

Machine Learning, 26, 99–146 (1997)
c© 1997 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

ClausalDiscovery

LUC DE RAEDT luc.deraedt@cs.kuleuven.ac.be

LUC DEHASPE luc.dehaspe@cs.kuleuven.ac.be

Department of Computer Science, Katholieke Universiteit Leuven,
Celestijnenlaan 200A, B-3001 Heverlee, Belgium

Editor: Stephen Muggleton and David Page

Abstract. The clausal discovery engineClaudien is presented.Claudien is an inductive logic programming
engine that fits in the descriptive data mining paradigm.Claudien addresses characteristic induction from
interpretations, a task which is related to existing formalisations of induction in logic. In characteristic induction
from interpretations, the regularities are represented by clausal theories, and the data using Herbrand interpretations.
BecauseClaudien uses clausal logic to represent hypotheses, the regularities induced typically involve multiple
relations or predicates.Claudien also employs a novel declarative bias mechanism to define the set of clauses
that may appear in a hypothesis.

Keywords: Inductive Logic Programming, Knowledge Discovery in Databases, Data Mining, Learning, Induc-
tion, Semantics for Induction, Logic of Induction, Parallel Learning

1. Introduction

Despite the fact that the areas of knowledge discovery in databases (Fayyadet al., 1995)
and inductive logic programming (Muggleton & De Raedt, 1994) have both enjoyed a
lot of attention recently, the combination of the two areas has seldomly been studied
(Džeroski, 1995). Enhancing data mining tools with relational abilities as offered by induc-
tive logic programming is of crucial importance for the practice of knowledge discovery due
to the central role of relational databases in database technology (Morik & Brockhausen,
1996). Yet, most data mining techniques focus on learning within a single relation. On
the other hand, inductive logic programming has always focused on learning classification
rules, i.e. on performing concept-learning from positive and negative examples of a con-
cept. In contrast, descriptive data mining is often aimed at finding interesting regularities
in unclassified data.
Claudien

1 combines data mining principles with inductive logic programming. As
such it discovers clausal regularities from unclassified data. To this aim, a novel se-
mantics (or problem-setting) for inductive logic programming has been developed, cf.
(De Raedt & Džeroski, 1994), in which examples are represented by Herbrand interpreta-
tions and the aim is to discover a logically maximally general hypothesis that has all the
examples as models. The novel semantics is called characteristic induction from inter-
pretations. The special case, where the data consists of a single model or interpretation
was earlier proposed in a slightly different form by Nicolas Helft (Helft, 1989). The set-
ting is compared and contrasted with other formalisations of inductive logic programming
and its various properties are presented. One of the properties of the proposed semantics is

100 L. DE RAEDT AND L. DEHASPE

monotonicity, meaning that whenever two individual clauses are valid on the data, their con-
junction will also be valid on the data. Monotonicity is not satisfied by the usual inductive
logic programming semantics. Monotonicity makes it easy to implement a parallel clausal
discovery engine. Algorithms that address the proposed problem-setting are presented,
shown to be correct and tested on a wide range of applications.

A key ingredient of the clausal discovery engine is the definition of the declarative bias,
which determines the type of regularity searched for. Declarative bias is essential in de-
scriptive data mining as such systems have a less operational criterion of success than
concept-learning. In concept-learning, one typically searches for any hypothesis consistent
with the data whereas data mining is looking for all interesting or valid regularities. The
number of regularities satisfying the criterion can be very large as shown also in propo-
sitional approaches to data mining. As the search space of clausal logic is larger (and
even infinite) than that of propositional logic, bias is of crucial importance in clausal
discovery. To declaratively represent the bias of the clausal discovery engine, a new
formalism, calledDlab, derived from the work of (Ad´eet al., 1995, Emdeet al., 1983,
Kietz & Wrobel, 1992, Bergadano & Gunetti, 1993, Cohen, 1994) is proposed. Moreover,
it is shown how the specification of the syntax of the clauses allowed in the hypothesis can
be automatically translated in a refinement operator for the considered language.Dlab

should also be useful in other inductive logic programming systems.

The practice of the clausal discovery engine is demonstrated using a variety of experi-
ments. The first experiment demonstrates the generality of the clausal discovery engine
in a data mining context by showing that the engine is able to emulate many of the de-
scriptive data mining systems specifically designed for particular induction tasks such as
finding functional or multi-valued dependencies and association rules. This is achieved
by tuningClaudien’s parameters, especially the declarative bias. In a second example,
inspired by (Bratko & Grobelnik, 1993), we show how functors are handled to recover
loop invariants from program traces. The third experiment, in finite element mesh-design
(Dolšak & Muggleton, 1992, Lavraˇc & Džeroski, 1994), shows that− althoughClaudien

is not intended to perform classification tasks− it can also be successfully applied in this
context. Two further experiments, on mutagenesis (Srinivasanet al., 1995b) and water-
quality ((Džeroskiet al., 1994)), showClaudien’s performance on particular data mining
tasks.

This paper is organised as follows: In Section 2, we review the concepts from (inductive)
logic programming used, in Section 3, we introduce the novel semantics for inductive
logic programming and contrast it with existing ones, in Section 4, we present a sequential
and parallel algorithm for performing clausal discovery, we introduce a novel mechanism to
declaratively represent the bias of the discovery engine, and present heuristics and extensions
of the proposed algorithm, in Section 5, we show the effectiveness of the engine on a wide
range of applications. Finally, in Sections 6 and 7, we conclude and touch upon related
work.

CLAUSAL DISCOVERY 101

2. (Inductive) Logic Programming Concepts

We assume some familiarity with first order logic (see (Bratko, 1986, Lloyd, 1987,
Genesereth & Nilsson, 1987, De Raedt, 1996) for an introduction).

A first order alphabet is a set of predicate symbols, constant symbols and functor symbols.
A clause is a formula of the formA1, ..., Am ← B1, ..., Bn where theAi andBi are logical
atoms. An atomp(t1, ..., tn) is a predicate symbolp followed by a bracketedn-tuple of
termsti. A term t is a variableV or a functor symbolf(t1, ..., tk) immediately followed
by a bracketedk-tuple of termsti. Constants are functor symbols of arity 0.Functor-free
clauses are clauses that contain only variables as terms.

The above clause can be read asA1 or ... orAm if B1 and ... andBn. All variables
in clauses are universally quantified, although this is not explicitly written. Extending the
usual convention fordefinite clauses(wherem = 1), we callA1, ..., Am theheadof the
clause andB1, ..., Bn thebodyof the clause. Afact is a definite clause with an empty body,
(m = 1, n = 0).

A Herbrand interpretationover a first order alphabet is a set of ground atoms constructed
with the predicate, constant and functor symbols in the alphabet. Roughly speaking, a
Herbrand interpretation represents a kind of possible world by specifying all true facts in
the world. All facts not stated are assumed to be false.

A Herbrand interpretation is the equivalent of an example in propositional approaches
to inductive learning using e.g. attribute value representations or boolean logic. Suppose
we are using an attribute value representation where all attributes can have two values (say
true and false). An example would then state for all attributes whether its value is true
or false. This corresponds to the Herbrand interpretation consisting of all attributes (i.e.
propositions) having the value true in the example. This is also similar to computational
learning theory applied to boolean logic, which has used boolean variable assignments (i.e.
assignments of 1 or 0 to the variables).

As in concept-learning, a notion of coverage is needed. When a Herbrand interpretation is
a model for a theory, we will consider the interpretation ‘covered’ by the theory. Formally,
a Herbrand interpretationI is a model for a clausec if and only if for all grounding
substitutionsθ of c : body(c)θ ⊂ I → head(c)θ ∩ I 6= ∅. We also sayc is true inI.
A Herbrand interpretationI is a model for a clausal theoryT if and only if it is a model
for all clauses inT . Roughly speaking, the truth of a clausec in an interpretationI can
be determined by running the query? − body(c), not head(c) on a database containingI
using a theorem prover (such asProlog). If the query succeeds, the clause is false inI.
If it finitely fails, the clause is true.

Inductive logic programming systems typically deal with background knowledge. In
our setting, background knowledge (a definite clause theory) will be used to complete an
observation (in this case, also a set of definite clauses) into a Herbrand interpretation. The
least Herbrand interpretation of a definite clause theory is the set of all ground facts (using
the predicates, functors and constants of the definite clause theory) that are logically entailed
by the definite clause theory. We will use the notationM(T) to denote the least Herbrand
model of a definite clause theoryT .

102 L. DE RAEDT AND L. DEHASPE

Example 1 Consider the following definite clause theory:

flies(X)← normal(X), bird(X)

normal(tweety)←

bird(tweety)←

Then the least Herbrand model of this theory is:

{bird(tweety), normal(tweety), f lies(tweety)}

This Herbrand interpretation is a model for the clause:

flies(X)← bird(X)

The following clause is false in the Herbrand interpretation:

← bird(X), normal(X)

We will employ two notions of generality in this paper. A clausal theoryT1 is logically
more general thana clausal theoryT2 if and only if T1 |= T2, i.e. if T1 logically entails
T2. The other notion employed is Plotkin’sθ-subsumption (Plotkin, 1970). A clausec1
θ-subsumesclausec2 if and only if there exists a substitutionθ such thatc1θ ⊆ c2.

3. Logical Frameworks for Induction

At present, there exist several formalisations of induction in clausal logic. Firstly, there the
normal inductive logic programming setting (sometimes also called the explanatory setting)
introduced by Gordon Plotkin (Plotkin, 1970), which is employed by the large majority of
inductive logic programming systems, cf. (Muggleton & De Raedt, 1994), which aims at
discriminating positive observations from negative ones, and hence is classification ori-
ented. Secondly, there is Nicolas Helft’s non-monotonic setting (Helft, 1989), which aims
at characterising one or more observations, and hence is oriented towards descriptive data
mining. Thirdly, there is the confirmatory setting by Peter Flach (Flach, 1995). Fourthly,
there is Mannila’s general framework for data mining (cf. (Mannila, 1995)). Fifth, there
is the setting introduced by De Raedt and Dˇzeroski (De Raedt & Dˇzeroski, 1994), which
we will employ for clausal discovery, and which we will call characteristic induction from
interpretations2. In this section, we will introduce this induction setting and discuss its
relation to the other ones.

3.1. Characteristic induction from interpretations

Our setting for induction is derived from Nicolas Helft’s non-monotonic semantics for
induction (Helft, 1989), cf. (De Raedt & Dˇzeroski, 1994). Although it differs from Helft’s

CLAUSAL DISCOVERY 103

setting in several respects, it is similar in spirit. The ideas are 1) that all observations are
completely specified, and 2) that a hypothesis should reflect what is in the data. The first
idea is implemented by representing the observations as Herbrand interpretations, with the
consequence that all observations are assumed to be completely specified (as in attribute-
value learning). The second idea is enforced by requiring all hypotheses to be true in all
of the observations. Since we are only working with one type of observation, we perform
characteristicinduction, a term which is due to (Michalski, 1983).

Ignoring for the moment the use of background knowledge, characteristic induction from
interpretations can be defined as follows.

Definition 1 (Characteristic induction from interpetations) Let O be a set Herbrand
Interpretations,L a set of clauses.H ⊂ L is a solution if and only ifH is a logically
maximally general valid3 hypothesis. A hypothesisH is valid if and only if for alloi ∈ O,
H is true inoi.

We will impose syntactic restrictions on the space of hypotheses through the languageL,
which determines the set of clauses that can be part of a hypothesis. The languageL is an
important parameter of the induction task. It can have different properties (e.g. be infinite
or finite) depending on the problem.

Language Assumption.The language assumption states that the alphabet of the hypotheses
languageL only contains constant, functor or predicate symbols that occur in one of the
observations or in the background theory.

Example 2 Imagine we are observing different gorilla colonies and we observe two dif-
ferent colonies

o1 = {female(liz),male(richard), gorilla(liz), gorilla(richard)}
o2 = {female(ginger),male(fred), gorilla(ginger), gorilla(fred)}.

A clause isrange-restrictedif all variables in the head of the clause also appear in the
body of the clause. IfL is restricted to range-restricted, constant-free clauses a solution is:

(1) gorilla(X)← female(X)
(2) gorilla(X)← male(X)
(3) male(X), female(X)← gorilla(X)
(4) ← male(X),female(X)

This is a solution because all clauses (1-4) are true in the Herbrand interpretationso1, o2.
Furthermore, all other valid clauses over the same alphabet are logically entailed by this
hypothesis. To see this, observe that as all predicates are unary and there are only three
predicates, it suffices to restrict our attention to clauses with at most 3 literals in the head
and at most 3 literals in the body as all clauses with more literals are equivalent to one
of this form. The result then follows by enumerating the clauses, and removing logically
redundant ones.

