c( ~X)〉 = {〈x1, c(x1)〉, 〈x2, c(x2)〉 . . .}
to denote the sequence of labeled examples that is generated by applyingc to eachx ∈ ~X.
We use~X1...m to denote the sequence of the firstm elements in~X. We use the terminol-
ogy of (Mitchell,1982), and define theversion spacegenerated by the sequence of labeled
examples〈 ~X1...m, c( ~X1...m)〉 to be the set of conceptsc′ ∈ C that are consistent withc on
~X, i.e. thatc′(xi) = c(xi) for all 1 ≤ i ≤ m. We denote the version space that corresponds
to the firsti labeled examples byVi = V (〈 ~X1...i, c( ~X1...i)〉). The initial version space,
V0 = V (∅), is equal toC. The version space is a representation of the information contained
in the set of labeled examples observed by the learning algorithm. A natural measure of the
progress of the learning process is the rate at which the size of the version space decreases.
The instantaneous information gainfrom theith labeled example in a particular sequence
of examples is defined to be− log PrP(Vi)/PrP(Vi−1). Summing the instantaneous in-
formation gains over a complete sequence of examples we get thecumulative information
gain, which is defined as

I(〈x1, c(x1)〉, . . . , 〈xm, c(xm)〉) .= −
m∑
i=1

log
PrP(Vi)

PrP(Vi−1)
= − log PrP(Vm) . (1)

The natural measure of the information that we expect to gain from the label of an unlabeled
example is the expected instantaneous information gain taken with respect to the probability
that each one of the two labels occurs. Letp0 be the probability that the label ofxm is 0,
given thatc ∈ Vm−1 and letV 0

m be the version space that results from the labelxm being
0. Definep1 andV 1

m in the corresponding way for the casec(xm) = 1. We define the
expected information gainof xi, givenVi−1, to be:

G(xi|Vi−1)
.= −p0 log

PrP(V 0
i )

PrP(Vi−1)
− p1 log

PrP(V 1
i )

PrP(Vi−1)
(2)

= −p0 log p0 − (1− p0) log(1− p0)
.= H(p0) ,

whereH(p) denotes the Shannon information content of a binary random variable whose
probability of being 1 isp. We shall use log base 2 in our definition and measure the
expected information gain inbits.1 The maximal information gain from a single label is
one bit. The information gain is thus a very attractive measure of the gain that can be
expected from askingLabel for the label of an example. However, as we show in Section 3,
this measure, by itself, is not sufficient for guaranteeing a large reduction in the expected
prediction error of the algorithm.

The “Gibbs” prediction rule is to predict the label of a new examplex by picking a
hypothesish at random from the version space and labelingx according to it. The random
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choice ofh is made according to the prior distributionP restricted to the version space. It is
a simple observation (see (Haussler, Kearns & Schapire,1994)), that the expected error of
this prediction error is at most twice larger than the expected error of the optimal prediction
rule which is the Bayes rule. We shall assume that our learning algorithm has access to an
oracle, denotedGibbs, which can compute the Gibbs prediction for a given examplex ∈ X
and version spaceV ⊂ C. Each timeGibbs(V, x) is called, a hypothesish ∈ C is chosen
at random according to the distributionP restricted toV , and the labelh(x) is returned.
Note that two calls toGibbs with the sameV andx can result in different predictions.
The main result of the paper is that a simple algorithm for learning using queries, that uses
the Gibbs prediction rule, can learn some important concept classes with accuracy that is
exponentially small in the number of calls toLabel.

3. Two simple learning problems

In this section we discuss two very simple learning problems. Our goal here is to give
examples of the concepts defined in the previous section and to show that constructing
queries solely according to their expected instantaneous information gain is not a good
method in general.

Consider the following concept class. LetX = [0, 1], and let the associated probability
distributionD be the uniform distribution. Let the concept classC, consist of all functions
of the form

cw(x) =
{

1, w ≤ x
0, w > x

, (3)

wherew ∈ [0, 1]. We define the prior distribution of concepts,P to be the one generated
by choosingw uniformly from [0, 1].

The version space defined by the examples{〈x1, c(x1)〉, . . . , 〈xm, c(xm)〉} is (isomorphic
to) the segmentVi = [max(xi|c(xi) = 0),min(xi|c(xi) = 1)]. Let us denote byξi the
ratio of the probabilities of the version space before and after observing theith example,
i.e. ξi = PrPVi/PrPVi−1. The instantaneous information gain of the example〈xi, c(xi)〉
is− log ξi. Given anunlabeledexample, the expected instantaneous information gain from
xi isH(ξi). Examples that fall outside the segment have zero expected information gain,
while the example that divides the segment into two equal parts obtains the highest possible
expected information gain of one bit. This agrees with our intuition because the labels
of examples that fall outside the segment are already completely determined by previous
labeled examples, while the label of the example that falls in the middle of the version space
interval is least predictable. It is easy to show that the probability of a prediction error for
the Gibbs prediction rule is equal to the length of the segment divided by three. Thus,
if the learner asks for the label of the example located in the middle of the segment, it is
guaranteed to halve the error of the Gibbs prediction rule. In this case we see that asking the
oracleLabel to label the example that maximizes the expected information gain guarantees
an exponentially fast decrease in the error of the Gibbs prediction rule. In contrast, the
expected prediction error after asking for the labels ofn randomly chosen examples is
O(1/n).
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Figure 1. A figure of the version space and the examples that achieve maximal information gain for the two
threshold learning problem defined below.

The question is whether constructing queries according to their expected information
gain is a good method in general, i.e. whether it always guarantees that the prediction error
decreases exponentially fast to zero.

The answer to this question is negative, to see why this is the case consider the following,
slightly more complex, learning problem. Let the sample space be the set of pairs in which
the first element,i, is either 1 or 2, and the second element,z, is a real number in the range
[0, 1], i.e.x ∈ X = {1, 2} × [0, 1]. LetD be the distribution defined by picking bothi and
z independently and uniformly at random. Let the concept class be the set of functions of
the form

c~w(i, z) =
{

1, wi ≤ z
0, wi > z

, (4)

where~w ∈ [0, 1]2. The prior distribution over the concepts is the one generated by choosing
~w uniformly at random from[0, 1]2. In this case each example corresponds to either a
horizontal or a vertical half plane, and the version space, at each stage of learning, is a
rectangle (see Figure 3). There are always two examples that achieve maximal information
gain, one horizontal and the other vertical. Labeling each one of those examples reduces
the volume of the version space by a factor of two. However, the probability that the Gibbs
rule makes an incorrect prediction is proportional to the perimeter of the rectangular version
space, and not to its volume. Thus, if the learner always constructs queries of the same type,
only one of the dimensions of the rectangle is reduced, and the perimeter length stays larger
than a constant. This implies that the prediction error also stays larger than a constant.

We conclude that the expected information gain of an unlabeled example isnota sufficient
criterion for constructing good queries. The essential problem is that the distribution over



SELECTIVE SAMPLING USING QUERY BY COMMITTEE 139

the examples is completely ignored by this criterion. While one can easily find a specific
solution for the given learning problem, we would like to have a general method that is
sensitive to the distribution of the examples, and is guaranteed to work for a wide variety
of problems. In the next section we present such a method.

4. The Query by Committee learning algorithm

In (Seung, Opper & Sompolinsky,1992) the authors devise an algorithm for learning with
queries which they called “Query by Committee” and we shall refer to as theQBC algorithm.
The algorithm uses as queries examples whose expected information gain is high, however,
rather thanconstructingthe examples, itfilters the more informative examples from the
random unlabeled examples that it gets from the oracleSample. We discuss the simplest
case in which the committee is of size two.2

The algorithm proceeds in iterations. In each iteration it callsSampleto get a random
instancex. It then callsGibbs twice, and compares the two predictions for the label ofx.
If the two predictions are equal, it rejects the instance and proceeds to the next iteration. If
the two predictions differ, it callsLabel with inputx, and adds the labeled example to the
set of labeled examples that define the version space. It then proceeds to the next iteration.
In (Seung, Opper & Sompolinsky,1992) the authors treat the query by committee algorithm
as an on-line learning algorithm, and analyze the rate at which the error of the two Gibbs
learners reduces as a function of the number of queries made. In our work we prove general
bounds both on the number of queries and on the number of random examples that the
algorithm tests. In order to do that we consider abatch learning scenario, in which the
learning algorithm is tested only after it has finished observing all of the training examples
and has fixed its prediction hypothesis.

To do that we define a termination condition on the iterative process described above.
When the algorithm reaches this a state that fulfills this condition it stops callingSample
andLabel and uses theGibbs oracle topredict the labels of the instances that it receives
in the test phase. The termination condition is satisfies if a large number of consecutive
instances supplied bySampleare all rejected.

We measure the quality of the predictions made by the algorithm in a way similar to
that used in Valiant’s PAC model. We define the expected error of the algorithm as the
probability that its prediction of the label of a random instance disagrees with that of the
true underlying concept. This probability is taken with respect to the random choice of
the instance as well as the underlying concept. We also allow the algorithm some small
probability of failure to account for the fact that the sequence of instances that it observes
during training is atypical.