104 L. DE RAEDT AND L. DEHASPE

Background knowledge can easily be incorporated in the above definition. LetB be a
background theory in the form of a definite clause theory4. Let each observationoi ∈ O
also be a definite clause theory. Then a hypothesis will be valid if and only if for alloi ∈ O,
H is true inM(B∪oi). Thus, background knowledge is used to complete the observations
into Herbrand interpretations. From now on, for reasons of readability, we will act as if no
background knowledge is used. However, all of our definitions and results also hold when
background knowledge is used as just indicated.

3.2. Properties of the framework

First, each observation is a Herbrand interpretation. This is only justified when complete
knowledge of all (relevant) aspects of the observation is available. As an illustration,
suppose we have two birds, the first of which is known to be black, and the second having
an unknown colour. Under these circumstances, it is not valid to say that all birds are
black (as we do not know whether this statement holds for the second bird). Thus the use
of Herbrand interpretations assumes complete knowledge of each observationoi. If such
knowledge is not available one should be cautious with this approach.

Second, we are interested in hypotheses that are valid. Intuitively, validity means that the
hypothesis holds on the data, i.e. that the induced hypothesis postulates true regularities
present in the observations. This is− as we shall see− a stronger requirement than those
employed in the normal inductive logic programming framework. Validity is a monotone
property at the level of hypotheses:

Property 1 (Monotonicity) If H1 is valid andH2 is valid with respect to a set of obser-
vationsO, thenH1 ∪H2 is valid.

This property means that all well-formed clauses inL can be considered completely
independent of each other. It will turn out to be very important for efficiency reasons as it
essentially allows for parallel search (cf. Section 4.3).

Third, the condition of maximal generality (cf. also (De Raedt, 1996) for an alternative
explanation). This condition appears in the definition because the most interesting hypothe-
ses are the most informative and hence the most general. Without this condition, the empty
hypothesis (which is always valid) would be a trivial solution and this is undesirable.

The casual reader less interested in logical and formal aspects of the framework and
relations to other logical frameworks may want to go to section 4.

The question now arises as to the circumstances under which a maximally general valid
hypothesis exists. In general, for infinite hypotheses spaces, a maximally general hypothesis
will not exist. This is demonstrated in Example 3.

Example 3 Consider the single observation{parent(luc, soetkin)←}. Then the follow-
ing clauses are all valid:

(1) ← parent(X1,X1)
(2) ← parent(X1,X2), parent(X2,X1)
(3) ← parent(X1,X2), parent(X2,X3), parent(X3,X4),parent(X4,X1)

CLAUSAL DISCOVERY 105

...

It is clear that there exists here a strictly ascending chain (according to generality) of
clauses which are all valid. If we restrictL to this set of clauses, the maximally general
hypothesis should be an infinite clause.

However, in case a maximally general hypothesis exists, then all such hypotheses are
logically equivalent.

Property 2 If there exists a solution, then the solution is unique up to logical equivalence.

Proof: suppose there are two maximally general solutionsH1 andH2 and 6|= H1 ↔ H2.
Because of monotonocityH1 ∪H2 must also be valid, andH1 ∪H2 is strictly more gen-
eral thanH1 and thanH2. This contradicts the fact thatH1 andH2 are maximally general.2

There are two possible ways to avoid the problems with infinite solutions. The first
solution is to require that the set of well-formed clausesL is finite. Although this solution
may appear to be undesirable, it is made by the vast majority of current approaches to
inductive logic programming. It will be used in the implementation of the clausal discovery
engine and enforced using the declarative language bias formalism. The second solution is
due to Nicolas Helft (but generalized here) and works only when the Herbrand interpretations
are finite.

Definition 2 (Injectivity) Let c bep1, ..., pm ← q1, ..., qn and let vars(c) = {X1, ..., Xk}.
The clausec is injective with regard to a set of observationsO if and only if either,m > 0
and there exists an observationo ∈ O, and a substitutionθ such that(q1 ∧ ...∧ qn ∧X1 6=
X2, ..., Xi 6= Xj , ...)θ is true ino augmented with standard inequality, or,m = 0 and for
all k, clause¬qk ← q1, ..., qk−1, qk+1, ..., qn is injective.

Injectivity Assumption. The injectivity assumption requires that all clauses in a solution
be injective.

The problems with Example 3 disappear when the injectivity assumption is made. Indeed,
the unique maximally general injective valid clause is clause (2). The intuition here is that
one should not employ more variables than needed, and as the maximum chain of constants
linked by the parent relation is 2, we should not introduce more variables.

Property 3 If the Herbrand interpretationsoi ∈ O are finite and the injectivity assumption
holds, then there exists a finite set of clauses that forms a solution.

Proof: Letn be the maximum number of terms occurring in one of the Herbrand interpre-
tations. By assumptionn is finite. LetX1, ..., Xn ben different variables. As each injective
clause can contain at mostn different variables, it suffices to consider clauses with as only
variables theX1, ..., Xn. Therefore the only literals that need to be considered are those with
the predicates and terms in the Herbrand interpretationsoi, and the variablesX1, ..., Xn. As
there are only a finite number of such literals, the number of clauses containing such literals is

106 L. DE RAEDT AND L. DEHASPE

also finite. LetH contain all such clauses that are valid.H is finite and an injective solution.

The injectivity assumption, however, does not help when the Herbrand universe is infinite:
see Example 4.

Example 4 Leto beM({parent(X, p(X)), human(a)}). Then the problems outlined in
Example 3 reappear.

3.2.1. Additional options

A weaker but also useful condition than injectivity is that of non-triviality.

Non-triviality Assumption. Let c bep1, ..., pm ← q1, ..., qn. The clausec is non-trivial
w.r.t. a set of observationsO if and only if eitherm > 0 and there exists an observation
o ∈ O and a substitutionθ such that(q1 ∧ ... ∧ qn)θ is true ino, or,m = 0 and for allk
there exists a substitutionθ and an observationo such that(q1 ∧ ... ∧ qk−1 ∧ qk+1 ∧ qn)θ
is true ino.

Non-triviality is used to exclude clauses that trivially hold from the hypotheses. Without
non-triviality, one can always postulate implications, provided that the condition part never
holds.

Example 5 Consider as background theory:

colour(X)← black(X)
colour(X)← white(X)

and as observation{swan(s), white(s)}. Without requiring non-triviality the clause
swan(X)← black(X) is valid. This is not always desirable.

An alternative to the non-triviality condition for denials would be to demand maximally
general clauses.

Maximally general clauses. Under this assumption, it is required that all clausesc in a
solutionH, are maximally general and valid. This means that there is no clausec′ that
θ-subsumesc and is also valid on the observations5.

The condition of maximally general clauses is however harder to enforce than non-
triviality due to the possibility of strictly infinitely ascending chains of clauses underθ-
subsumption, which may again lead to a need for adding infinite clauses to the hypotheses.

Another option relates to the issue of redundant hypotheses. Clauses that belong to the
background theory may reappear in the induced hypothesis. This is not always desirable.
It can be avoided by the non-redundancy assumption.

CLAUSAL DISCOVERY 107

Non-redundancy Assumption.No clausec ∈ H is logically entailed byB, i.e. for all c
∈ H : B 6|= c.

A related requirement requires a minimal solution, i.e. a solution in which no clause is
logically redundant with respect to the induced hypothesis.

Compactness Assumption.No clausec ∈ H is logically entailed byH − {c}, i.e. for all
c∈ H : H − {c} 6|= c.

3.3. Relation to other frameworks for induction

3.3.1. Michalski’s notions

The problem of characteristic induction from interpretations as formalized here, can be
regarded as a logical formalisation of the task addressed by Michalski’sInduce system
(Michalski, 1983). Employing the framework of logic programming has several advantages.
First, the definitions employed have a clear and well understood meaning. Second, using
(and implementing) background knowledge is very easy (employing e.g.Prolog).

3.3.2. Helft’s and Flach’s notions

The key difference with Helft’s notion of induction is that Helft assumes a single obser-
vation. Working with multiple observations is more natural as many well-known machine
learning notions such as for instance incrementality have a clear meaning in our framework.
Furthermore, by working with multiple observations, the boolean PAC-learning setting is
generalized, cf. also (De Raedt & Dˇzeroski, 1994). Other differences with Helft’s frame-
work include the use ofHerbrandmodels as well as that we allow for functors.

Flach’s adequacy conditions for induction provide a framework for reasoning about the
properties and semantics of induction. However, Flach’s adequacy conditions allow for
many instantiations. Our framework can be considered one such instantiation, which is
close to Flach’sconfirmatory setting.

3.3.3. Normal Inductive Logic Programming

Our setting for induction is specifically tailored towards the discovery of regularities that
hold in a set of (unclassified) observations or thatcharacterizethe observations. Within
inductive logic programming and other forms of machine learning, people have classically
focused on learning rules thatdiscriminatepositive observations from negative ones. Within
normal inductive logic programming this is captured in the following definition, due to
(Plotkin, 1970).

Definition 3 (Normal Inductive Logic Programming) Let P be a set of true observa-
tions,N be a set of false observations,B a background theory.H ⊂ L is a solution if and

108 L. DE RAEDT AND L. DEHASPE

only ifH is complete with regard to the positive observations and consistent with regard to
the negative observations. A hypothesisH is complete with regard toP andB if and only
if B ∪H |= P ; H is consistent with regard toN andB if and only ifB ∪H ∪N 6|= 2.

Example 6 SupposeP = {flies(tweety), f lies(woody)},N = {¬flies(oliver)},B =
{bird(tweety), bird(woody), bird(oliver), normal(tweety), normal(woody)}. Then a
solution would be flies(X)← bird(X), normal(X).

The aim of normal inductive logic programming is to induce a hypothesis that logically
entails all of the true observations and none of the false observations. An important property
is:

Property 4 If H1 is consistent andH2 is consistent with respect to a background theory
B and a set of observationsO, thenH1 ∪H2 need not be consistent withO.

This property is the cause of some well-known problems when learning multiple predicates
or recursive predicates in the normal inductive logic programming setting, cf. (De Raedt
et al., 1993, Bergadano & Gunetti, 1993, Cameron-Jones & Quinlan, 1993). The reason
for this is that inconsistencies may arise whenH1 andH2 can resolve together.

Flach’s (Flach, 1992) definition of weak induction (from which his later notion of con-
firmatory induction is derived) is the special case of normal inductive logic programming
where only consistency with the negative examples is required. The reader may notice that
also for this setting by Flach, the above property holds.

The differences between our induction setting and normal inductive logic programming
are akin to the differences between knowledge discovery (or data mining) and concept-
learning. The differences can be explained in terms of the two ideas underlying our induction
setting, i.e. learning from interpretations versus learning from implications, characteristic
versus discriminant induction.

A first important difference is due to the representation of the examples. In our setting
examples are interpretations, in normal inductive logic programming, examples are impli-
cations or clauses. Using interpretations to describe observations is the first order equivalent
of what is done in attribute value learning. In attribute value learning each example is de-
scribed by means of a complete vector of attribute value pairs. Completeness in this respect
means that a value for each attribute is known. Working with interpretations thus implicitly
corresponds to assuming that all aspects of each observation is known: all examples are
assumed to be completely described, and all facts not stated in the observation are regarded
false. This contrasts with normal inductive logic programming approaches where examples
are definite clauses (possibly obtained after applying some form of saturation on a ground
fact). Using definite clauses one can model incomplete information and induce hypotheses
that realize an inductive leap on the examples. Let us illustrate this point using a variant of
Example 6. The example can be straightforwardly transformed in a set of interpretations,
one interpretation for each of the birds, i.e.tweety, woody, andoliver. In this case,
complete knowledge of the birds is available. Now, both our setting and normal inductive
logic programming would considerflies(X)← bird(X), normal(X)as (part of) a solution.
However, let us assume that the factflies(tweety) is unknown. In normal inductive logic
programming the previous solution would still hold and the induction procedure would

CLAUSAL DISCOVERY 109

postulate thatflies(tweety) holds. Hence, an inductive leap would result. However, when
working with interpertations it would no longer hold as there would be a normal bird of
which it is not known whether it flies. This clearly shows that learning from interpretations
− in contrast to learning from implications− assumes complete information about the
examples and does not allow inductive leaps on the observations, i.e. applying the induced
hypotheses on the observations will not result in postulating new facts. Learning from
interpretations makes inductive leaps of a different kind, in the sense that it postulates that
the induced hypotheses will be valid on unseen observations.

This is the theoretical point of view. In practise however, learning from interpretations
can still be applied in the presence of a limited form of incompleteness. The trick is
to put the predicates that are known to be incomplete in the condition part of the rules.
Thus, with flies(tweety) unknown in Example 6, solutions in our setting would in-
cludebird(X)← flies(X)andnormal(X)← flies(X). Notice we have then learned neces-
sary conditions forflies(X) instead of sufficient ones. From a theoretical perspective,
one could handle incomplete information when learning from interpretations by using in-
complete interpretations, which would list the known true, and the known false facts. A
hypothesisH would then be considered valid with an observationo and a background
theoryB if and only if B ∧ H ∧ o 6|= 2, which again closely corresponds to Flach’s
notion of weak induction. Some ideas along this line have also been investigated by
(Fenselet al., 1995, Wrobel & Džeroski, 1995). From a practical perspective however,
complete knowledge is often available (cf. attribute value learning where missing values
arise only seldomly, or well-known inductive logic programming problems such as mutage-
nesis (Srinivasanet al., 1995b)). Furthermore, it is the assumption of complete knowledge
that makes the monotonicity property hold, which is crucial for efficiency reasons, cf.
Section 4.3 on parallel search.

The second difference can be explained using the notions of characteristic induction
versus discriminant induction. In discriminant induction, the aim is to find a hypothesis that
discriminates observations belonging to two classes, i.e. the positive observations from the
negative ones. In characteristic induction, the aim is to find a most informative hypothesis
that explains all of the (unclassified) observations. A most informative hypothesis is one that
covers the least number of examples (the most specific one under coverage). When learning
form interpretations most informative means logically maximally general. The reason is that
the logically more general hypotheses have the least number of models, hence, they cover
the least number of observations (in this case a hypothesis covers an example if the example
is valid in the hypothesis). In contrast, when learning from implications most informative
means logically maximally specific, as these hypotheses cover the least observations (in
this case a hypothesis covers an example if the hypothesis logically entails the example).

These two differences motivate the use of the term characteristic induction from in-
terpretations. Furthermore, it would be adequate to name the normal inductive logic
programming setting, discriminant induction from implications (or from entailment, cf.
(De Raedt, 1996)).

These two aspects of induction allow us also to describe two other problem settings
that have been considered. First, there is the normal inductive logic programming where
the set of negative examples is empty. This setting can be described ascharacteristic

110 L. DE RAEDT AND L. DEHASPE

induction from implications, it corresponds to learning from positive data only, and has
been considered by many researchers. Secondly, there is no reason why one cannot learn
clauses that discriminate interpretations in several classes, e.g. interpretations that are a
model for a theory true versus interpretations that are not. This alternative setting has been
adopted in the ICL system of (De Raedt & Van Laer, 1995). The ICL setting, discriminant
induction from interpretations, provides a clue as how problems and solutions along the
different dimensions relate to each other. It should be clear that the set of clauses output
by characteristic induction (using the positive observations only) is typically a superset
of that produced by a discriminant procedure (we are ignoring all non-logical aspects of
induction engines, such as heuristics, now). For instance, when working with interpretations
characteristic induction will produce a large set of clauses valid on the positive observations,
whereas discriminant induction will retain a minimal subset needed for discriminating the
negative observations.

3.3.4. Mannila’s data mining framework

Heikki Mannila (Mannila, 1995) recently introduced a general definition for data mining.
He views data mining as the process of constructing a theoryTh(L, r, q), whereL is a set
of sentences to consider,r the data(base), andq the quality criterion. The aim then is to
find all sentencesφ in the languageL that satisfy the quality criterion w.r.t. the datar, i.e.

Th(L, r, q) = {φ ∈ L | q(r, φ(r))is true}

Our formalisation of induction is a special case of Mannila’s one, whereL contains the
clauses to consider, and the quality criterionq is true whenever the clauseφ is valid on the
data inr. This clearly shows that characteristic induction from interpretations is a real data
mining task.

4. A clausal discovery engine

This section provides a detailed description of our clausal discovery engine.

4.1. A Clausal Discovery Algorithm

The key to arrive at a clausal discovery algorithm for characteristic induction from inter-
pretations is the well-known property/definition of logical entailment.

Property 5 (Pruning) LetG be a logical generalisation ofS, i.e.G |= S. If an interpre-
tationM is a model forG thenM will also be a model ofS.

The contraposition states that ifM is not a model forS thenM will not be a model for
any logical generalisationG of S. This contraposition shows that large parts of the search
space can be pruned. Indeed, given an observationo and hypothesisH such thatH is false
in o, all logical specialisations ofH will be false ino and can thus be pruned.

CLAUSAL DISCOVERY 111

By now, we can apply classical machine learning principles to obtain an algorithm for
characteristic induction from interpretations. First, machine learning principles state that
induction is a search process through a partially ordered space induced by the generalisation
relation, cf. (Mitchell, 1982). Second, machine learning systems typically search the space
specific-to-general or general-to-specific. The question then arises as to which of these
strategies is the most feasible one. Theoretically, there may however be a problem when
searching (logically) specific-to-general as one should then start from the most specific hy-
pothesis which could be an infinite one. Furthermore, it is well-known in machine learning
that pruning parts of the search space is more reliable when working general-to-specific.
Therefore, we will only consider general-to-specific search. Third, as characteristic induc-
tion aims at a logically maximally general hypothesis, it should not use a covering approach
but rather an exhaustive search of the relevant parts of the search space.

In order to arrive at a general algorithm in Figure 1, we only need to define the search
space and the operator for traversing it. In the remainder of this paper, we will use the
notationL to denote the search space consisting of clauses, and a refinement operatorρ
based onθ-subsumption (Plotkin, 1970) to traverse it.

Definition 4 A refinement operatorρ (with transitive closureρ∗) for a languageL is a
mapping fromL to 2L such that

1. ∀c ∈ L : ρ(c) ⊂ {c′ ∈ L | c′ is a proper maximally general specialisation ofc under
θ-subsumption}, and

2. ρ is complete, i.e.ρ∗(2) = L where2 is the most general element inL.

Completeness means that all elements of the language can be generated usingρ. In our
framework, optimal refinement operators are the most desirable ones :

Definition 5 A refinement operatorρ (with transitive closureρ∗) is optimal if and only if
∀c, c1, c2 ∈ L : c ∈ ρ∗(c1) andc ∈ ρ∗(c2)→ c1 ∈ ρ∗(c2) or c2 ∈ ρ∗(c1).

Optimal refinement operators are more efficient than classical refinement operators be-
cause they generate each candidate clause exactly once. A known problem with classical
refinement operators is that they generate candidate clauses (and their refinements) more
than once, making the search intractable. Optimality is thus desirable for efficiency rea-
sons. (van der Laag & Nienhuys-Cheng, 1994) have shown that specific types of operators
(such as optimal ones) do not exist for the infinite language of full clausal logic. However,
for finite languages (which is the assumption in the implementation), optimal as well as
complete operators do exist.

The algorithm in Figure 1 starts with an empty hypothesisH, and a queueQ containing
only the most general element in the considered languageL. It then applies a search process
where each elementc is deleted from the queueQ, and tested for validity on the observations
O. If the clause is valid, and not to bepruned1(see below), it is added to the hypothesis. Ifc
is invalid, its refinements generated and those refinements which are not to bepruned2(see
below) are added to the queue. When the queue is empty, the algorithm halts and outputs
the current hypothesis.

112 L. DE RAEDT AND L. DEHASPE

function ClausalDiscovery
inputs : O: set of Closed Observations,ρ: refinement operator
outputs : Characteristic Hypothesis

H := ∅
Q := {2}
while Q 6= ∅ do

deletec fromQ
if c is valid on O

and notprune1(c)
then addc toH
else for all c′ ∈ ρ(c) for which notprune2(c’)do

addc′ toQ
endfor

endif
endwhile
reduce(H)
endfunction

Figure 1. A clausal discovery algorithm

The ClausalDiscovery algorithm has a number of parameters, which are printed initalics.
They can be used to specify the many options of the clausal discovery engine. Thedelete
function determines the search-strategy. When delete is first in first out one realizes breadth-
first search, when it is last in first out then depth-first, when it is according to some ranking of
the clauses, it is best-first. Different heuristics for ranking clauses are discussed in Section
4.6. The functionvalid determines when a clause is accepted as (part of) a solution. When
coping with noisy data it is often useful to relax the validity requirements as detailed in
Section 4.5. The functionsprune1, prune2andreduceare meant to implement the options
(including a special type of pruning when the language is fair), cf. Section 4.2. Most
important is the language bias and corresponding refinement operator. The declarative
language bias mechanismDlab and the corresponding refinement operators are discussed
in Section 4.4. Finally, a parallel version of this algorithm is indicated in Section 4.3 and
Appendix A.

4.2. Properties and Extensions

We first prove that the ClausalDiscovery engine is correct, and then discuss three extensions.
The first extension allows to deal with infinite models, the second one concerns the options
and the third one is an optimisation forfair languages.

CLAUSAL DISCOVERY 113

4.2.1. Property

Ignoring for the moment the functionsprune1, prune2, and reduce, which are used to
implement the options (cf. below), it is easy to see that:

Property 6 ClausalDiscovery outputs a maximally general valid hypothesis within2L if
it terminates andρ is complete with regard toL.

Proof: If the algorithm would perform an exhaustive search ofL and would add all valid
clauses toH, the result trivially holds. Now, a clausec is only pruned when it isθ-subsumed
by a valid clausec′ ∈ H. Becausec′ logically entailsc,H is as general asH ∧ c, implying
thatc may be pruned without losing information. 2

4.2.2. Termination

The algorithm may not always terminate because of two reasons:

• the refinement graph searched may be infinite, which may lead the algorithm to exploring
infinite paths through the search-space;

• testing whether a clause is valid on an observation usingBody ∧ ¬Head (as outlined
above) is only semi-decidable in the general case.

The first problem can be avoided when working with finite Herbrand interpretations and
using the injectivity assumption, or when using only finite languages. The second problem
only arises when the Herbrand interpretation of an observation is infinite. Two approaches
can be taken in this case. First, one can use anh-easy notion of validity (by setting the
functionvalid accordingly).

Definition 6 (h-easy validity) A clausec is h-easy valid on an observationo if and only
if an SLDNF-interpreter (with depth-boundh) fails when answering the query ?-body(c),
not head(c). on the knowledge baseB ∪ o.

SLDNF-resolution is the basis of the logic programming languageProlog, see (Lloyd,
1987) for more details. By employing a depth-bound on the depth of the proof tree,
termination is guaranteed. However, soundness is lost in the following sense. If a clause is
h-easy valid, it may be invalid in the logical sense. When employingh-easy validity, this
may result in finding a logically inconsistent hypothesisH |= 2, so care should be taken
with this approach.

Second, one can approximate the infinite models by finite subsets of them, and one can
then use a flattening approach (Rouveirol, 1994, De Raedt & Dˇzeroski, 1994) to allow for
clauses that have only infinite models. Since this approach is detailed in (De Raedt &
Džeroski, 1994), we do not further elaborate on this here.

114 L. DE RAEDT AND L. DEHASPE

4.2.3. Implementing the options

Prune1 can be used to enforce maximally general clauses by removing all clausesc′ that
are not maximally general.

Prune2 can be used to enforce injectivity, non-triviality, and non-redundancy by removing
all clausesc that are not injective, trivial or redundant.

Reduce can be used to enforce compactness, cf. (De Raedt & Bruynooghe, 1993). This
involves the use of a theorem-prover. In the current implementation,Satchmo by
(Manthey & Bry, 1988) is employed.

4.2.4. Fairness

An important optimisation is possible in case the language considered isfair (cf. (De Raedt
& Bruynooghe, 1993)).

Definition 7 A languageL is fair if and only if∀ clausesA,B,C and∀ substitutionsθ,
such thatA ∈ L, A ∨B ∈ L andAθ ∨Bθ ∨ C ∈ L, we also have thatAθ ∨ C ∈ L.

Let A = ¬male(X), B = ¬gorilla(X), C = ¬tall(X), andθ = {}. Assume that all
conditions are satisfied, i.e.¬male(X); ¬male(X) ∨ ¬gorilla(X); and¬male(X) ∨
¬gorilla(X) ∨ ¬tall(X) ∈ L. Fairness then requires that¬male(X) ∨ ¬tall(X) ∈ L.

If the language is fair, one can optimise the search using the following property by safely
pruning away certain clauses.

Property 7 (Fairness) Given a fair languageL, a set of observationsO, a clauseA, a
refinementA∨B ofA, andB → A is valid inO, ClausalDiscovery may prune2A∨B as
well as its refinements.

Proof: We first prove that∀B and∀θ : Aθ ∨ C is valid inO if and only ifAθ ∨Bθ ∨ C
is valid inO (0).

1. becauseAθ ∨ C θ-subsumesAθ ∨ Bθ ∨ C, Aθ ∨ C logically entailsAθ ∨ Bθ ∨ C.
Therefore, ifAθ ∨ C is valid,Aθ ∨Bθ ∨ C is also valid.