We say that the learning algorithm is successful if its expected error is small, when trained
on a typical sequence of instances. More precisely, we define two parameters, an accuracy
parameter1 > ε > 0 and a confidence parameter1 > δ > 0. We use the term “training
history” to describe a specific sequence of random instances and random coin flips used
during learning a specific hidden concept. For each choice of the hidden concept, we allow
a set of training histories that has probabilityδ to be marked as “atypical” training histories.
Our requirement is that the expected error over the set of typical training histories is smaller
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Input: ε > 0 - the maximal tolerable prediction error.
δ > 0 - the desired reliability.
Gibbs- an oracle that computes Gibbs predictions.
Sample- an oracle that generates unlabeled examples.
Label- an oracle that generates the correct label of an example.

Initialize n - the counter of calls toLabel – to 0, and set the initial version space,V0, to be
the complete concept classC.

Repeat until more thantn consecutive examples are rejected. Where

tn =
1
ε

ln
π2(n+ 1)2

3δ
,

andn is the number of examples that have been used as queries so far.

1. CallSampleto get an unlabeled examplex ∈ X drawn at random according toD.

2. CallGibbs(Vn, x) twice, to get two predictions for the label ofx.

3. If the two predictions are equalthen reject the example and return to the beginning of
the loop. (step 1)

4. Elsecall Label(x) to getc(x), increasen by 1, and setVn to be all conceptsc′ ∈ Vn−1

such thatc′(x) = c(x).

Output as the prediction hypothesisGibbs(Vn, x).

Figure 2. Query by a committee of two

thanε. The parametersε andδ are provided to the learning algorithm as input and are used
to define the termination criterion. Figure 2 gives a formal description of the algorithm. It
is important to notice that the termination condition depends only onε andδ, and not of
any properties of the concept class. While the performance of the algorithmdoes depend
on such properties, the algorithm can be used without prior knowledge of these properties.

It is easy to show that ifQBC ever stops, then the error of the resulting hypothesis is
small with high probability. That is because it is very unlikely that the algorithm stops if
the probability of error is larger thanε (proof is given in Lemma 2). The harder question
is whetherQBC ever stops, and if it does, how many calls toSampleand toLabel does
it make before stopping? As we shall show in the following two sections, there is a large
class of learning problems for which the algorithm will stop, with high probability, after
O(1/ε log 1/δε) calls toSample, andO(log 1/ε) calls toLabel.

The committee filter tends to select examples that split the version space into two parts
of comparable size, because if one of the parts contains most of the version space, then
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the probability that the two hypotheses will disagree is very small. Let us normalize the
probability of the version space to one and assume that an examplex partitions the version
space into two parts with probabilitiesF and1 − F respectively. Then the probability of
accepting the examplex as a query is2F (1−F ) and the information gain from an example
isH(F ). . Both of these functions are maximized atF = 0.5 and decrease symmetrically
to zero whenF is increased to one or decreased to zero. It is thus clear that the queries
of QBC have a higher expected information gain than random examples. However, it is
not true in general that the expected information gain of the queries will always be larger
than a constant,3 moreover, as we have seen in the Section 3, queries with high information
gain do not guarantee a fast decrease of the prediction error in general. Our proof of the
performance ofQBC consists of two parts. In the first part, given in Section 5, we show
that a lower bound on the information gain of the queriesdoesguarantee a fast decrease
in the prediction error ofQBC. In the second part, given in Section 6, we show that the
expected information gain of the queries ofQBC is guaranteed to be higher than a constant
in some important cases.

5. Relating information gain and prediction error for Query by Committee

In this section we prove that if the expected information gain from the queries used by
QBC is high, then the prediction error of the algorithm is guaranteed to be exponentially
small in the number of queries asked. We shall first define exactly what we mean by high
information gain, and then give the theorem and its proof.

In our analysis we treat runs of the algorithm as initial segments of infinite runs that would
have been generated had there been no termination criterion on the execution of the main
loop in QBC. We denote by~X the infinite sequence of unlabeled examples that would
have been generated by calls toSample. We use an infinite sequence of integer numbers
I = {1 ≤ i1 < i2 < . . .} to refer to the sequence of indices of those examples that are
filtered byQBC from ~X and used as queries toLabel. This set of examples is denoted~XI .
We denote byM the sequence of integers from1 tom, and use~XM to denote the firstm
examples in~X. We useIn to denote the firstn elements ofI. Finally, ~XIn indicates the
first n examples that are used as queries, and~XI∩M indicates the queries that are chosen
from the firstm unlabeled examples.

We now present the probabilistic structure underlying the query process. A point in the
sample spaceΩ is a triple〈c, ~X, I〉. The probability distribution over this space is defined
as follows. The target conceptc is chosen according toP, and each component in the
infinite sequence~X is chosen independently according toD. Fixing c and ~X, we define
the distribution of the firstn elements ofI according to the probability that algorithmQBC
calls the oracleLabel on the iterations indexed byIn. It is easy to see that the distributions
defined for different values ofn are consistent with each other, thus we can define the
distribution onI as the limiting distribution forn → ∞. We denote the distribution we
have defined on the triplets〈c, ~X, I〉 by ∆ and use Pr∆ andE∆ to indicate the probability
and the expectation taken with respect to this distribution.
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We now define formally what we mean when we say that the queries ofQBC are infor-
mative.

Definition. We say that the expected information gain of queries made byQBC for the
learning problem of concept classC,concept distributionP, and input distributionD, is
uniformly lower bounded byg > 0 if the following holds.

For the distribution over〈c, ~X, I〉 that is generated byP,D andQBC and for everyn ≥ 0,
the expected instantaneous information gain from then+ 1st query, given any sequence of
previous queries and their answers, is larger thang. In our notation we can write this as the
requirement that the following conditional expectation is larger thang almost everywhere:

Pr∆
(
E

(
G(xin+1 |V (〈 ~XIn , c( ~XIn)〉)) | ~XIn , c(XIn)

)
> g

)
= 1

In somewhat more intuitive terms, a uniform lower bound on the information means that
for any version space that can be reached byQBC with non-zero probability, the expected
information gain from the next query ofQBC is larger thang. In Section 6 we shall
prove uniform lower bounds on the information gain ofQBC for some important learning
problems.

We now give the theorem that relates the bound on the information gain ofQBC to its
expected prediction error.

Theorem 1 If a concept classC has VC-dimension0 < d < ∞ and the expected
information gain of queries made byQBC is uniformly lower bounded byg > 0 bits, then
the following holds with probability larger than1− δ over the random choice of the target
concept, the sequence of examples, and the choices made byQBC:

• The number of calls toSamplethatQBC makes is smaller than

m0 = max

(
4d
eδ
,
160(d+ 1)

gε
max

(
6, ln

80(d+ 1)
εδ2g

)2
)
. (5)

• The number of calls toLabel thatQBC makes is smaller than

n0 =
10(d+ 1)

g
ln

4m0

δ
,

In other words, it is an exponentially small fraction of the number of calls toSample.4

• The probability that theGibbs prediction algorithm that uses the final version space of
QBC makes a mistake in its prediction is smaller thanε.

Before we proceed to prove the theorem, let us give a brief intuitive sketch of the argument
(See Figure 3). The idea is that if a concept class is learnable then, after observing many
labeled examples, the conditional distribution of the labels of new examples is highly
biased to one of the two labels. This means that the information gained from knowing
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Figure 3. Each tag on thex axis denotes a random example in a specific typical sequence. The symbolX under
a tag denotes the fact that the example was chosen as a query.

the label of a random example is small. This, in turn, means that the increase in the
cumulative information from a sequence of random examples becomes slower and slower
as the sequence gets longer. On the other hand, if the information gained from the queries
of QBC is lower bounded by a constant, then the cumulative information gain from the
sequence of queries increases linearly with the number of queries. It is clear that the
information from the labels of the queries alone is smaller than the information from the
labels of all the examples returned bySample. The only way in which both rates of
increase can hold without violating this simple inequality is if the number of examples
that are rejected between consecutive queries increases with the number of queries. As a
result the termination criterion ofQBC will hold, and the algorithm will output its final
prediction rule after a reasonably small number of queries. The prediction rule that is output
is the Gibbs prediction rule, using the final version space that is defined by all the labeled
examples seen so far. The probability of making a prediction error using this rule is, by
definition, equal to the probability of a disagreement between a hypothesis that is randomly
chosen according to the prior distribution restricted to the version space and a concept that
is independently chosen according to the same distribution. This probability is also equal
to the probability of accepting a random example as a query when using this version space.
The termination condition is fulfilled only if a large number of random examples are not
accepted as queries, which implies that the probability of accepting a query or making a
prediction mistake when using the final version space is small. We shall prove the theorem
using the following three lemmas.