2. Suppose now thatAθ ∨Bθ ∨ C is valid andAθ ∨ C is invalid inO. (1)
Then there is a substitutionσ such that(Aθ∨C)σ is ground and false in some observation
o ∈ O. Therefore¬Aθσ ∧ ¬Cσ is true ino. Hence¬Aθσ is true ino. (2)
It was given thatB → A is true inO, therefore the contraposition¬A → ¬B is also
true ino. From this and (2) it follows that¬Bθσ is true ino.
ThereforeAθ ∨ Bθ ∨ C is false ino as there is a substitutionσ for which it is false.
This contradicts (1) and concludes the proof of (0).

From (0) it follows thatA ∨ B is valid if and only ifA is valid (chooseC = {} andθ =
{} in (0)). Now, if A is valid (and part of the hypothesis),A ∨ B need not be part of the
final hypothesis (because it is logically entailed byA and hence redundant ifA is added to

CLAUSAL DISCOVERY 115

the hypothesis). IfA is invalid, thenA ∨ B is invalid (henceA ∨ B should not be part of
the final hypothesis). This shows thatA ∨B need not be part of the final hypothesis.

We still have to show that it is safe to also prune the refinements ofA ∨ B. First note
that all refinements ofA ∨ B (underθ-subsumption) are of the formAθ ∨ Bθ ∨ C. From
(0), it then follows thatAθ ∨C is valid if and only ifAθ ∨Bθ ∨C is valid, hence the two
clauses are equivalent w.r.t. validity. Because of fairness,Aθ ∨ C will be considered by
ClausalDiscovery. Hence, it is safe to pruneAθ ∨Bθ ∨ C.

To illustrate the property, reconsider the example above. Assume now also thatgorilla(X)
→ male(X) is valid. The property then states that it is safe to prune¬gorilla(X) ∨
¬male(X), and its refinements such as¬gorilla(X)∨¬male(X)∨¬tall(X) as equiva-
lent clauses (w.r.t. validity) such as¬gorilla(X)∨¬tall(X) will be considered because of
validity. More examples of fair and unfair languages are given in Section 4.4 on declarative
language bias.

4.3. Parallellism

Due to the monotonicity property of our induction framework, it is relatively easy to par-
allellize the ClausalDiscovery engine. ClausalDiscovery essentially traverses the space of
clauses exhaustively and general-to-specific. This yields a search-tree in which the nodes
are clauses, and there is a subtree of a clause for each refinement (under the operatorρ)
of the clause. Now, due to monotonicity all subtrees of the search-tree can be processed
independently of each other and therefore in parallel. The resulting algorithm is presented
in Appendix A.

4.4. Declarative language bias

Even if we choose the search spaceL to be finite, it is in most cases impractical to define
L extensionally. We then need a formalism to formulate an intensional syntactic definition
of languageL.

The problem of making this type of syntactic bias a parameter to the learning or dis-
covering engine has been studied extensively, especially in frameworks that use first-order
clausal logic (see (Muggleton & De Raedt, 1994, Ad´eet al., 1995) for an overview). For
Claudien we developed a new formalism calledDlab (Declarative LAnguage Bias)6.
Dlab extends the syntactic bias of (Ad´eet al., 1995) which in turn integrates the schemata
of (Emdeet al., 1983, Kietz & Wrobel, 1992), and the predicate sets of (Bergadano &
Gunetti, 1993, Bergadano, 1993). When compared to Cohen’s antecedent description
grammars (Cohen, 1994),Dlab is a special case where the definite clause grammar is
fixed and hidden. This grammar takes theDlab formula as its single argument. In that
senseDlab is a higher order formalism based on the lower order antecedent description
grammar.

116 L. DE RAEDT AND L. DEHASPE

We present an overview ofDlab in two stages. First, we discuss syntax, semantics and a
refinement operator forDlab

ª, a subset ofDlab. We then extendDlab
ª to full Dlab.

An earlier version of this section appeared in (Dehaspe & De Raedt, 1996).

4.4.1. Dlab
ª

A Dlab
ª grammar is a finite set of templates to which the clauses in search spaceL

conform. We first give a recursive syntactic definition of theDlab
ª formalism.

Definition 8 (Dlab
ª syntax)

1. aDlab
ª atom is either a logical atom, or of the formMin ··Max : L, withMin

andMax integers such that0 ≤ Min ≤ Max ≤ length(L), and withL a list of
Dlab

ª atoms;

2. aDlab
ª template is of the formA← B, whereA andB areDlab

ª atoms;

3. aDlab
ª grammar is a set ofDlab

ª templates.

The following are a few examples of syntactically well-formedDlab
ª grammars:

• {say(Hello)← to world}

• {false← 0 ··2 : [male(X), female(X)]}

• {2 ··2 : [a(X), b(Y)]← 1 ··2 : [c(X), 0 ··1 : [d(Y)]],
0 ··1 : [n, 1 ··2 : [o, 1 ··1 : [p, q], r], s]← true}

The hypothesis space that corresponds to aDlab
ª grammar is then constructed via the

(recursive) selection of all sublists ofL with length within rangeMin . . .Max from each
Dlab

ª atomMin · ·Max : L. This idea can be elegantly formalised and implemented
using the Definite Clause Grammar (DCG) notation, which is an extension ofProlog

(cf. (Clocksin & Mellish, 1981, Sterling & Shapiro, 1986))7.

Definition 9 (Dlab
ª semantics) LetG be aDlab

ª grammar, then

dlab generate(G) = {dlab dcg(A)← dlab dcg(B)|(A← B) ∈ G}

generates all clauses in the corresponding hypothesis space, wheredlab dcg(E) is a list of
logical atoms generated bydlab dcg:

dlab dcg(E) −→ [E], {E 6= Min ··Max : L}. (1)

dlab dcg(Min ··Max : []) −→ {Min ≤ 0}, []. (2)

dlab dcg(Min ··Max : [|L]) −→ dlab dcg(Min ··Max : L). (3)

dlab dcg(Min ··Max : [E|L]) −→ {Max > 0}, dlab dcg(E),
dlab dcg((Min− 1) ··(Max− 1) : L). (4)

From the semantics of aDlab
ª grammar we derive a formula for calculating the size of

its hypothesis space.

CLAUSAL DISCOVERY 117

Property 8 (Dlab
ª size) LetG = {A1 ← B1, . . . , Am ← Bm} be aDlab

ª grammar,
then the size of the corresponding hypothesis space equalsdlab size(G), with

dlab size(G) =
∑m
i=1(ds(Ai) ∗ ds(Bi)) ;

ds(E) = 1,whereE is a logical atom ;
ds(Min ··Max : [L1, . . . , Ln]) =

∑Max
k=Min ek(ds(L1), . . . , ds(Ln)) ;

e0(s1, . . . , sn) = 1 ;
en(s1, . . . , sn) =

∏n
i=1 si ;

ek(s1, s2, . . . , sn) = ek(s2, . . . , sn) + s1 ∗ ek−1(s2, . . . , sn), with k < n .

Proof: The first rule states that the size of the language defined by aDlab
ª grammar

equals the sum of the sizes of the languages defined by its individualDlab
ª templates.

The latter size can be found by multiplying the number of headlists and the number of
bodylists covered by the head and bodyDlab

ª atoms.
A Dlab

ª atom which is not of the formMin ··Max : L has a coverage of exactly one,
as is expressed in the second rule.

Some more intricate combinatorics underlies the third rule. Basically, we selectk objects
from {L1, . . . , Ln}, for eachk in rangeMin . . .Max, hence the summation

∑Max
k=Min.

Inside this summation we would have the standard formulan!/k! ∗ (n− k)! if our case had
been an instance of the prototypical problem of finding all combinations, without replace-
ment, ofkmarbles out of an urn withnmarbles. This formula does not apply due to the fact
that we rather haven urns ({L1, . . . , Ln}) with one or more marbles (ds(Li) ≥ 1), and only
combinations that use at most one marble from each urn should be counted. Therefore we
needek(s1, . . . , sn), whereek is the elementary symmetric function (MacDonald, 1979) of
degreek and thesi are the numbers of marbles in each urn. The first base case of this recur-
sive function accounts for the fact that there is only one way to select 0 objects. In the second
base case, wherek = n, one has to take an object from each urn. As for each urn there are
si choices, the number of combinations equals the product of allsi. The final recursive case
applies ifk < n. It is an addition of two terms, one for each possible operation on urn 1
(represented bys1). Either we skip this urn, and then we still have to selectk elements from
urns 2 ton. The number of such combinations is given byek(s2, . . . , sn). Or else we do take
a marble from the first urn. We then have to multiplys1, the choices for the first urn, with
ek−1(s2, . . . , sn), the number ofk − 1 order combinations of elements from urns 2 ton.

Given aDlab
ª atomMin · ·Max : L, four choices of values forMin andMax

determine the following cases of special interest8:

1. all sublists: Min = 0,Max = len
e. g. G1 = {h← 0 ··len : [a, b, c]}

2. all non-empty sublists: Min = 1,Max = 1
e. g. G2 = {h← 1 ··len : [a, b, c]}

3. exclusive or: Min = 1,Max = 1
e. g. G3 = {h← 1 ··1 : [a, b, c]}

118 L. DE RAEDT AND L. DEHASPE

4. combined occurence: Min = Max = len
e. g. G4 = {h← len ··len : [a, b, c]}

These special cases can be nested to construct more complex grammars exemplified below.

G5 = {h← 1 ··len : [a, 1 ··1 : [b, c]]}
G6 = {h← 1 ··len : [a, len ··len : [b, c]]}
G7 = {h← len ··len : [a, 1 ··1 : [b, c]]}
G8 = {h← 0 ··len : [len ··len : [a, 0 ··len : [len ··len : [b, 0 ··len : [c]]]]]}

Table 1 gives the corresponding hypothesis spaces for grammarsG1 − G8. A
√

in the
column of grammarGi marks the clauses of the first column that are in the corresponding
hypothesis space.

Except forG8, all grammars in Table 1 define fair languages (see Definition 7). Grammar
G8 illustrates how taxonomies can be encoded, such that each atomic formula necessarily
co-occurs withall its ancestors and never combines with other nodes. In the case ofG8, c
only co-occurs with its both ancestorsa, b. It is the exlusion of the combination of an atomic
formula with a strict subset of ancestors (a, c in our example) which causes the definition
of fairness to be violated. A more elaborate example is grammarG9, which encodes the
taxonomy for suits of playing cards:

G9 = {ok(C)←
len ··len : [card(C),

0 ··1 : [len ··len : [red(C), 0 ··1 : [hearts(X), diamonds(C)]],
len ··len : [black(C), 0 ··1 : [clubs(X), spades(C)]],

]]}

dlab generate(G9) =



[ok(C)]← [card(C)]
[ok(C)]← [card(C), red(C)]
[ok(C)]← [card(C), red(C), hearts(C)]
[ok(C)]← [card(C), red(C), diamonds(C)]
[ok(C)]← [card(C), black(C)]
[ok(C)]← [card(C), black(C), clubs(C)]
[ok(C)]← [card(C), black(C), spades(C)]

Table 1.The semantics of some sampleDlab grammars

G1 G2 G3 G4 G5 G6 G7 G8
[h]← []

√ √

[h]← [a]
√ √ √ √ √ √

[h]← [b]
√ √ √ √

[h]← [c]
√ √ √ √

[h]← [a, b]
√ √ √ √ √

[h]← [a, c]
√ √ √ √

[h]← [b, c]
√ √ √

[h]← [a, b, c]
√ √ √ √ √

CLAUSAL DISCOVERY 119

In Appendix B, we show how a refinement operator for aDlab
ª language can be

obtained from theDlab
ª grammar. Furthermore, Appendix B touches upon some of the

key implementation aspects of theClaudien engine.

4.4.2. Dlab
ª Extended:Dlab

In an extended versionDlab mainly two features have been added to improve readability
of more complex grammars: second order variables, and sublists on the term level.

Definition 10 (Dlab syntax)

1. aDlab term is either

(A) a variable symbol, or

(B) of the formf(t1, . . . , tn), wheref is a function symbol followed by a bracketed
n− tuple (0 ≤ n) ofDlab termsti, or

(C) of the formMin ··Max : L, whereMin andMax are integers with0 ≤Min ≤
Max ≤ length(L), and withL a list ofDlab terms;

2. aDlab atom is either

(A) of the formp(t1, . . . , tn), wherep is a predicate symbol followed by a bracketed
n− tuple (0 ≤ n) ofDlab termsti, or

(B) of the formMin ··Max : L, whereMin andMax are integers with0 ≤Min ≤
Max ≤ length(L), and withL a list ofDlab atoms;

3. aDlab template is of the formA← B, whereA andB areDlab atoms;

4. aDlab variable is of the formdlab var(p0,Min ··Max, [p1, . . . , pn]), whereMin
andMax are integers with0 ≤Min ≤Max ≤ n, and withpi a predicate symbol or
a function symbol

5. aDlab grammar is a couple(T ,V), whereT is a set ofDlab templates, andV a
set ofDlab variables.