Lemma 1 If the expected instantaneous information gain of the query algorithm is uni-
formly lower bounded byg > 0 bits, then

Pr∆(I(〈 ~XIn , c( ~XIn)〉) < g

2
n) ≤ e−

g
10n (6)

Proof: The definition of a uniform lower bound on the expected information gain means
that for anyn > 0, for all sequence of ofn queries〈 ~XIn , c( ~XIn)〉, excluding possibly a set
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of measure zero, the expected information gain from then + 1st query is lower bounded
by g. Put in another way, this means that the random variables

Yi = I(〈 ~XIi , c( ~XIi)〉)− I(〈 ~XIi−1 , c( ~XIi−1)〉)− g

form a sequence of sub-martingale differences. As the instantaneous information gain is
bounded between0 and1, we get that−g ≤ Yi ≤ 1 − g. We can thus use Hoeffding’s
bound on the tails of bounded step sub-martingales (McDiarmid,1989)5 from which we
know that for anyε > 0

Pr(
n∑
i=1

Yi ≤ −εn) ≤
[
(

g

g + ε
)g+ε(

1− g
1− g − ε )

1−g−ε
]n

.

Settingε = λg and taking logs we get

Pr(
∑n
i=1 Yi ≤ −λgn) ≤

exp
((
−(1 + λ)g ln(1 + λ) + (1− (1 + λ)g) ln 1−g

1−(1+λ)g

)
n
)
≤

exp ((λ− (1 + λ) ln(1 + λ)) gn) .

Choosingλ = 1/2 we get the bound.

Lemma 2 The probability that the predictions made byQBC are wrong (after its main
loop has terminated) is smaller thanε with probability larger than1− δ/2.

Proof: Assume that the probability of a wrong prediction is larger thanε. As discussed
in the informal part of the proof, this implies that the probability of accepting a random
example as a query with the final version space, is also larger thanε. It thus remains to show
that the probability thatQBC stops when the probability of accepting a query is larger than
ε is smaller thanδ/2.

The termination condition ofQBC is that all tn examples tested after thenth query
are rejected. If the probability of accepting a random example is larger thanε then this
probability is smaller than(1− ε)tn . From the definition oftn we get that

(1− ε) 1
ε ln

π2(n+1)2

3δ ≤ e− ln
π2(n+1)2

3δ =
3δ

π2(n+ 1)2
.

Summing this probability over all possible values ofn from zero to infinity we get the
statement of the lemma.

In (Haussler, Kearns & Schapire,1994) it was shown that if the VC-dimension of a concept
class isd, then the expected information gain fromm random examples is bounded by
(d + 1) log(m/d). Here we show that the probability that the information gain is much
larger than that is very small.

Lemma 3 Assume a conceptc is chosen at random from a concept class with VC dimension
d. Fix a sequence of examples~X, recall that ~XM denotes the firstm examples. Then
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Prc∈P
(
I(〈 ~XM , c( ~XM )〉) ≥ (d+ 1)(log

em

d
)
)
≤ d

em
. (7)

Proof: From Sauer’s Lemma (Sauer,1972) we know that the number of different label-
ings created bym examples is at most

∑d
i=0

(
m
i

)
≤ (em/d)d. The expected cumulative

information gain is equal to the entropy (base 2) of the distribution of the labels and is max-
imized when all the possible labelings have equal probability. This gives an upper bound
of d log em

d on the expected cumulative information gain. Labelings that have cumulative
information gain larger bya than this expected value, must have probability that is smaller
by 2a than the labels in the equipartition case. As the number of possible labelings remains
the same, the total probability of all concepts that give rise to such labelings is at most2−a.
Choosinga = log em

d we get the bound.

Proof of Theorem 1: We consider a randomly chosen element of the event space〈c, ~X, I〉.
Our analysis involves the firstm0 random examples presented toQBC, ~XM0 , and the first
n0 queries thatQBC would filter if it never halts,~XIn0

. We denote the number of queries
thatQBC makes during the firstm0 examples byn, i.e.n = |I ∩M0|. The claim of the
theorem is that, with probability at least1−δ, the algorithm halts before testing them+1st
example, the number of queries it makes,n, is smaller thann0, and the hypothesis it outputs
upon halting has error smaller thanε. We shall enumerate a list of conditions that guarantee
that all of these events occur for a particular random choice of examples and of internal
randomization inQBC. By showing that the probability of each of those conditions to fail
is small we get the statement of the theorem.

The conditions are:

1. The cumulative information content of the firstn0 queries is at leastgn0/2.
From Lemma 1 we get that in order for this condition to hold with probability larger
than1− δ/4 it is sufficient to require that

n0 ≥
10
g

ln
4
δ
. (8)

2. The cumulative information content from the firstm0 examples is at most
(d+ 1)(log em0

d ).
From Lemma 3 we get that in order for this condition to hold with probability larger
than1− δ/4 it is sufficient to require that

m0 ≥
4d
eδ

. (9)

3. The number of queries made during the firstm0 examples,n, is smaller thann0.
The condition follows from conditions 1 and 2 if

I(〈 ~XIn0
, c( ~XIn0

)〉) ≥ I(〈 ~XM0 , c( ~XM0)〉) (10)
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This is because ifn ≥ n0 then the information gained from the queries asked during
the firstm0 examples is larger than the total information gained from them0 examples,
which is impossible. In order for (10) to hold, it is sufficient to require that

n0 >
2(d+ 1)

g
(log

em0

d
) . (11)

4. The number of consecutive rejected examples guarantees that the algorithm stops
before testing them0 + 1st example.
Notice that the thresholdti increases withi. Thus if at leasttn consecutive exam-
ples from among the firstm0 examples are rejected, the algorithm is guaranteed to halt
before reaching them0 + 1st example. As there arem0 − n rejected examples, the
length of the shortest run of rejected examples is at least(m0−n)/(n+1). We require
that this expression is larger thantn, and use the fact that condition 3 holds, i.e. that
n < n0. Using these facts it is sufficient to require that

m0 ≥
2(n0 + 1)

ε
ln

[
π2

3δ
(n0 + 1)2

]
. (12)

5. The Gibbs prediction hypothesis that is output by theQBC has probability smaller
thanε of making a mistaken prediction.
From Lemma 2 we get that the probability of this to happen is smaller thanδ/2.

We see that if Equations (8), (9), (11), and (12) hold, then the probability that any of the
four conditions fails is smaller thanδ.It thus remains to be shown that our choices ofn0 and
m0 guarantee that these equations hold. Combining Equations (8) and (11), we get that it
is sufficient to require thatm0 ≥ 2, d ≥ 1, and

n0 + 1 =
10(d+ 1)

g
ln

4m0

δ
(13)

Plugging this choice ofn0 into Equation (12), we get the following requirement onm0:

m0 ≥
40(d+ 1)

εg
ln

4m0

δ
ln

[
20(d+ 1)

δg
ln

4m0

δ

]
. (14)

It is simple algebra to check that the following choice ofm0 and satisfies Equations (9)
and (14):

m0 = max

(
4d
eδ
,
160(d+ 1)

gε
max

(
6, ln

80(d+ 1)
εδ2g

)2
)
, (15)

Equations (13) and (15) guarantee that the conditions 1-5 hold with probability at least1−δ.
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6. Concept classes that are efficiently learnable using QBC

According to Theorem (1) above, if query by committee yields high information gain, then
it yields a rapidly decreasing generalization error. Here we discuss some geometric concept
classes for which a uniform lower bound on the information gain exists, and hence to which
the theorem is applicable.

Our main analysis is for a learning problem in which concepts are intersections of half-
spaces with a compact and convex subset ofRd. In this case the concept class itself can be
represented as a compact and convex subset ofRd and each example partitions the concept
class by ad − 1 dimensional hyperplane. In Section 6.1, we sketch a proof of a uniform
lower bound on the information gain ofQBC that does not depend on the dimensiond, for
the case in which bothD andP are uniform. The proof, which is detailed in Appendix A.
is based on a variational analysis of the geometry of the version space. In Section 6.2 this
result is extended to the case of non-uniform input distribution and prior and applied to the
perceptron learning problem.

6.1. Uniformly distributed half-spaces

In this subsection we prove a lower bound on the information gain for a simple geometric
learning problem to which we shall refer as the “parallel planes” learning problem.

t

x

w

w

C (x,t)=0

C (x,t)=1

Figure 4. A figure of the two dimensional concept class defined by Equation (16) ford = 2. The shaded area
corresponds to a typical convex version spaceV which is defined by a set of half spaces corresponding to several
examples. This version space is bisected by a new unlabeled example defined by~x andt.

We define the domain,X, to be the set of all pairs of the form(~x, t), where~x is a vector
in Rd whose length is1, which we refer to as the “direction” of the example, andt is a real
number in the range[−1,+1], to which we refer as the offset (see Figure 6.1). In other
wordsX = Sd × [−1,+1], whereSd denotes the unit sphere around the origin ofRd. In
this section we assume that the distributionD onX is uniform.6 The concept class,C, is
defined to be a set of binary functions overX, parameterized by vectors~w ∈ Rd, ||~w||2 ≤ 1,
that are defined as follows
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c~w(~x, t) =
{

1, ~w · ~x ≥ t ,
0, ~w · ~x < t

. (16)

We assume that the prior distribution is uniform onBd—the unit ball of radius one around
the origin. This concept class is very similar to the class defined by the perceptron with
variable threshold.7 However, note that in this case the threshold,t, is part of the input,
and not a parameter that defines the concept. This concept class is a bit strange, but as we
shall see, the results we can prove for it can be extended to more natural concept classes
such as the perceptron.