We will now define the conversion ofDlab grammars(T ,V) to theDlab
ª format such

that the above definitions of semantics, size, and a refinement operator remain valid for the
enriched formalism. First, to remove the second order variablesV we recursively replace
all Dlab terms and atoms

p(t1, . . . , tn) in T such thatdlab var(p,Min ··Max, [p1, . . . , pm]) ∈ V, with
Min ··Max : [p1(t1, . . . , tn), . . . , pm(t1, . . . , tn)] .

120 L. DE RAEDT AND L. DEHASPE

Next we recursively remove sublists on the termlevel by replacing from left to right all
Dlab terms

p(t1, . . . , ti,Min ··Max : [L1, . . . , Ln], ti+2, . . . , tm),with
Min ··Max : [p(t1, . . . , ti, L1, ti+2, . . . , tm), . . . , p(t1, . . . , ti, Ln, ti+2, . . . , tm)] .

When applied subsequently, these two algorithms transform aDlab grammarG = (T ,V)
into (G′, ∅), whereG′ is an equivalentDlab

ª grammar.
For a demonstration of the power ofDlab

ª andDlab we refer to the experiments in
Section 5.

4.5. Quantifying Validity

There are at least three reasons why thelogical validity requirement should be quantified
and sometimes relaxed. First, when coping with real data, it is an illusion to find rules that
are valid on all of the observations. The same situation arises in discriminant induction
when trying to discriminate two classes of observations. As very often complete and
consistent hypotheses do not exist, discriminant induction allows to relax the completeness
and consistency requirements. It is therefore also of practical interest to see how the
validity requirement of characteristic induction from interpretations can be relaxed. This
corresponds to relaxing theq in Mannila’s definition. Secondly, a quantified notion of
validity will also be useful to label the induced clauses, and to rank them according to
validity. Such a ranking is essential for expert evaluation and post-processing of discovered
rules. Thirdly, quantified notions of validity may turn out useful for heuristically searching
the space, cf. Section 4.6.

There are two natural ways to quantify validity. For the first one we introduce the
concept of non-trivial observations. The setO′ ⊂ O of non-trivial observations contains all
observations for which clausec is non-trivial (cf. non-triviality assumption in Section 3.2).
We can then relax the condition that clauses in hypotheses are valid onall observations,
and rather require validity on a certain percentage of all non-trivial observations. This can
be realized by settingGA(c) larger than a fixed percentage.

Definition 11 (Global Accuracy) Letc be a clause, letO′ be the non-trivial observations
for c, let pg(c) be the number of observations inO′ which are a model forc, let ng(c) be
the number of observations inO′ which are not a model forc. ThenGA(c), the global
accuracy of the clausec, is pg(c)/(pg(c) + ng(c)).

Global accuracy still requires that the clause is completely true on a number of observa-
tions. When the observations are incomplete, even global accuracy will be hard to obtain.
Furthermore, there is the special case of the framework, where only a single observation is
taken into account. This special case is important in a data mining context, as one often
deals with a single interpretation (in which various observations are mixed). Local accuracy,
which measures the degree to which a clause is true in an interpretation may offer a solution
in this case. Local accuracy employs the notions of positive and negative substitutions.

We first introduce the notions of positive and negative substitutions of a clause.

CLAUSAL DISCOVERY 121

Definition 12 (Positive and Negative Substitutions)θ is a positive substitution for a
clausep1, ..., pm ← q1, ..., qn withm > 0, and observationsO, if and only if 1)(p1, ..., pm
← q1, ..., qn)θ is ground, 2) there exists an observationoi ∈ O such that (a)(q1∧ ...∧qn)θ
is true and ground inoi, and (b)(p1 ∨ ... ∨ pm)θ is true inoi.
θ is a negative substitution if and only if it satisfies (1) and (2a) and does not satisfy (2b).

This definition should only be applied when the clause is range-restricted. From a practical
point of view, there are often problems when merely counting substitutions because there
is no direct correspondence guaranteed between what is being counted (substitutions) and
the entities the clause deals with (e.g. birds, or meshes, or molecules, ...). Secondly, the
above definition will result in problems when applying it to denials (i.e. clauses of the form
← q1, ..., qn). Therefore it is often convenient to transform a clause

p1, ..., pm ← q1, ..., qn

where allpi, qj are logical atoms, into the following logically equivalent form

p1, ..., pm,¬qi+1, ...,¬qn ← q1, ..., qi

before constructing positive and negative substitutions. The positive and negative substi-
tutions of the two clauses will not necessarily be the same. However, by appropriately
choosing the literalsq1, ..., qi it is possible that meaningful entities are counted. In the
Claudien implementation, the user is offered the possibility of specifying which literals
to consider in the body of the clause and which ones in the head, when considering positive
and negative substitutions.

By now we can define local accuracy.

Definition 13 (Local Accuracy) Letc be a clause, letO be the observations considered,
let pl(c) be the number of positive substitutions forc, let nl(c) be the number of negative
substitutions forc. ThenLA(c), the local accuracy of the clausec, ispl(c)/(nl(c)+pl(c)).

Again, validity can be relaxed by settingLA(c) larger than a fixed percentage.
In data mining, one often labels the induced rules with information indicating accuracy

of the rule and in how many cases it applies, i.e. the coverage. The above notions of
accuracy are useful as an accuracy label of clauses. The following notions of global and
local coverage will be used as coverage labels of clauses.

Definition 14 (Global Coverage) LetO′ be the non-trivial observations forc, let pg(c)
andng(c) be computed w.r.t. the observationsO′. Then the global coverage of a clause
GC(c) = pg(c) + ng(c).

The reason for restricting the attention to those observations for which the clause is non-
trivial is that otherwise all clauses will have a global coverage equal to the number of
observations. When applying global coverage to valid denials, the coverage will be 0, by
Definitions 3.2.1 and 14 of non-triviality and global coverage. Therefore, in that case one
should first apply the clause transformation introduced above.

122 L. DE RAEDT AND L. DEHASPE

Definition 15 (Local Coverage) The local coverage of a clauseLC(c) = pl(c) + nl(c).

The notions accuracy and coverage are related to the confidence and support thresholds
used in the literature on discovery of association rules in large databases(Agrawalet al.,
1993).

4.6. Heuristics

Discriminant approaches employ various types of heuristics to guide the search towards
those clauses that best discriminate the positive from the negative examples, or to prune
clauses from the search space. Various heuristics have been proposed, e.g. information
content (Quinlan, 1990), minimal length description (Srinivasanet al., 1992), accuracy es-
timates (Lavraˇc & Džeroski, 1994), etc.

Our induction framework can easily adapt these heuristics using the measures of valid-
ity defined in the previous subsection. More specifically, whereas discriminant induction
heuristics are based on the proportions of positive and negative examples, clausal discovery
can use the notions of positive and negative substitutionspl andnl, or alternatively, the
number of positive and negative observationspg andng. Given a clausec, a set of obser-
vationsO, and a background theory, one can now basically employ all favourite heuristics.
One only has to substitute our numbers in the well-known formulae. This procedure works
for evaluating clauses as well as for evaluating refinement steps. An example of a the first
type of heuristic is accuracy, and of the second type of heuristic, entropy as applied inFoil

(Quinlan, 1990). Many other heuristics are known in the literature, for an overview see
(Lavrač & Džeroski, 1994) and (Kl¨osgen, 1996).

As clausal discovery aims at a maximally general hypothesis, and the number of clauses
in such a maximally general hypothesis may be very large, characteristic induction proce-
dures should try to discover as many interesting clauses as possible using a limited amount
of resources. Indeed, as resources are always limited (one cannot search forever), clausal
discovery heuristics should employ heuristics of the first type, focusing on the most inter-
esting clauses first. Using heuristics and limited resources (whether time or space), certain
unpromising parts of the search space may not be considered. This leads to the view that
characteristic induction procedures should beany timealgorithms, i.e. algorithms that are
able to find approximate solutions in any time, and improve upon those (by discovering
more clauses) when more resources are available.

In the experiments with theClaudien system we will mainly employ the following
heuristic (based on the minimal description length principle):p/(l + n) wherep accounts
for the positive substitutions or interpretations,n for the negative ones, andl is the clause
length, computed as the number of literals in the clause tested. The heuristic is then
combined with the local or global measures provided earlier. It is merely used to order the
clauses on the queue, implementing an any time algorithm. Though the heuristic works fine
in practice, it is unclear whether it is the most adequate one. Other well-known heuristics
from the data mining paradigm could also be employed (cf. (Kl¨osgen, 1996)).

CLAUSAL DISCOVERY 123

5. Applications of Clausal Discovery

The distinction between characteristic and discriminant induction discussed in Section 3
cascades to the level of the presentation of experimental results. For discriminating learners
there is a standard two-phased assessment method in which classification rules learnt in a
training stage are tested on (unseen) data. The quality of the system is typically associated
with the percentage of successful class predictions. The domain of clausal discovery (as
well as data mining in general) lacks such a clear cut evaluation criterion. The main goal is to
discoverinterestingproperties, butinterestingnessis in general hard to quantify, subjective
and dated. Even worse, contrary to classification accuracy, which is based on elementary
statistics, it can only be judged upon by an expert in the application domain.

An alternative evaluation criterion for discovery systems is then based on the iterative
nature of the knowledge discovery process. Feedback from the domain expert will often
trigger new, slightly altered experiments. Discovery systems that are highly tunable and
versatile are better prepared to take this kind of feedback into account, and thus aremore
likely to produce interesting output in the end. Our aim in this section is then to give a
flavour of the tunability and versatility ofClaudien. We will demonstrate howClaudien

can solve different discovery tasks, and how the system can be tuned to discover different
types of rules in the same dataset. All tests were done on a SPARCserver1000.

5.1. Clausal discovery for data mining

One of the popular subjects in the field of knowledge discovery in databases is to induce large
sets of rules of a particular type or syntax, cf. Mannila’s definition of data mining in Section
3.2.3. The types of rules considered include: functional and multivalued dependencies
(see e.g. (Flach, 1993, Savnik & Flach, 1993, Kantolaet al., 1992)), determinations (see
e.g. (Schlimmer, 1991, Shen, 1992)), association rules (cf. (Agrawalet al., 1993)), and
strong rules (cf. (Piatetsky-Shapiro, 1991)). Various special purpose algorithms have been
developed to handle the different types of rules. However, it turns out that because of the
expressiveness of first order logic and theDlab formalism ofClaudien, many of the
tasks performed by these special purpose algorithms can be reformulated in terms of the
Claudien framework. As a consequence, the task performed by these algorithms is a
special case of that performed byClaudien.

Let us first provide evidence for this claim, and then discuss its implications and restric-
tions.

We start by showing howClaudien can induce functional and multi-valued dependen-
cies on an example that is due to Flach (Flach, 1993). We ranClaudien on the following
data from Flach (the termtrain(From,Hour,Min, To) denotes that there is a train from
From to To at timeHour,Min):

124 L. DE RAEDT AND L. DEHASPE

train(utrecht,8,8,den-bosch) train(tilburg,8,10,tilburg)
train(maastricht,8,10,weert) train(utrecht,8,25,den-bosch)
train(utrecht,9,8,den-bosch) train(tilburg,9,10,tilburg)
train(maastricht,9,10,weert) train(utrecht,9,25,den-bosch)
train(utrecht,8,13,eindhoven-bkln) train(tilburg,8,17,eindhoven-bkln)
train(utrecht,8,43,eindhoven-bkln) train(tilburg,8,47,eindhoven-bkln)
train(utrecht,9,13,eindhoven-bkln) train(tilburg,9,17,eindhoven-bkln)
train(utrecht,9,43,eindhoven-bkln) train(tilburg,9,47,eindhoven-bkln)
train(utrecht,8,31,utrecht)

usingDlab grammar(train temps, ∅):
train_temps = {1-1 : [From1 = From2, Hour1 = Hour2, Min1 = Min2, To1 = To2]

<--

len-len : [train(From1,Hour1,Min1,To1,Plat1),

train(From2,Hour2,Min2,To2,Plat2),

0-len:[From1 = From2, Hour1 = Hour2,

Min1 = Min2, To1 = To2]

]

}

Claudien found (as Flach’sIndex) the following two dependencies:

From1 = From2 <-- train(From1,Hour1,Min1,To1),train(From2,Hour2,Min2,To2),

To1=To2,Min1=Min2

From1 = From2 <-- train(From1,Hour1,Min1,To1),train(From2,Hour2,Min2,To2),

From1=From2,Min1=Min2

It is straightforward to writeDlab statements that would find only determinations of
the formP (X,Y)← Q(X,Z), R(Z, Y) (as (Shen, 1992)), determinations as (Schlimmer,
1991) and multivalued dependencies as in (Flach, 1993).