The information gain from random examples vanishes asd goes to infinity. The reason for
this is that in high dimension, the volume of the sphere is concentrated near the equator. A
typical random example will cut the sphere some distance away from the equator, in which
case the sphere will fall into two pieces of very unequal volume. The piece containing
the equator will contain almost all of the volume. This geometric example illustrates why
query algorithms are especially important in high dimensions. Query by committee solves
this problem by choosing two random points in the sphere. Since these two points are likely
to be near the equator, an example that separates them is likely to be near the equator. For
this reason, query by committee can attain an information gain that remains finite in high
dimensions.

In our proof of the uniform lower bound on the expected information gain ofQBC we
use two properties of the version spaces for this concept class. The first property is that
each example(~x, t) cuts the version space by a plane that is orthogonal to the direction
~x and has offsett from the origin.8 As t is uniformly distributed, the planes that cut the
version space in any fixed direction have a uniformly distributed offset that spans the width
of the version space in that direction. The second property is that all version spaces that
can be generated when learning this concept class are bounded convex sets because they
are defined as the intersection of a ball with a number of half-spaces.

As discussed in Section 4, both the expected information gain of an example and the
probability that the example is accepted byQBC are quantities that depend on the ratio
between the probabilities of the two parts of the version space that are created by the
example. Based on these observations we can reduce our problem to a one dimensional
problem. Fix a particular direction~x. Let F~x : [−1,+1] → [0, 1] be the fraction of the
version space,V , that is on one side of the plane defined by~x andt, i.e.

F~x(t) =
Prc~w∈P (c~w ∈ V |c~w(~x, t) = 0)

Prc~w∈P (c~w ∈ V )
. (17)

We callF thevolume functionof the version space. The probability thatQBC accepts the
example(~x, t) is2F~x(t)(1−F~x(t)), and the expected information gain from the example is
H(F~x(t)). As t is uniformly distributed, the expected information gain from the examples
whose direction is~x is

G(F~x) =

∫ +1

−1
F~x(t)(1− F~x(t))H(F~x(t)) dt∫ +1

−1
F~x(t)(1− F~x(t)) dt

. (18)
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Our result is a lower bound on the value ofG(F~x). The proof is based on finding the
convex version space that produces the smallest value ofG(F~x). This body is constructed
of two isomorphic cones connected at their bases, we call this body a “two-cone”. Barland
(Barland,1992, Theorem5), analyzes a similar problem. He finds the convex body that
achieves the minimal value of the functional

∫ +1

−1
min(F~x(t), 1 − F~x(t)) dt. The analysis

of the minimum for this functional is much simpler, interestingly, Barland finds that the
body which achieves the minimum is the same as the one which achieves the minimum of
the functionalG.

Theorem 2 The functionalG(F~x), defined for volume functions of convex bodies inRd,
assumes a unique minimum at the two-cones body defined above. The value ofG at the
minimum is at least1/9 + 7/(18 ln 2) > 0.672 bits, for any dimensiond.

This theorem gives us a lower bound on the expected information gain of a single query
of QBC for the “parallel planes” learning problem defined at the beginning of this section.
In Section 6.2 we shall use this theorem to prove thatQBC is an effective query algorithm
for learning perceptrons.
Proof: Here we give the main part of the proof. The more technical details are formulated
in Lemmas 4, 5, 6 and 7, whose proofs are given in appendix A.

The proof is based on a variational analysis of the functionalG. We shall show that the
volume function that corresponds to “two-cones” minimizes this functional. We shall show
that any other volume function of a convex body can be slightly altered in a way which
decreases the value ofG and maintains the correspondence with some convex body.

We shall bound the value ofG(F~x) independently of the direction~x. Our bound depends
only on the fact that the version space is a bounded convex set inRn and that the distribution
in it is uniform. We thus drop the subscript~x fromF~x(·). AsF (−1) = 0, F (+1) = 1, and
H(1) = H(0) = 0, we will, without loss of generality, extend the definition ofF (t) to all
of R by defining it to be zero fort ≤ −1 and one fort ≥ 1. We then redefine the integrals
in the definition ofG(F ) in Equation (18) to be from−∞ to∞. It is easy to check that
G(F (t)) = G(F (at+ b)) for anya, b 6= 0. Thus, without loss of generality, the support of
the volume function is[−1,+1] andF (0) = 1/2.

Consider the right half of the body, i.e. the set of points whoset coordinate is at least
0. Take the union of this half with its symmetric reflection at the planet = 0. Similarly,
generate a symmetric body from the left side of the original body. The two resulting bodies
are reflection symmetric but usually not convex. Their volume functions are:

F−(t) =
{
F (t) t ≤ 0
1− F (−t) t > 0 ,

F+(t) =
{

1− F (−t) t ≤ 0
F (t) t > 0 ,

It is easy to see that eitherG(F+) ≤ G(F ) or G(F−) ≤ G(F ). Thus, in order to prove
a lower bound onG(F ) for all convex bodies, it is sufficient to prove a lower bound for
volume functions that correspond to reflection-symmetric bodies for which each half is
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convex. Our variational manipulations will apply to one half of the symmetric body (say
t ≥ 0) and carry over by reflection to other half. As we shall show, the minimum for one
half is obtained for a cone with a base att = 0. Its symmetric reflection, the two-cone
body, happens to be a convex body. Thus the two cone body gives the minimum ofG(F )
for all convex bodies.

Our goal is thus to find the a volume functionF : [0,∞)→ [1/2, 1] of the right half of a
convex body, which minimizes the functional

G(F ) =

∫∞
0
F (x)(1− F (x))H(F (x)) dx∫∞

0
F (x)(1− F (x)) dx

. (19)

We find it convenient to define the functionsK(t) = F (t)(1 − F (t)), and
Q(x) = H(1/2−

√
1− 4x/2). It is easy to verify thatH(F ) = Q(K), and that Equa-

tion (19) can be written as

G(K) =

∫ +∞
0

K(t)Q(K(t)) dt∫ +∞
0

K(t) dt
. (20)

The changes inG(K) that are induced by small changes in the functionK can be approxi-
mated by a linear functional, called the Fr´echet derivative,9 as follows

G(K + Ψ) = G(K) +
∫ +∞

0

∇G[K](t)Ψ(t) dt+ o

(∫ +∞

0

Ψ(t)2 dt
)
.

The Fréchet derivative∇G[K] is a function from[0,∞) intoR and∇G[K](t) is the value
of this function at the pointt. The derivative is calculated by formally differentiating the
functional∇G[K] with respect toK(t). Thus

∇G(t) =∫ +∞
0

K(s) ds ∂
∂K(t) (K(t)Q(K(t)))−

∫ +∞
0

K(s)Q(K(s)) ds ∂
∂K(t)K(t)(∫ +∞

0
K(s) ds

)2 (21)

=
1∫ +∞

0
K(s) ds

[
Q(K(t)) +K(t)

∂

∂K(t)
Q(K(t))−G(K)

]
We first consider the behavior of the sum of the first two terms in the square brackets.

DenoteK(t) by y. A direct calculation shows thatQ(y)+ y ∂
∂yQ(y) is a strictly increasing

function ofy in the range0 ≤ y ≤ 1/4, which is the range ofK(t). It is 0 for y = 0 and1
for y = 1/4.

As0 ≤ G(K) ≤ 1 the third term is in the range of the sum of the first two terms. AsK(t)
is decreasing for positivet, it follows that there is some pointw > 0, which is a function of
K, such that for all0 ≤ t ≤ w, ∂

∂K(t)G(K(t)) > 0, and for allt > w, ∂
∂K(t)G(K(t)) < 0.

The parameterw is of critical importance in the rest of the paper, and we shall refer to it
is the “pivot point”. In terms of the volume functionF , for t > 0, F increases whenK
decreases and vice versa. Thus if the variationΨ(t) is non-negative for points below the
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pivot point, non-positive for points above the pivot point, and
∫ +∞
0

Ψ(t)2 dt is sufficiently
small thenG(K(t) + Ψ(t)) < 0 as desired.

We shall construct suitable variations in proving lemma 5. For now, letB be the convex
body whose volume function isF (t). Consider the functionsf(t) and r(t) defined as
follows:

f(t) =
dF (t)
dt

; r(t) = d−1

√
f(t)
cd−1

,

wherecd − 1 is the volume of thed− 1 dimensional unit ball. The functionF (t) is equal
to the total volume of the bodyB in the range(−∞, t], sof(t) is thed − 1 dimensional
volume of theslice of B at t. We call r(t) the radius functionbecause ifB̃ is a body
of revolution obtained by rotating (the planar graph of) the functiont → r(t) around the
axis r(t) = 0, then the volume functions that correspond toB̃ and toB are the same.
Moreover,the following Lemma characterizes radius functions of convex bodies

Lemma 4 1. The radius function of any convex body is concave.

2. The body of revolution that is generated by a concave radius function is convex.

The proof of the lemma is given in Appendix A. Thus the search for the minimum of
G(K) over convex bodies (fort ≥ 0) can be restricted to bodies of revolution created by
rotating a concave radius functionr(t).

The proof of the theorem is concluded by proving the following lemmas, the details are
in Appendix A.