Very popular in the data mining literature are association rules. Association rules are
defined over a single relation composed of a set of attributesR over the binary domain
{0, 1}. An association rule is then of the formX ⇒ Y whereX ⊂ R andY ⊂ (R−X).
Typically, one is interested in all association rulesc for whichLA(c) > σ andLC(c) > γ,
for a certain threshold. Using local validity and the following type ofDlab declaration,
Claudienwould also solve the problem of finding association rules. TheDlabdeclaration
(assoc temps, assoc vars) assumes that the relation under consideration is r with arityn,
‘=’ denotes unification, and further that each attribute can have only two values: 0 and 1.
The statement can be trivially generalized when an attribute can have more or other values.

CLAUSAL DISCOVERY 125

assoc_temps = {

{(X1, ..., Xn) = (Y1, ... ,Yn)

<--

len-len:

[r(X1, ... , Xn),

1-1:[len-len:[Y1 = bit,

0-len:[1-1:[X2,Y2],1-1:[X3,Y3],...,1-1:[Xn,Yn]] = bit

]

len-len:[Y2 = bit,

0-len:[1-1:[X1,Y1],1-1:[X3,Y3],...,1-1:[Xn,Yn]] = bit

]

...

len-len:[Yn = bit,

0-len:[1-1:[X1,Y1],1-1:[X2,Y3],...,1-1:[Xn-1,Yn-1]] = bit

]

]

}

assoc_vars = {dlab_variable(bit, 1-1, [0,1]}

The Dlab statement will allow at most one literal per attribute in the body of the
clause. If the literal is of the form X=value, then it occurs in theX part of the associ-
ation ruleX ⇒ Y , otherwise in theY part. A clause generated by thisDlab grammar
could be e.g.(X1, X2, X3, X4) = (Y 1, Y 2, Y 3, Y 4) ← r(X1, X2, X3, X4), X1 = 0,
Y 2 = 1, Y 4 = 0 denoting the association ruleX1 = 0⇒ Y 2 = 1 ∧ Y 4 = 0.

Strong rules (Piatetsky-Shapiro, 1991) can be defined in a similar way. Facilities offered
by Claudien to prune potentially large sets of association rules include:

• increase theLA(c) threshold

• increase theLC(c) threshold

• make theDlab template more specific

These examples clearly illustrate thatClaudien can perform many of the tasks addressed
in the data mining literature. We therefore believe thatClaudien should be considered
as a general purpose data mining environment and framework, which can be used for
reasoning about and experimenting with various data mining problems. Of course, data
mining research has always aimed at coping with large data sets in an efficient way, leading
to very fast algorithms. As there is a general trade-off between generality of systems and
their efficiency,Claudien cannot be expected to solve the above data mining problems
as efficient as the best data mining algorithms. Nevertheless, we believe (and the other
experiments in this section confirm our belief) thatClaudien is reasonably efficient and
can cope with reasonably large data sets. Furthermore, though data mining has focused
on handling large data sets, inductive logic programming has focused on searching large
hypotheses spaces.

126 L. DE RAEDT AND L. DEHASPE

5.2. Recovering program loop invariants

A standard method for the design and development of program loops is based on the list of
relations between variable values which remain invariant during the repetition. Such a list
of invariant relations fully captures the behaviour of loops and as such provides a key to their
understanding and to proving their correctness. We here demonstrate howClaudiencan re-
cover this type of specifications from program traces (see also (Bratko & Grobelnik, 1993)).

function Product
inputs : x, y: positive integers,
outputs : z: the product ofx andy

z := 0 ; u := x ; v := y ;
while † (u 6= 0) do

if odd(u) then z := z + v;
u := u div 2;
v := 2 ∗ v

endwhile
return z
endfunction

Figure 2. An algorithm for calculating the product of two positive integers

To generate data for this experiment we ran the algorithm in Figure 2 121 times, with
inputsx, y varying between 0 and 10. During each run we recorded at each iteration the
values ofz, u, v at position† preceding the test(u 6= 0) of the loop. We thus produced
121 observations with a single factinput(x(X), y(Y)) and a varying number of facts
trace(z(Z), u(U), v(V)). A sample of these observations is given in Table 2.

Table 2.Sample observations in the invariant relations application

observation 1 observation 2 observation 3

input(x(0), y(0))
trace(z(0), u(0), v(0))

input(x(7), y(6))
trace(z(0), u(7), v(6))
trace(z(6), u(3), v(12))
trace(z(18), u(1), v(24))
trace(z(42), u(0), v(48))

input(x(9), y(10))
trace(z(0), u(9), v(10))
trace(z(10), u(4), v(20))
trace(z(10), u(2), v(40))
trace(z(10), u(1), v(80))
trace(z(90), u(0), v(160))

With theDlab grammar(ir temps, ir vars) shown in Figure 3,Claudien discovered
the following two invariant relations:

U >= 0 <-- input(x(X),y(Y)), trace(z(Z),u(U),v(V))

Term = XY <-- input(x(X),y(Y)), trace(z(Z),u(U),v(V)),

XY is X * Y, _Term i s Z + U * V

CLAUSAL DISCOVERY 127

ir_temps = {0-1:[compare(U, 0), _Term = XY]

<--

len-len:[input(x(X), y(Y)),

trace(z(Z), u(U), v(V)),

0-len:[XY i s X * Y,

1-1:[Term i s Z + U,

Term i s Z + V,

Term i s Z + U + V,

Term i s Z * U + V,

Term i s Z + U * V,

Term i s Z * V + U,

Term i s Z * U * V

]]]

}

ir_vars = {dlab_variable(compare, 1-1, [<, >, =, =<, >=]}

Figure 3. A Dlab grammar for the invariant relations application

which is equivalent to(z + u ∗ v = x ∗ y) ∧ (u ≥ 0). Notice that if this relation is indeed
invariant at position†, then whenever the loop terminates onu = 0, the intended final
relationz = x ∗ y holds.

This application demonstrates thatClaudien is able to handle structured terms (e.g.
Z +U ∗ V). Though, in this experiment built-in predicates were employed, similar results
would have been obtained using the pureProlog notation for natural numbers, i.e. using
0 and the successor functor.

5.3. Finite element mesh-design

One standard benchmark for inductive logic programming systems operating under the
discriminant setting, is that of learning finite element mesh-design (see e.g. (Dolˇsak &
Muggleton, 1992, Lavraˇc & Džeroski, 1994)). Here we will address the same learning
task. However, whereas the other approaches require positive as well as negative examples,
Claudien needs only the positive. Secondly, the other approaches employ Michalski’s
covering algorithm, where the aim is to find hypotheses that cover each positive example
once.Claudien follows an alternative approach, as it merely looks for valid rules. There
is therefore no guarantee that hypotheses found byClaudien will cover all positives and
also a hypothesis may cover a positive example several times. We believe− and our
experiments in mesh-design show− that when the data are sparse, theClaudien approach
may be preferrable.

The original mesh-application contains data about 5 different structures (a-e), with the
number of edges per structure varying between 28 and 96. There are 278 positive ex-

128 L. DE RAEDT AND L. DEHASPE

amples (and 2840 negative ones) and the original background theory contains 1872 facts.
The original background theory was made determinate (because theGolem system of
(Muggleton & Feng, 1990) cannot work with indeterminate clauses). AsClaudien does
not suffer from this restriction, we could compact the database to 639 (equivalent) facts.
An example of a positive example ismesh(b11, 6) meaning that edge 11 of structureb
should be divided in6 subedges. Background knowledge contains information about edge
types, boundary conditions, loading, and the geometry of the structure. Some of the facts
are shown below:

Edge types: long(b19), short(b10), notimportant(b2), shortforhole(b28),
halfcircuit(b3), halfcircuithole(b1)
Boundary conditions: fixed(b1), twosidefixed(b6)
Loading: notloaded(b1), contloaded(b22)
Geometry: neighbour(b1, b2), opposite(b1, b3), same(b1, b3)

We ranClaudien on this data-set using a slightly different but equivalent representa-
tion for examples, using the leave-one-out strategy. All data were put into one observation.
Counts of local accuracyLA(c) and local coverageLC(c) were done w.r.t. to the literal
mesh(E,R). Further settings include:

search strategy: best first
heuristic:p/(l + n)
LA(c) threshold: 0.9
LC(c) threshold: 2
Dlab grammar: see Figure 4

TheDlab grammar in Figure 4 defines a language of about4.9 ∗ 107 rules. The an-
tecedents of these rules specify at least the type, boundary conditions, loading or resolution
of the edges that occur in the rule. Moreover, if two edges occur, the antecedent specifies
their topology. The power of theDlab formalism is thus used to prevent the generation of
a large class of uninteresting rules.

On averageClaudien halted after 7972 cpu seconds, visited 48534 nodes, which corre-
sponds to about0.01%, of the total search space, and discovered 495 valid rules. The high
number of solutions can be explained by the lowLC(c) threshold.

In accordance to the any time character ofClaudien, the discovered rules were tested
against the structure left out at regular cpu time intervals. In cases where more than one rule
applied, the earliest found rule with the highest heuristic value was preferred. In Figure 5
the percentage of correct predictions is plotted against cpu time elapsed. Notice the quality
of the theory improves more or less logarithmically. Figure 5 also shows results forGolem

andFoil as they are reported in (Lavraˇc & Džeroski, 1994).
We believe the results of these tests are very encouraging because the rules learned

by Claudien have by far the best classification accuracy and also because the cpu-
requirements ofClaudien are of the same order as those by the other systems. The
high classification accuracy can be explained by the sparseness of the data and the non-
covering approach.Foil andGolem are implemented in C, andClaudien in Prolog.

CLAUSAL DISCOVERY 129

The experiment clearly shows that an any time algorithm (implemented inProlog) is not
necessarily slower than a covering approach. (Part of) a possible explanation for this may
be thatClaudien is the only system that does not need to employ the (large number) of
negative examples.

5.4. Mutagenesis

To illustrate the scientific discovery potential ofClaudien we selected a problem from the
field of organic chemistry which was recently brought to the attention of the inductive logic
programming community by the Oxford University Computing Laboratory, in collabora-
tion with the London Biomolecular Modelling Laboratory (Srinivasanet al., 1995b). An
observation here corresponds to a nitroaromatic compound with an associated mutagenicity
value. There are 188 observations, 125 of which are labelled “active”, meaning they have
high mutagenicity. The observations further list information on atom and bond structures, a
measure of hydrophobicity (logp), the energy of the compound’s lowest unoccupied molec-
ular orbital (lumo), and generic structural characteristics. For more details we refer to
(Srinivasanet al., 1995b).

So far experiments have focused on finding theories that discriminate between active
and inactive compounds. For instance, withProgol (Muggleton, 1995) a predictive

mesh_temps =

{R = resolution

<--

len-len:[mesh(E,R),

1-len: [type(E),boundary(E),loading(E)],

0-len: [len-len: [geometry(E,E2),

1-len: [mesh(E2,resolution),

type(E2),boundary(E2),loading(E2)

]]]]

}

mesh_vars =

{dlab_variable(resolution,1-1,[1,2,3,4,5,6,7,8,9,10,11,12,17]),

dlab_variable(type,1-1,[long,usual,short,circuit,half_circuit,

quarter_circuit,short_for_hole,long_for_hole,

circuit_hole,half_circuit_hole,notimportant]),

dlab_variable(boundary,1-1,[free,one_side_fixed,two_side_fixed,

fixed]),

dlab_variable(loading,1-1,[noload,one_side_loaded,two_side_loaded,

cont_loaded]),

dlab_variable(geometry,1-1,[neighbour,opp,eq])}

Figure 4. A Dlab grammar for the mesh application

130 L. DE RAEDT AND L. DEHASPE

0

5

10

15

20

25

30

35

40

45

1 10 100 1000 10000

p
e
r
c
e
n
t
a
g
e

c
o
r
r
e
c
t

cpu time (s)

claudien
foil
golem

Figure 5. ComparingClaudien to Foil andGolem.

accuracy of 0.88 was obtained from a 10-fold cross-validation (Srinivasanet al., 1995a).
Despite the classification oriented approach ofProgol, the most interesting outcome of
the experiments of the Oxford - London team isnot a classification criterion, but rather
a new structural alert for mutagenic compounds. The new structural alert encodes one of
the rules found byProgol. However, asProgol aims at classification, it is interested
in as short a hypothesis as possible, implying that it aims at a minimal number of rules.
Indeed, according to Michalski’s covering approach, if a positive example is covered once
by a rule in the hypothesis, it is no longer considered. Because of this, greedy classification
algorithms may miss alternative explanations of the same data.Claudien performing
essentially an informed exhaustive search, will not miss such alternative explanations.

To test this hypothesis, we ranClaudien on the mutagenisis problem with the aim of
finding as much regularities of high accuracy and coverage as possible. The fullDlab

grammar for this task can be found in Appendix C. We here mention only a special feature
borrowed fromProgol to generate thresholds for the valueslogp, lumo, and atomic
charge. Clauses output byDlab contain bodyliterals such asgeteq(logp, LP,#(T)),
where, before validity of the clause is calculated,#(T) is replaced by a constant such that
the clause is non-trivially valid in at least one observation.

A sample of the results is shown below and was obtained in several runs ofClaudien,
with a best-first search, with heuristicp/(l+n), sometimes with slight variants of theDlab

grammar, sometimes with alternative thresholds forGA(c) andGC(c). We ran first ran
Claudien with settingsGA(c) > 0.9 andGC(c) > 80. In 90 cpu seconds, 35 rules were
discovered, all variants of the following two:

active <-- lumo(Lumo) , lteq(lumo,Lumo,-1.62)

CLAUSAL DISCOVERY 131

(accuracy: 0.9, coverage: 90)

active <-- not methyl(SP) , logp(LP) , gteq(logp,LP,3)

(accuracy: 0.9, coverage: 103)

We then lowered theGC(c) threshold to 70. In two short subsequent runs, first with
tests on thresholds forlogp, lumo, and atomic charge disallowed, then with the struc-
tural characteristicmethyl removed from the language, two alternative explanations were
discovered:

active <-- not methyl(SP) , atom(A1,Elem1,Type1,Charge1) , Type1 = 27,

atom(A2,Elem2,Type2,Charge2), bond(A1,A2,7)

(accuracy: 0.91, coverage: 76)

active <-- benzene(SP),atom(A1,Elem1,Type1,Charge1),Type1 = 27,

lteq(charge,Charge1,0.006)

(accuracy: 0.93, coverage: 70)

The underlying idea here is that the insights of one run, can be used in the next run. E.g. if
thenot methylcondition was allowed, nearly all rules discovered contained that condition.
By excluding this condition, alternative explanations were found. Thus, the expert can and
should guide the discovery process.

5.5. River water quality

The next application is taken from the domain of environmental monitoring (Dˇzeroskiet al.,
1994) (see also (Dˇzeroski, 1995)). The goal here is to capture the expertise of an expert river
ecologist who classified 292 field samples of benthic communities from British Midland
Rivers. Each sample is described by means of the abundances (recorded on a scale of 0 to
6) of eighty different microinvertebrate families. The expert classified the samples into five
classes.

In a first experiment we limited ourselves to discovering characteristics of poorest quality
water. A simplified version of theDlab grammar used is shown in Figure 6.

The size of the actual language used was of order1096. The accuracy threshold forGA(c)
was set to 1, but we used an extra feature ofClaudien to list (but not prune) all rules with
accuracy above a lower accuracy level set to 0.3. With20% of the samples belonging to
water quality class 0, the idea here was to delineate subgroups of water samples with a
percentage of class 0 above average. Other relevant settings were:

search strategy: best first
heuristic:p/(l + n)
GC(c) threshold: 10

We ranClaudien for about 1500 cpu seconds. In this period 2752 rules were discovered.
After post-processing, we derived chains of the following type, where the addition of extra
conditions on each new line leads to an increase ofGA(c) and a decrease ofGC(c).

132 L. DE RAEDT AND L. DEHASPE

eco_temps = {class(0)

<--

0-len:[len-len:[ancylidae(A1),

0-1:[compare(abundance,A1)]],

len-len:[asellidae(A2),

0-1:[compare(abundance,A2)]],

...

len-len:[veliidae(A80),

0-1:[compare(abundance,A80)]]

]

}

eco_vars = {dlab_variable(compare, 1-1, [=,<,>],

dlab_variable(abundance, 1-1, [0,1,2,3,4,5,6]}

Figure 6. A Dlab grammar for the river water quality application

GA(c) GC(c)
class(0) if true, 0.20 292

heptageniidae(D32), 0.69 75
hydropsychidae(D37), 0.73 49
oligochaeta(D54), 0.74 46
perlodidae(D57), 0.89 35
rhyacophilidae(D69), 0.93 29
tipulidae(D76), 0.96 26
D76 = 2 1 17

This setting where low accuracy rules are shown but not pruned, seems particularly
interesting in cases where no rules with both high accuracy and high coverage are to be
expected, for instance when sufficient conditions have to be discovered for the occurrence
of rare “faults” in processes, machines, or human beings.

For a second experiment with the river quality data, we turned the lower accuracy facility
off, setGA(c) to 0.95, and modified the language such that rules could cover more than
one class:

eco_temps = {class(1-2:[0,1,2,3,4])

<--

....}

In a search space, now of order1097, Claudien discovered 49 rules in 24 hours of cpu
time. For instance,

class(2) <-- asellidae(A2), chironomidae(A11), gammaridae(A26),

A26 = 2, lymnaeidae(A46)

(accuracy: 0.96, coverage: 28)

CLAUSAL DISCOVERY 133

class(2), class(3) <-- asellidae(A2), glossiphoniidae(A28), physidae(A59)

(accuracy: 0.95, coverage: 22)

Ten of these rules have the disjunctionclass(2), class(3) in the head, the others only
class(2). After we eliminated the abundance level tests, and lowered theGA(c) threshold
to 0.9,Claudien discovered the following two rules with class disjunction within 20 cpu
seconds:

class(2), class(3) <-- physidae(A59), tubificidae(A77)

(accuracy: 0.9, coverage: 40)

class(2), class(3) <-- asellidae(D2), physidae(D59)

(accuracy: 0.92, coverage: 39)

Finally, we removedclass(2) from the language, and raised theGC(c) threshold to 30.
In this modified setting,Claudien discovered 65 rules within 14 hours of cpu time, three
of which are shown below:

class(0), class(1) <-- perlodidae(D57)

(accuracy: 1, coverage: 57)

class(0), class(1) <-- elminthidae(D21) , tubificidae(D77)

(accuracy(0.9), coverage: 80)

class(0), class(1) <-- heptageniidae(D32)

(accuracy: 1, coverage: 75)

In a similar experiment reported in (Dˇzeroskiet al., 1994) class disjunction turned out to
be the main reason why domain experts judgedClaudien rules to be the most intuitive
and promising, as compared to rules discovered by an extended version of the propositional
learner CN2 (Clark & Niblett, 1989, Dˇzeroskiet al., 1993) andGolem. This experiment
illustratesClaudien can also be applied when class boundaries are vague or based on a
discretisation of a continuous space. If permitted by theDlab bias,Claudien will attempt
to disjunctively combine classes to construct valid rules. An analysis of the discovered
hypothesis might then inspire the expert to introduce new (super)classes for frequent class
combinations.

5.6. ParallelClaudien

In the final experiment, our aim was to measure and compare the speed at which sequential
and parallelClaudien traverse the same hypothesis space. We tuned the mesh and ecology
experiments such that in an exhaustive runClaudien visited about 120000 nodes. We then
ranClaudien using a depth-first search strategy with 1, 2, 4, 8, and 16 processes. With
each tested clause, and again with each solution found, we recorded the consumed cpu time
in seconds9.

The results of runningClaudien with 1, 2, 4, 8, and 16 processes are reported in Figure 7.
In the charts on top, the values on the y-axis are the number of explored nodes. Ifn is the

134 L. DE RAEDT AND L. DEHASPE

degree of concurrency, andexplored(p, t) the number of nodes explored by processp after
p has consumedt cpu seconds, theny = f(t) =

∑n
p=1 explored(p, t). The clauses that

were found to be valid are marked with a diamond. A separate chart with the number of
solutions is presented in the lower half of Figure 7.

0

20000

40000

60000

80000

100000

120000

0 2000 4000 6000 8000 10000 12000 14000

e
x
p
l
o
r
e
d

n
o
d
e
s

cpu time (s)

MESH DATA

serial
parallel-2
parallel-4
parallel-8

parallel-16
solutions

0

20000

40000

60000

80000

100000

120000

140000

0 500 1000 1500 2000 2500 3000 3500 4000

e
x
p
l
o
r
e
d

n
o
d
e
s

cpu time (s)

ECOLOGY DATA

serial
parallel-2
parallel-4
parallel-8
parallel-16
solutions

0

10

20

30

40

50

60

70

0 2000 4000 6000 8000 10000 12000 14000

s
o
l
u
t
i
o
n
s

cpu time (s)

MESH DATA

serial
parallel-2
parallel-4
parallel-8

parallel-16

0

50

100

150

200

250

300

0 500 1000 1500 2000 2500 3000 3500 4000

s
o
l
u
t
i
o
n
s

cpu time (s)

ECOLOGY DATA

serial
parallel-2
parallel-4
parallel-8
parallel-16

Figure 7. Results of the experiment with parallelClaudien

The results shown in Figure 7 indicate that for up to 16 processes, the speedup is approx-
imately proportional to the number of processes executing the task: the consumed cpu time
is roughly halved each time the number of processes is doubled.

An important question related to the results of our experiments with parallelClaudien

is how long we can go on adding new processes to reduce the consumed cpu time. Apart
from obvious hardware restrictions10, there are mainly two software related limitations we
should take into account when trying to solve this question.

The first, application-dependent, upper boundary on the degree of concurrency stems from
the fact that a (near) linear speedup can only be obtained if all processes are more or less
constantly working on a subtask, i.e. if most of the time there are enough sublanguagesLi
available. The maximal number of candidate sublanguages available at a given time equals
the total size of all local queuesQC (see Figure A.1) and is related to the application-specific
average branching factor. It is for instance easy to see that in the extreme case where the
branching factor equals 1, concurrency will produce no speedup at all.

Secondly, interprocess communication requires a certain amount of computational over-
head. If this overhead increases with the degree of concurrency, as it does with ournaive
implementation of parallelClaudien, there will be a point where adding more processes
is useless, or even counter-productive in terms of consumed cpu time.

CLAUSAL DISCOVERY 135

6. Related Work

The clausal discovery engine presented here is related to data mining research, semantics
for induction and inductive logic programming.

First, the techniques presented fit in an attempt to upgrade the data mining paradigm to
considering multiple relations (cf. (Dˇzeroski, 1995)). Evidence for this claim was provided
by showing how the semantics for characterizing induction from interpretations fits in Man-
nila’s general framework for data mining as well as by showing thatClaudien can emulate
many of the existing data mining systems. The emulations also demonstrate the generality
of a first order clausal discovery engine as compared to propositional ones. As we discussed,
the price to pay for generality and for expressive power, is a potential loss in efficiency on
specific tasks. However,Claudien was shown not only to be able to search complex
and vast hypotheses spaces, but also to handle reasonably large data sets. Furthermore,
the task addressed byClaudien is PAC-learnable (cf. (De Raedt & Dˇzeroski, 1994)), and
the implemented engine is much more efficient than the naive algorithm used to prove the
PAC-learning results. ThusClaudien should not be considered inefficient.

Secondly, the presented work also contributes to the semantics for induction. More
specifically, it adopts the frameworks by (De Raedt & Dˇzeroski, 1994) and (Helft, 1989).
It generalizes the work of Helft by the use of multiple observations (and models) as well as
the use of Herbrand interpretations. Furthermore, it discusses many variants, options and
extensions of the pure logical view of Helft and De Raedt and Dˇzeroski.

Thirdly, clausal discovery is also a contribution to the field of inductive logic program-
ming, in that it shows how a slightly different formalisation of induction within logic
programming results in new possibilities and challenges for inductive logic programming.
One important contribution in this respect is the extension from definite clause logic to full
clausal logic made possible by the novel semantics.

7. Conclusions

We have presented a clausal discovery engine based on a novel semantics for induction for
use in a data mining setting. Theoretical properties of the engine as well as experiments
with the engine were presented. A key ingredient of the engine was a declarative language
bias formalism, with a corresponding refinement operator.

The clausal discovery engine and theory can be extended in various directions. First, it
would be interesting to see how it can handle incompletely specified observations (using
partial models). Secondly, how it can perform discriminating induction. A step in this di-
rection was already taken by (De Raedt & Van Laer, 1995). Thirdly, it would be interesting
to see how the engine can be coupled to a relational database system and evaluate its per-
formance on huge data bases. Finally, we wonder whether the clausal logic representation
can be extended towards full first order logic.

We hope that the presented framework will provide a sound basis for combining data
mining principles with inductive logic programming.

136 L. DE RAEDT AND L. DEHASPE

Acknowledgments

We would like to thank Saˇso Džeroski and Maurice Bruynooghe for their involvement in
the research that finally lead to this paper. Further discussions with Nada Lavraˇc, Stephen
Muggleton and Peter Flach proved to be very fruitful. Bojan Dolsak, Saˇso Džeroski and
Ashwin Srinivasan generously provided the mesh, ecology and mutagenisis data used in
the experiments. Patrick Weemeeuw and Bart Demoen provided advice on the parallel
implementation ofClaudien. We also thank Wim Van Laer for his significant contribution
to the implementation ofClaudien, and for his comments on this paper. Finally, Hendrik
Blockeel as well as a (large) number of master’s students experimented with earlier versions
of theClaudien implementation.