Lemma 5 If the convex body with volume functionF is not a cone with base at the
hyperplanet = 0 then there exists an admissible variationΨ such thatG(F +Ψ) < G(F ).

Lemma 6 The minimum ofG over convex bodies is achieved.

From Lemmas 5 and 6 it follows that the minimum ofG(F ) is achieved for the two-cone
body. Finally a simple calculation gives that

Lemma 7 The value ofG(F ) for a two-cone body inRd is at least1/9 + 7/(18 ln 2) >
0.672 for any dimensiond.

This concludes the proof of Theorem 2.

6.2. Perceptrons

In this section we apply Theorem 2 to the problem of learning perceptrons. The perceptron
concept class is defined as the following set of binary functions over the unit ball

c~w(~x)
{

1, ~x · ~w ≥ 0
0, otherwise

, (22)
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where ~w, ~x ∈ Rd, ||~w||2 = 1 and ||~x||2 ≤ 1. The prior distributions are within some
constants from the uniform distributions over the respective sets. As each~w is a point on
the surface of ad dimensional sphere, the initial version space is isomorphic to the unit
sphere.

The section is organized as follows. We start by stating an extension of Theorem 2. We
then discuss a technical issue regarding an initial phase of the learning procedure that is
required in order to make the theorems apply. We then prove the main result of this section,
which shows that, under some mild assumptions, the prediction error of theQBC algorithm,
when learning decreases exponentially fast with the number of queries asked.

Theorem 2 can be generalized to cases where the prior and input distributions are not
exactly uniform. We use the following definition

Definition. We say that a densityD′ is within λ of D if for every measurable setA, we
have thatλ ≤ PrD(A)/PrD′(A) ≤ 1/λ.

Using this definition, we get the following extension of Theorem 2:

Theorem 3 The value of the functionalG(F ) for the parallel planes learning problem,
when the prior distribution is withinλP of uniform and the input distribution is withinλD
of uniform, is at leastλ4

PλD(1/9 + 7/(18 ln 2)) > 0.672λ4
PλD bits, independent of the

dimensiond.

The proof is in Appendix B.
Using Theorem 3, we can prove thatQBC is an efficient query algorithm for the perceptron

concept class when the prior distribution and the distribution of examples are both close
to uniform. We shall prove that there exists a lower bound on the information gain of the
queries ofQBC. However, our proof technique requires that the initial version space is not
the complete unit sphere, but is restricted to be within a cone. In other words, there has to
exist a unit vector~w0 such that for any~w ∈ V0 the dot product~w · ~w0 is larger than some
constantα > 0.

This condition is annoying. However, it is not hard to guarantee that this condition holds
by using an initial learning phase, prior to the use ofQBC, that does not use filtering but
rather queries on all the random instances supplied bySample. Using the results of Blumer
et al. we can bound the number of training examples that are needed to guarantee that the
prediction error of an arbitrary consistent hypothesis is small (with high probability). As
the distribution of the instances is close to uniform, a small prediction error implies that
the hypothesis vector is within a small angle of the vector that corresponds to the target
concept. The details of this argument are given in the following lemma.

Lemma 8 Assume that the distribution of the instancesD is withinλD from the uniform
distribution in the unit ball. Supposem random instances are chosen according toD,
labeled according tof~w0(·) and used to find a hypothesisf~w(·) that is consistent with all
the labeled instances.

If

m ≥ max
(

4
ε

log
2
δ
,
8d
ε

log
13
ε

)
whereε = λD cos−1(α)
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then, with probability1− δ over the choice of them random instances,~w · ~w0 ≥ α.

Proof: If ~w · ~w0 < α then the angle between~w and ~w0 is larger thancos−1(α). The
examples on whichf~w(~x) is incorrect are those vectors in the unit ball for which~x · ~w ≥ 0
and~x · ~w0 < 0, or ~x · ~w < 0 and~x · ~w0 ≥ 0. This defines a subset of the unit ball,
constructed of two wedges, whose volume is at leastcos−1(α) of the volume of the ball. As
the distribution of the instances is withinλD from the uniform distribution, the probability
of this set is at leastλD cos−1(α).

On the other hand, as the VC dimension of thed dimensional perceptron isd we can
use the classical uniform convergence bounds from (Blumer et al.,1989). Theorem 2.1
in (Blumer et al.,1989) guarantees that a hypothesis that is consistent withm labeled ex-
amples, chosen independently at random from anarbitrary distribution, has error smaller
thanε with probability1− δ if

m ≥ max
(

4
ε

log
2
δ
,
8d
ε

log
13
ε

)
.

Combining these two arguments, we get the statement of the theorem.

Assuming that an initial phase of learning from unfiltered instances is used to guarantee
a bound on the maximal angle between vectors, we get the following theorem.

Theorem 4 For anyα > 0, let Cα be thed dimensional perceptron concept class as
defined in Equation (22), restricted to those conceptsc~w, such that~w0 · ~w > α for some
unit vector~w0. Let the prior distribution overCα be withinλP of uniform and the input
distribution be withinλD from uniform. Then the expected information gain of the queries
of QBC is larger than0.672α5dλ4

PλD

Proof: The version space for the perceptron is a region on thed-dimensional unit sphere
that is bounded by a set of great circles. We shall transform this problem into a special case
of the parallel planes learning problem defined in Section 6.1.

Because we assume the existence of the vector~w0 we can define a one-to-one mapping
of the version space to a bounded convex subset ofRd−1. We can assume, without loss
of generality, that~w0 = {1, 0, . . . , 0}. We can also assume that||~x||2 = 1, because all
instances~x whose length is smaller than 1 can be mapped to~x/||~x||2 without changing the
label assigned to them by the concepts. The distribution over the surface of the unit sphere
that is created in this way is withinλD of uniform.

In this case the mapping of the concepts is defined by transforming the vector
~w = {w1, w2, . . . , wd} that lies on the unit sphere to thed − 1 dimensional vector
~w′ = {w2/w1, w3/w1, . . . , wd/w1}. The corresponding mapping of the instances maps the

instance~x = {x1, . . . , xd} that lies on the unit sphere to the pair~x′ = {x2, . . . , xd}/
√∑d

i=2 x
2
i

andt = −x1/
√∑d

i=2 x
2
i . It is easy to see that the condition that defines the perceptron

~w · ~x ≥ 0 is equivalent to~x′ · ~w′ ≥ t, which is the condition that defines the corresponding
parallel-plane concept.

The condition~w · ~w0 > α is, in this case, equivalent tow1 > α. It is easy to check that
the only examples in the transformed concept space that can be labeled both0 and1 by



154 Y. FREUND, H.S. SEUNG, E. SHAMIR AND N. TISHBY

w0

Segement of
the spherical 
version space

Projection of the region 
to a larger sphere

Maximal angle
between W and W

Projection of  the
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0

Figure 5. The transformation that maps the spherical version space unto the hyperplane.

some concept inCα are those for which
√∑d

i=2 x
2
i > α. This implies that the increase

in the volume of an infinitesimal part of the instance space is by a factor of at mostα−d.
Thus as the distribution over the instances on the surface of the unit sphere is withinλD of
uniform, the distribution over the transformed instance space is withinαdλD of uniform.

To bound the distance of the prior distribution from uniform, consider the mapping of
an infinitesimally small region of the version space from the sphere to the plane. Figure 5
illustrates this transformation for a two dimensional perceptron. This transformation maps
the hyperspherical region to a larger region in the hyperplane. The factor by which the
volume is increased is between1 andα−d. This can be seen by separating the transformation
into two steps. In the first step, the region on the unit hypersphere is mapped to a region on
a larger hypersphere. The radius of this larger hypersphere is at mostα−1, thus the increase
in the volume is by a factor of at mostα−(d−1). In the second step, the region on the large
hypersphere is mapped to the hyperplane, as the region is infinitesimally small, it can be
approximated by a linear region. The increase in the volume of the region in this step is by
a factor ofα−1. Multiplying the two factors we getα−d.

As the prior distribution over the sphere is withinλP of uniform, the distribution over the
hyperplane that is generated by the mapping is withinλPα

d of uniform.

We thus have a special case of the parallel plane learning problem with close to uniform
distributions. Using Theorem 3, we get the statement of the theorem.

6.3. Using an incorrect prior distribution

Up to this point we have made the assumption that the learning algorithm is using the correct
prior distribution on the concept spaceP. In this section we show how this assumption can
be weakened.

Definition. 10 We say that a distributionP is λ-dominated by a distributionP if, for any
eventA, PrP(A) ≤ λPrP′(A).
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Suppose thatQBC uses a distributionP ′ thatλ-dominatesP for some0 < λ <∞ such
that there is a uniform lower bound on the expected information gain ofQBC with respect
toP ′. The following theorem replaces Theorem 1 for this case.

Theorem 5 If a concept classC has VC-dimension0 < d < ∞ and the expected
information gain of queries made byQBC when using the priorP ′ is uniformly lower
bounded byg > 0 bits, and ifP is λc-dominated byP ′ for some0 < λc < ∞ then the
following holds with probability larger than1 − δ over the random choice of the target
concept (with respect toP), the sequence of examples, and the choices made byQBC:

• The number of calls toSamplethatQBC makes is smaller than

m0 = max

(
4d
eδ
,
160(d+ 1)
gλ2

cε
max

(
6, ln

80(d+ 1)
λ2
cεδ

2g

)2
)
. (23)

• The number of calls toLabel thatQBC makes is smaller than

n0 =
10(d+ 1)

g
ln

4m0

δ
,

In other words, it is an exponentially small fraction of the number of calls toSample.

• The probability that theGibbs prediction algorithm that uses the final version space of
QBC makes a mistake in its prediction is smaller thanε.

Note that while the number of calls toSampleincreases by about a factor ofλ2
c , the number

of queries increases only by an additive term of about2 log λc.

Sketch of proof: It is clear that the arguments given in the proofs of Lemmas 1 - 3 and
Theorem 1 hold ifP is replaced byP ′ throughout. This implies that, with high probability,
the error of aGibbsprediction algorithm that uses the final version space ofQBC is smaller
thanε′, or

ED [Prc∼P′,h∼P′ [c(x) 6= h(x)]] ≤ ε′ .

The assumption thatP is λc-dominated byP ′ implies that

ED [Prc∼P,h∼P [c(x) 6= h(x)]] ≤ λ2
cε
′ .

By increasingm0 by a factor ofλ2
c we get thatλ2

cε
′ = ε, from which the statement of the

theorem follows.
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7. Learning using unlabeled examples and membership queries

The QBC algorithm uses unlabeled examples in order to reduce the number of labeled
examples that it needs to know. WhileQBC is a very simple algorithm it is not the only
way of using the information provided by random unlabeled examples. In this section we
make the observation that in the learning framework defined in this paper there is a general
scheme for query filtering. This scheme is potentially more computationally intensive than
QBC, however, it is applicable in more generality thanQBC.

The main observation is that the oraclesSampleandGibbs, defined in Section 2 allow
the learning algorithm to estimate the expected error of any prediction rule. In this way the
algorithm can calculate the expected improvement of making any particular query.

The prediction rule used byQBC is to select a random consistent hypothesish using
Gibbs, and then label the instance withh(x). In general, any prediction rule defines a
conditional distribution of the label given the instance. The error of a prediction rule for a
given instancex ∈ X and conceptc ∈ C is the probability that the prediction assigns to the
incorrect label1− c(x). The expected error of the prediction rule is defined by selectingx
at random according toD and ac at random according toP. The oraclesSampleandGibbs
generate random selections fromD andP respectively. Thus, disregarding computational
complexity, we can approximate the expected error of any prediction rule using sufficiently
large samples of instances and hypotheses.

The dependence of the prediction rule generated byQBC on the labeled instances seen
in the past is defined via the version spaceV . In general, any learning algorithm defines a
mapping from sets of labeled instances to prediction rules. The estimate of the error of a
prediction rule thus defines a measure of the quality of a set of labeled examples. If we are
given anunlabeledinstance, we can estimate the distribution of the label of the instance
by usingGibbs. In this way we can estimate the expected reduction in the prediction error
that will result from knowing the correct label of any instance. A reasonable heuristic for
filtering queries is to select those instances that cause the largest reduction in the prediction
error. If after observing any set of labeled instances the learning algorithm can find an
instance which reduces the expected prediction error by a constant multiplicative factor,
then the prediction error decreases exponentially fast in the number of queries asked. Of
course, instances that cause such a reduction might not always exist, and even if they exist,
the problem of finding them efficiently is potentially hard.

The algorithm analyzed in this paper,QBC, is an efficient variant of this heuristic. The
general heuristic described above makes a large number of calls to the oraclesSampleand
Gibbs, algorithmQBC makes much fewer calls. More specifically, the dependence of the
number of calls toSampleon the desired error,ε is11 Õ(1/ε), which is the same dependence
achieved by the algorithm that makes a query on each instance that it gets fromSample.
The algorithm makes twice as many calls toGibbs as it makes toSample. It is not clear
if this is close to optimal, however, it is certainly much smaller than the number of calls
that is suggested in the heuristic described above. The exponential decrease of the error
of QBC as a function of the number of queries has been established for a restricted family
of parameterized concept classes. Establishing the effectiveness ofQBC for more general
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concept classes or proving that it will not be effective for general families of concept classes
is an interesting open problem.

While the general heuristic described in this section is not efficient, it is applicable in
much more general situations thanQBC. For example, the outcomes do not have to be
binary or even discrete, and the relation between them and the inputs can be stochastic
rather than deterministic. Finding learning algorithms that learn efficiently in this more
general frameworks is another interesting open problem.

8. Summary

We have proved that the Query by Committee algorithm is an efficient query algorithm
for the perceptron concept class with distributions that are close to uniform. This gives
a rigorous proof to the results given in (Seung, Opper & Sompolinsky,1992) which were
obtained using the replica method of statistical mechanics. It also generalizes their results
by relaxing the requirements on the distribution of the examples and on the prior distribution.
In addition, we show that exact knowledge of the prior distribution is not required. It is
sufficient if the ratio between the assumed prior and actual prior is bounded by a constant
factor.

We have proved that, in general, if the queries that are filtered by the query by committee
algorithm have high expected information gain then the prediction error is guaranteed to
decrease rapidly with the number of queries. By proving that this is the case for the
perceptron learning problem, we have achieved our main result.

We hope that lower bounds on the expected information gain ofQBC can be proven for
other concept classes. It seems that it would be very useful, in this context, to generalize
Theorem 1 to allow cases in which the expected information gain is small to occur with
some small probability.

There are several issues that we do not discuss in this paper. First, one would like
to know whether the results can be extended to concept classes other than perceptrons.
Second, it is of great practical importance to analyze more general scenarios. In the “noisy”
case, the learner sometimes observes a corrupted label, which is different from the correct
label associated with the instance. A related case is the “probabilistic” case, in which the
relationship between the instance and the label is described by a conditional distribution.
An even more general case is the “agnostic” scenario, in which the only assumption is that
there is some joint distribution over instances and labels from which examples are drawn
independently at random. Extending our analysis to any of these more general cases is
an an open problem which is important for making the analysis more relevant to practical
applications.

Though theoretical results for such models are lacking, there is empirical evidence that
extensions of theQBCalgorithm can be used to learn noisy and probabilistic models, such
as hidden Markov models (Dagan & Engelson,1995). We believe that the more general
“agnostic” learning scenario and the noisy learning problem are related. It seems useful,
in this context, to extend the size of the committee and use more refined definitions for
“disagreement” among the committee members.
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In this work we have explored some of the power of algorithms for learning using queries
that have access to random unlabeled instances and can make membership queries. This
model of learning is natural in contexts where unlabeled instances are much cheaper than
labeled instances. An interesting theoretical open question is how much more powerful is
this model of learning from queries from the standard model for using membership queries
in statistical learning.
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Appendix A

Proofs of Lemmas 4-7

Proof of Lemma 4: Let us denote bySt the convex body inRd−1 that is defined by the
slice of the convex bodyB at t. Clearly,f(t) is the volume ofSt.

We define the linear combination of two bodies,A andB as:

λ1A+ λ2B = {λ1a+ λ2b|a ∈ A, b ∈ B} ,

whereλ1, λ2 ∈ R. An immediate result of the convexity ofB is that for anyt1, t2 ∈ R,
and any0 ≤ λ1, λ2 ≤ 1 such thatλ1 + λ2 = 1

λ1St1 + λ2St2 ⊆ Sλ1t1+λ2t2 .

Using the terminology of the theory of convex bodies, we can say that the set of bodiesSt,
parameterized byt ∈ R is a (one-parameter) concave family of bodies.12

The Brunn-Minkowski theorem states that, for bodies inRn, “the n-th root of the volume
of the bodies of a linear or concave family is a concave function of the family of parameters”
((Bonnesen & Fenchel,1987),Subsection 48). In our case,n = d − 1 and the family is a
concave family of a single parameter. We thus get the statement of the lemma as a special
case of the Brunn Minkowski theorem.

Proof of Lemma 6: As the value of the functionalG(F ) is always positive, there must
exist an infimum to the set of values it can achieve on the set of all convex bodies. We denote
this infimum byµ and show that it is achieved as a minimum. In other words, that there
exists a volume functionF∞ which corresponds to a convex body such thatG(F∞) = µ.

LetBn be a sequence of convex bodies andFn be the corresponding sequence of volume
functions such thatlimn→∞G(Fn) = µ. By Lemma 4, we may assume that the bodiesBn
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Table 1.Notation Table

symbol definition meaning section equation

X sample space 2

D sample distribution 2

~X {x1, x2, . . .} unlabeled examples 2
drawn fromX according toD 2

m number of examples 2

n number of queries (labeled examples) 2

~X1...m {x1, . . . , xm} firstm examples 2

C concept class 2

c target concept 2

Vn {h ∈ C|h(xi) = c(xi), i = 1 . . . n} version space of firstn labeled examples 2

P Bayesian prior distribution onC 2

h hypothesis inC 2

I − log PrP(Vm) cumulative information gain 2 1

H(p) −p log p− (1− p) log(1− p) binary entropy function 2

G(xi|Vi−1) expected information gain from examplexi 2 2
given version spaceVi−1

F fractional reduction in version space 4

M {1, . . . ,m} 5

~XM {x1, . . . , xm} firstm examples inX 5

I {i1, i2, . . .} sequence of indices of examples used as queries 5

In {i1, . . . , in} firstn elements ofI 5

~XI {xi1 , xi2 , . . .} sequence of query examples 5

~XIn {xi1 , . . . , xin} firstn examples used as queries 5

g lower bound on expected information gain 5

d VC dimension 5

G expected information gain functional 6.1 18

K F (1− F ) 6.1

Q(x) H(1/2−
√

(1− 4x)/2) 6.1

Ψ variation inK 6.1

λP , λD uniformity parameters of 6.2
prior and input distributions

λc divergence between correct and incorrect priors 6.3
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are bodies of revolution, and that they correspond to concave radius functionsrn(t). We
thus need to show that there exists a concave radius functionr∞(t) which is the limit of
rn(t) for n→∞.

The functionalG(F ) is defined in terms of integrals and the radius functionsrn(t) are
continuous and bounded by a constant which depends only on the dimensiond. Thus
if rn(t) converges tor∞(t) pointwise then the value ofG on the sequence of bodies of
revolution corresponding torn(t) converges to the value ofG on the body corresponding
to r∞(t).

We prove the lemma by showing the existance of a subsequence of the radius functions
which have a pointwise limit. Using a diagonalization argument, we can pick a subsequence
of rn, indexed bym, such thatrm(t) converges pointwise for each rational value oft. It is
easy to see that the limit functionr∞(t), defined on the rationals, is concave and continuous
there. We get a concave extension to all real values oft by taking the limit over the rationals:

r∞(t0) = lub(r(τ)|τ < t0, τ rational) .

Clearly r∞(t) is also concave and continuous and is the pointwise limit ofrn(t) for all
t. Thusr∞(t) is the radius function of a concave bodyB which assumes the minimum
G(B) = µ.

Proof of Lemma 7: The radius function that corresponds to the two-cone body is

r∗(t) = cd max(0, 1− |t|) (A.1)

One can computeGd(r∗) for any fixedd by solving the integral in Equation (18) as follows.
In this case we find it more convenient to use the integral over the negative half of the
line as defined in Equation (19). The volume function in the range−1 ≤ t ≤ 0 is
F ∗d (t) =

∫ t
−∞(r∗(s))d−1ds = (1 + t)d/2 and it is 0 for t < 0. Plugging this into

Equation (19) we get

G(F ∗d ) =

∫ 1

0
(1+t)d+1

2 (1− (1+t)d+1
2 )H( (1+t)d+1

2 ) dt∫ 1

0
(1+t)d+1

2 (1− (1+t)d+1
2 ) dt

=

∫ 1/2

0
F 1/d(1− F )H(F )dF∫ 1/2

0
F 1/d(1− F )dF

,

(A.2)

which can be shown by direct calculation to decrease asd→∞. Which gives the general
lower bound of

G(F ∗d ) >

∫ 1/2

0
(1− F )H(F )dF∫ 1/2

0
(1− F )dF

=
1
9

+
7

18 log 2
. (A.3)

This proves the statement of the lemma.

Proof of Lemma 5: We shall keep using the notation defined in the proof of Theorem 2.
For each volume functionF which does not come from a cone, we construct a variation
that decreasesG(F ).
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We describe the variations in terms of adding a variation function,ψ(t) to the radius
functionr(t). As we are restricting ourselves to volume functions, it is enough to define
ψ(t) for 0 ≤ t <∞.

Let us enumerate the requirements on the radius variation functionψ(t), and on the
corresponding volume variation function
F (t) + Ψ(t) = cd−1

∫ t
0
(r(s) + ψ(s))d−1 ds.

1. We needF (|t|) + Ψ(|t|) to be a volume function. For this to hold we require that
r(t) + ψ(t) is a positive concave function that is nonzero only on a bounded segment
[0, c], c <∞.

2. We need to guarantee that
∫∞
0
∇G(t)Ψ(t) dt < 0. For that to hold we require thatΨ(t)

is non-positive for all0 ≤ t ≤ w and non-negative for allt > w. Wherew is the pivot
point for the volume functionF . See equation 20 and the discussion following it.

3. For any givenε > 0 we should be able to find a radius variation functionψ(t)
such that the change in the corresponding volume function is as small as is desired
ε >

∫ +∞
0

Ψ(t)2 dt > 0.

We describe three families of variational functions. For any radius functionr that corre-
sponds to a volume function and is not equal tor∗ = max(0, 1−|t|), one of these variations
applies, showing that there existsr′(t) such thatGd(r′) < Gd(r). The variations are con-
structed geometrically. Below is a list of the constructions that should be read alongside
Figure A.1. The basic idea in all three transformations is to “move” volume from place
to place along the projection direction, in such a way that for each pointt in a particular
range, volume is moved only from one the right of the points to their left or vice versa. It is
easy to check that each of the conditions 1-3 holds for each of those transformations. In the
descriptions below we shall refer to volume changes are caused by increasing or decreasing
the radius function, note that these are changes in thed-dimensional volume of the revo-
lution body whose volume function corresponds to the radius function, and not in the two
dimensional area described by the changes in the graph. The transformations thus depend
on the dimension of the actual body, however, the qualitative form of the transformation
remains the same for all dimensions. Each transformation takes a parameterλ, which is a
positive number that is set small enough so that condition 3 holds.

1. If r is not linear in the range0 ≤ t ≤ w then transformation 1 is used (see Figure A.1(a)):

(A) LetA be the point(w, r(w)), select a pointA′ on the curve defined byr to the left
of A so that the volume decrease caused by changing the curve13 A _ A′ to the
chordA−A′ is equalλ/2.

(B) LetB be the point(0, r(0)), select a pointB′ slightly aboveB and connect it to
the (unique) pointX on the curve so that the curveB −X _ A′ −A is concave.
ChooseB′ so that the volume increase caused by changing the curveB _ X to
the lineB −X is λ/2.

Setλ0 small enough so that this construction is possible for all0 < λ < λ0.
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Figure A.1.The variational transformations
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Note that for each point0 ≤ t ≤ w, at least one of the two following conditions hold:
either volume is only removed from the right oft, or volume is only added to the left
of t. This implies that the volume function,F (t), increases in this range. Because the
amount of volumes that are removed and added are equal,F (t) does not change fort
outside the range[0, w]. This implies that condition 2 holds.

2. If r does not decrease linearly to zero fort ≥ w then transformation 2 is used (see
Figure A.1(a)):

(A) SelectA′′ on the curve to the right ofA so the volume decrease that is caused by
changingA _ A′′ toA−A′′ is λ/2.

(B) LetC be the point at which the curve meets the horizontal axis. SelectC ′ slightly
to the right ofC and connect it to the pointY on the curve so that the curve
C ′ − Y _ A′′ −A is concave. ChooseC ′ so that the volume increase caused by
changingC ′ − C − Y toC ′ − Y is λ/2.

Setλ0 small enough so that this construction is possible for all0 < λ < λ0.

An argument similar to the one used in transformation 1 holds in this case fort > w.

3. If neither condition 1 nor 2 holds, and the slopes of the two linear segments are not
equal (i.e.r 6= r∗), then transformation 3 is used (see Figure A.1(b)):

(A) A point A′ slightly belowA is chosen.

(B) A pointB′ slightly aboveB is chosen so that there is no net change in the volume
when changingA−B toA′ −B′.

(C) A pointC ′ slightly to the right ofC is chosen so that there is no net change in the
volume when changingA− C toA′ − C ′.

(D) The movement fromA to A′ is chosen do that the change in the volume caused
by each of the four changes inr: B −X toB′ −X,A−X toA−X ′,A− Y to
A′ − Y andC − Y toC ′ − Y is equal toλ/4

In this case the volume function is changed on both sides of the pivot point. Arguments
similar to the one used in transformation 1 shows that condition 2 is met.

The only radius functions to which none of those transformations apply isr∗, thus finishing
the proof of the lemma.

Appendix B

Proof of Theorem 3

We first prove the dependence on the uniformity of the input distribution, as measured by
λD. In general, any distributionD that is withinλD of the uniform distributionµ can be
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written as weighted sum of the formλDµ + (1 − λD)ν whereν is some other distribu-
tion. Fix the version space andanyprior distribution, let the distribution of examples be
D = λDµ+ (1− λD)ν and letgµ, gν be the expected information gains when the examples
are generated according toµ or ν respectively. Asgν > 0 we get that the expected infor-
mation gain whenD is within λD of uniform is at leastλD times the expected information
gain whenD is uniform.

The analysis of the dependence onλP is more involved. We go back to the analysis of
an arbitrary projection of a convex body from the proof of Theorem 2. The main idea there
was to show transformations that increase or decrease the volume function in particular
ranges, in a way that decreased the expected information gain. There, the transformation
involved changing the shape of the body. Here we present a transformation that changes
the density of the prior distribution inside the version space.

We fix a convex body and a direction~x along which this body is projected. We denote
by ρ(t) the average density along the slice of body which is defined by the example(~x, t).
The relation between the volume functionF , and the radius functionr is now

Fd(t) =
∫ t

−∞
(r(s))d−1ρ(s)ds .

We search for a density distribution of the points in the body, which is withinλP of
the uniform distribution, and minimizes the expected information gain from (uniformly
distributed) examples whose direction is~x. Note that the symmetrization argument used in
the proof of Theorem 2 holds for this case too, and we can thus restrict ourselves to functions
r andρ that are defined only over the positive reals. From the variational derivative ofF (t)
for t ≥ 0 that we computed in Equation (20), we know thatG(F ) decreases ifF (t) is
increased for somet ≤ w or if F (t) is decreased for some0 ≤ t ≤ w. As we allow
deviations from the uniform prior distribution we can changeF without changing the form
of the convex body. We shall now give a variation ofρ that changesρ(t) in the range
0 ≤ t ≤ w in a way that decreasesG(F ). As this variation can be applied to anyρ that
does not have a specific step-like form in this range, we get that this step-like form ofρ
achieves the minimal value ofG(F ) for this fixed body andP that is withinλP of uniform.
A similar argument can be used to show thatρ(t) must also have a stepwise form in the
rangew ≤ t.

Assume that there exist0 < t1 < t2 < w andε, δ > 0 such that0 ≤ t1 − ε < t1 + ε ≤
t2 − ε < t2 + ε < w , and such that for allt ∈ [t1 − ε, t1 + ε], ρ(t) < 1/λP − δ, and for
all t ∈ [t2 − ε, t2 + ε], ρ(t) > λP + δ. We add toρ(t) the following variation function:

ψ(t) =

{ +δ1, t1 − ε ≤ t ≤ t1 + ε ,
−δ2, t2 − ε ≤ t ≤ t2 + ε ,
0, otherwise

,

whereδ1, δ2 are chosen so thatδ ≥ δ1, δ2 > 0 and

δ1
δ2

=

∫ t1+ε
t1−ε (r(s))d−1ds∫ t2+ε
t2−ε (r(s))d−1ds

.
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This insures that the volume function does not change outside the range[t1 − ε, t2 + ε].
It is easy to check thatρ(t) + ψ(t) corresponds to a density distribution that is within

λP of the uniform distribution. Changing the density distribution fromρ(t) to ρ(t) + ψ(t)
decreasesF (t) in the range[t1 − ε, t2 + ε] and does not changeF (t) anywhere else. Thus
this change decreasesG(F ). It is also easy to check that this variation cannot be applied to
ρ if and only if there exists0 ≤ a ≤ w such thatρ(t) = 1/λP for 0 ≤ t < a andρ(t) = λP
for a < t ≤ w. From this argument and a similar argument for the ranget ≥ w we get that
the density function that minimizesG(F ) must be of the form

ρ∗(t) =
{

1/λP , 0 ≤ t ≤ a or b ≤ t ,
λP , a ≤ t ≤ b . (B.1)

where0 ≤ a ≤ w ≤ b. We do not have a simple variational argument for determining the
exact value ofa andb, however, as we shall see, we can lower bound the information gain
without this explicit knowledge.

We have thus found the form of the density function that minimizes the information gain
for a specific body (and a specific projections). Suppose now that we fix the functionρ and
vary the shape of the body, i.e. the radius functionr. Going through the construction of the
variational functionsψ in the proof of Theorem 2, we see that the same construction steps
hold verbatim, although special attention needs to meaning of the expression “the volume
decrease is equal tox” as the volume is now defined in terms of the non uniform distribution
specified byρ.

The combination of these two arguments shows that the smallest value ofG(F ) is attained
for the radius functionr∗ specified in Equation (A.1), and the average density functionρ∗.
It remains to compute a lower bound onG(F ) based on these two facts. This is done by
bounding the ratio between the values ofG(F ) for the uniform prior and the non uniform
prior cases.

We change the integration variable in Equation (19) fromx to F (x):

G(F ) =

∫ 1/2

0
F (1− F ) H(F ) dx

dF dF∫ 1/2

0
F (1− F ) dx

dF dF
. (B.2)

When written in this form, the dependence ofG(F ) on ther andρ enters the equation
through the derivativedx/dF . By bounding the ratio between the values that this derivative
attains in the uniform and the non-uniform cases, we can bound the ratio between the values
thatG(F ) attains for the uniform and the non-uniform prior distributions.

The volume function that corresponds to the uniform prior distribution is, for−1 ≤ x ≤ 0,
Funif(x) = (1+x)d/2. The volume function that corresponds to the prior distribution defined
by ρ∗ is

Fnon-unif(x) =
1
2

λ−1
P (1 + x)d, −1 ≤ x ≤ −b,
λP(1 + x)d + c, −b ≤ x ≤ −a,
λ−1
P (1 + x)d + 1− λ−1

P , −a ≤ x ≤ 0
(B.3)

Wherec ≥ 0 is defined by matching the two definitions ofF (−b).
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Taking the derivatives ofFunif andFnon-unif we get the following equation for their ratio:

(
dx
dF

)
non-unif(

dx
dF

)
unif

=


λ

1/d
P , 0 ≤ F ≤ F (−b),

λ
−1/d
P

(
2F

2F−c

)1−1/d

, F (−b) ≤ F ≤ F (−a),

λ
1/d
P

(
2F

2F+λ−1
P −1

)1−1/d

, F (−a) ≤ F ≤ 1/2

(B.4)

Using the facts thatλP ≤ 1, c ≥ 0, andd ≥ 2 we can bound the ratio of the derivatives
for each of the three cases. For the range−1 ≤ x ≤ −b we get that

λP ≤ λ1/d
P ≤

(
dx
dF

)
non-unif(

dx
dF

)
unif

≤ 1 . (B.5)

For the range−b ≤ x ≤ −a we get, using the fact thatF is monotone non-decreasing, that

1 ≤ 2F (−a)
2F (−a)− c ≤

2F (x)
2F (x)− c ≤

2F (−b)
2F (−b)− c =

λ−1
P (1− b)d
λP(1− b)d ≤ λ

−2
P ,

which implies that in the range−b ≤ x ≤ −a,

1 ≤ λ−1/d ≤
(
dx
dF

)
non-unif(

dx
dF

)
unif

≤ λ−2+1/d
P ≤ λ−2

P . (B.6)

Finally, for the range−a ≤ x ≤ 0, we get that

λ2
P ≤

λP(1− a)d + c

λ−1
P (1− a)d

=
2F (−a)

2F (−a) + λ−1
P − 1

≤ 1

which implies that

λ2
P ≤ λ

2−1/d
P ≤ λ−1/d ≤

(
dx
dF

)
non-unif(

dx
dF

)
unif

≤ 1 (B.7)

Combining the bounds from Equations (B.5), (B.6), and (B.7), and plugging them into
Equation (B.4), we get that

λ2
P ≤

(
dx
dF

)
non-unif(

dx
dF

)
unif

≤ λ−2
P

Using this bound and Equation (B.2) we get thatG(Fnon-unif) ≥ λ4
PG(Funif). This completes

the proof of the theorem.
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Notes

1. Here, and elsewhere in the paper,log(·), denotes the logarithm over base two, whileln(·) denotes the logarithm
over basee.

2. Our analysis can be extended to larger committees, but the improvement in the performance is minor.

3. For example, consider the case in which the version space contains two disconnected sets inR2, which are
very far from each other, and assume that a random example is very likely to separate these two sets. Suppose
one of the sets has probabilityε, while the other has probability1 − ε. While most of the examples that
separate the two sets are rejected, the fraction that is accepted can still dominate all other examples. Thus the
expected information gain is close toH(ε). As ε can be set arbitrarily small, the expected information gain
can be arbitrarily close to zero. It seems that this type of version space can occur only very rarely but we do
not know what are the necessary conditions.

4. Note that the number of calls toSampleis Ω(d/ε) ((Blumer et al.,1989)), even ifall of the instances are used
as queries toLabel.

5. The bound as it appears in (McDiarmid,1989) is given for martingales. However, it is easily checked that it is
also true for super-martingales. Reversing the sign of theYi we get an equivalent theorem for sub-martingales.

6. Actually, it is enough to assume that the distribution of the offsett is uniform for any direction~x. No assumption
needs to be made regarding the distribution of~x.

7. The perceptron concept class is defined as the following set of binary functions over the unit sphere

c~w,t(~x)

{
1, ~x · ~w ≥ t
0, otherwise

.

8. In the following discussion we ignore the distinction between the concepts inC and their parameterization,
and refer to the conceptc~w simply as the vector~w.

9. Details on how the Fr´echet derivative is defined and calculated can be found in standard books on variational
analysis, such as (Smith,1985).

10. This definition is a one-sided version of the notion ofλ-closeness defined in Definition 6.2.

11. Ignoring log factors.

12. For the definition of a convex family of bodies see ((Bonnesen & Fenchel,1987),Subsection 24).

13. We useA−B to denote the line segment between the pointsA andB, andA _ B to denote the segment of
a curve that connectsA andB. We also use the shorthandA − B _ C −D to denote a the concatenation
of a line segment, a curve segment, and another line segment.
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