Luc De Raedt is supported by the Belgian National Fund for Scientific Research and by
the ESPRIT projects no. 6020 and 20237 on Inductive Logic Programming and Inductive
Logic Programming II.

CLAUSAL DISCOVERY 137

Appendix A

A parallel implementation

ParallelClausalDiscovery (see Algorithm A.1) is the main function of the parallel version
of the algorithm. The input parametern determines the degree of parallellism, i.e. the

function ParaClausalDiscovery
inputs : O: set of Closed observations,B: background theory,

ρ: refinement operator,n : number of processors
outputs : Characterizing Hypothesis

Q(1) := {2}
for all i ∈ 2 . . . n doQ(i) := ∅
H2 := fork(ParaCD(2))
. . .
Hn := fork(ParaCD(n))
H1 := ParaCD(1)
H := ∪Hi

reduce(H)
return H
endfunction

function ParaCD
inputs : p: name of processor,
outputs : Partial Confirmatory Hypothesis

Hp := ∅
while not (∀i ∈ 1 . . . n : Q(i) = ∅) do

while not (∀i ∈ 1 . . . n : Q(i) = ∅) and (Q(p) = ∅) do skip
Queue := Q(p)

while Queue 6= ∅ do

for all i ∈ 1 . . . n do if Q(i) = ∅ thenmove part of Queue to Q(i)

delete c fromQueue
if c is valid onO and notprune1(c)
then addc toHp

else for all c′ ∈ ρ(c) for which notprune2(c’)do addc′ toQueue
endif

endwhile
Q(p) :=∅

endwhile
return Hp
endfunction

Figure A.1.A parallel clausal discovery algorithm

138 L. DE RAEDT AND L. DEHASPE

maximal number of processes that will be executing concurrently. Processes exchange
information through the use of the shared variableQ11. For each of then processes,
this variable contains a queue equivalent to queueQ in ClausalDiscovery. Initially, all
queues inQ except the one of the first process are set to empty. The queue of the first
process is initialized to the top node of the hypothesis space, i.e.2. The UNIX12 inspired
fork instruction creates a new (child) process that will execute the call given as the single
argument offork concurrently with the calling (parent) process. ParallelClausalDiscovery
calls ParaCD,n times. Thefork instruction causesn − 1 of these calls to be executed
concurrently with the parent process inn−1 newly created processes. All results are stored
in H1 . . . Hn and combined toH, which is ultimately returned as the solution.

The single input parameterp of ParaCD ranges between 1 andn, and identifies the present
process. Global variableQ(p) contains a queue of clauses that represents the root of the
subtree to be explored byp. The outmost loop terminates the moment this queue is empty
for all processes. At that moment the local solutionHp is returned and ParaCD stops. There
are two more nested loops. The first one terminates either if the same condition of the outer
loop is fulfilled or if the current process has received a new subtree. The body of this loop
is empty but for the do-nothing-instructionskip. After termination of this first inner loop,
Queue gets the value ofQ(p). The second inner loop is a near copy of ClausalDiscovery.
The only difference is that at the beginning of each stepQ is searched for empty queues. If
such an empty queue is found on positioni inQ, processp cedes part of its subtree to process
i by moving part ofQueue to Q(i). Which part ofQueue is moved will depend on the
search strategy chosen by the user (cf. parameterdelete in Figure 1). An important general
restriction is that themoveinstruction should not be allowed to emptyQueue, as this might
result in a loop where the same subtask is passed round forever. From the momentQueue
contains no further candidates for refinement,Q(p) is set to empty in order to inform the
other processes that processp is ready to receive a new subtask, i.e. a new subtree.

In case common variables such asQare used for interprocess communication the synchro-
nisation problem of mutual exclusion occurs.Mutual exclusionis concerned with ensuring
that a sequence of statements, called acritical section, is treated as an indivisible operation
that can not be executed by more than one process at the same time. In ParaCD the boxes
mark two critical sections. They should prevent that two processes are simultaneously
writing toQ(i) or that the incompleteQ(p) is copied toQueue while it is being written by
some other process.

It is easy to see that ParallelClausalDiscovery has the same behaviour as ClausalDiscovery.

Appendix B

A Dlab
ª refinement operator

A refinement operatorρ (cf. Definition 4) forDlab
ª is based on the observation that

clausesc in dlab generate(DGRAM) are defined by a sequence of sublist selections
from Dlab

ª atoms occurring inDGRAM . If we enlarge one of these sublists then the
clausec′ ⊇ c defined by the new sequence is a specialisation ofc underθ-subsumption.
If we somehow enlarge one sublist in a minimal way, thenc′ will be a refinement, i.e. a

CLAUSAL DISCOVERY 139

maximally general specialisation ofc13. To implement this idea we adapt the definite clause
grammardlab dcg in Definition 9 in three steps.

First, in order to formalize the above notion of a sequence of sublist selections, we add
to dlab dcg an extra argument we will refer to as theDlab

ª path. TheDlab
ª path is

meant to keep track of applications of Rules (3) and (4) indlab dcg. The application of
these rules determines whether the firstDlab

ª atom in list L ofMin ··Max : L is either
skipped (Rule (3)) or included in the sublist (Rule (4)).

Definition 16 (Dlab
ª path) LetDATOM be aDlab

ª atom, andC a list of literals
generated bydlab dcg(DATOM). DPATH is a Dlab

ª path ofC with regard to
DATOM if and only if

• DATOM 6= Min ··Max : L andDPATH = DATOM or

• DATOM = Min · ·Max : [L1, . . . , Ln] andDPATH = [P1, . . . , Pn], with, for
eachPi ∈ DPATH,

– Pi = ∗ andLi is excluded during generation ofC (application of Rule (3)/(B.3)),
or

– Pi is theDlab
ª path ofC with regard toDlab

ª atomLi andLi is included
during generation ofC (application of Rule (4)/(B.4))

For instance,

DATOM = 0 ··2 : [gorilla(X), 1 ··1 : [female(X),male(X)]]
C = dlab dcg(DATOM) Dlab

ª path ofC with regard toDATOM
[] [∗, ∗]

[male(X)] [∗, [∗,male(X)]]
[female(X)] [∗, [female(X), ∗]]
[gorilla(X)] [gorilla(X), ∗]

[gorilla(X),male(X)] [gorilla(X), [∗,male(X)]]
[gorilla(X), female(X)] [gorilla(X), [female(X), ∗]]

The following is an adaptation ofdlab dcg, with theDlab
ª path in the second argument

position.

dlab2(A,A) −→ [A], {A 6= Min ··Max : L}. (B.1)

dlab2(Min ··Max : [], []) −→ {Min ≤ 0}, []. (B.2)

dlab2(Min ··Max : [|L], [∗|Y]) −→ dlab2(Min ··Max : L, Y). (B.3)

dlab2(Min ··Max : [A|L], [X|Y]) −→ {Max > 0}, dlab2(A,X),

dlab2((Min− 1) ··(Max− 1) : L, Y). (B.4)

In a second step, we can use theDlab
ª pathDP of a list of literalsC to generate superlists

ofC. Every∗ inDP marks an occasion for extendingC. In terms of Definition 16: we have
to locate aPi = ∗ inDP indicating the correspondingDlab

ª atomLi is excluded during
generation ofC , and then includeLi during generation of superlistsC ′ of C. Definite

140 L. DE RAEDT AND L. DEHASPE

clause grammardlabs does that, and moreover returns theDlab
ª pathDP ′ of C ′ in the

third argument position.

dlabs(··Max : [], [], []) −→ []. (B.5)

dlabs(··Max : [A|L], [∗|Y], [X|Z]) −→ {Max > 0}, dlab2(A,X),

dlabs(··(Max− 1) : L, Y, Z). (B.6)

dlabs(··Max : [|L], [∗|Y], [∗|Z]) −→ dlabs(··Max : L, Y, Z). (B.7)

dlabs(··Max : [A|L], [P |Y], [Q|Z]) −→ {P 6= ∗,Max > 0}, dlabs(A,P,Q),

dlabs(··(Max− 1) : L, Y, Z). (B.8)

dlabs(··Max : [A|L], [X|Y], [X|Z]) −→ {X 6= ∗,Max > 0}, dlab2(A,X),

dlabs(··(Max− 1) : L, Y, Z). (B.9)

Notice how in Rule (B.6) ofdlabs the previously excludedA (cf. the∗ in Arg2) is now
included with the call ofdlab2(A,X). For instance,

DATOM = 0 ··3 : [gorilla(X), female(X),male(X)]
C = [female(X)]

DP = [∗, female(X), ∗]
C ′ = dlabs(DATOM,DP,DP ′) DP ′

[gorilla(X), female(X),male(X)] [gorilla(X), female(X),male(X)]
[gorilla(X), female(X)] [gorilla(X), female(X), ∗]
[female(X),male(X)] [∗, female(X),male(X)]

[female(X)] [∗, female(X), ∗]

The rules indlabs can be used to find all specialisationsc′ of c. As we want our refinement
operator to generate only maximally general specialisations ofc, a final adaptation ofdlabs
is required such that it will generate only smallest superlists ofC. Roughly stated, exactly
one∗ in theDlab

ª pathDP of a list of literalsC should be expanded, and then only in
a minimal way. The first requirement, again in terms of Definition 16, says that we should
locate exactly onePi = ∗ inDP , and then includeLi during generation of superlists ofC.
The second requirement says that the inclusion ofLi should be minimal in the sense that
the correspondingDlab

ª pathP ′i should contain the maximally allowed number of∗’s.
For this we need a modified version ofdlab2, that, given aDlab

ª atomMin ··Max : L,
will only generate sublists of lengthMin. The first requirement is realized indlabr by
eliminating some recursive calls, the second by initialisation of the newly includedDlab

ª

atomA with dlabi instead ofdlab2.

dlabr(Min ··Max : [A|L], [∗|Y], [X|Y]) −→ {not(dlab optimal,member(E, Y), E 6= ∗)},
{Max > 0}, dlabi(A,X),

dlab2((Min− 1) ··(Max− 1) : L, Y). (B.10)

dlabr(Min ··Max : [|L], [∗|Y], [∗|Z]) −→ dlabr(Min ··Max : L, Y, Z). (B.11)

dlabr(Min ··Max : [A|L], [X|Z], [Y |Z]) −→ {X 6= ∗,Max > 0}, dlabr(A,X, Y),

dlab2((Min− 1) ··(Max− 1) : L,Z). (B.12)

dlabr(Min ··Max : [A|L], [X|Y], [X|Z]) −→ {X 6= ∗,Max > 0}, dlab2(A,X),

dlabr((Min− 1) ··(Max− 1) : L, Y, Z).(B.13)

CLAUSAL DISCOVERY 141

dlabi(A,A) −→ [A], {not(A = Min ··Max : L)}. (B.14)

dlabi(0 ·· : [], []) −→ []. (B.15)

dlabi(Min ·· : [A|L], [X|Y]) −→ dlabi(A,X),

dlabi((Min− 1) ·· : L, Y). (B.16)

dlabi(Min ·· : [|L], [∗|Y]) −→ dlabi(Min ·· : L, Y). (B.17)

Notice that Rule B.10 ofdlabr contains an extra initial condition:

not(dlab optimal,member(E, Y), E 6= ∗)

A call to dlab optimal should succeed, if we want the refinement operator to be optimal
(cf. Definition 5), and fail otherwise.

The extra condition ensures that when working in optimal mode, the refinement operator
will never expand∗’s to the left of already expanded∗’s. For instance,

DATOM = 0 ··3 : [gorilla(X), female(X),male(X)]
C = [female(X)]

DP = [∗, female(X), ∗]
dlab optimal C ′ = dlabr(DATOM,DP,DP ′) DP ′

false [gorilla(X), female(X)] [gorilla(X), female(X), ∗]
[female(X),male(X)] [∗, female(X),male(X)]

true [female(X),male(X)] [∗, female(X),male(X)]

To further enforce optimality we have to make sure refinement of the head of a clause
blocks all future refinements of the body, or vice-versa14.

We can now formulate the definition of aDlab
ª refinement operator based on the twelve

definite clause grammar rules ofdlabr, dlabi, anddlab2.

Definition 17 (dlab refine(DINFO,c)) Given

• Dlab
ª templateHA← BA,

• clausec = H ← B, with c ∈ dlab generate({HA← BA})

• HP aDlab
ª path ofH with regard toHA,

• BP aDlab
ª path ofB with regard toBA,

• DINFO = (HA,HP,BA,BP),

If dlab optimal = false
dlab refine(DINFO, c) = dlab refh(DINFO, c) ∪ dlab refb(DINFO, c)

If dlab optimal = true
dlab refine(DINFO, c) = dlab refh((HA,HP, [], []), c) ∪ dlab refb(DINFO, c)

142 L. DE RAEDT AND L. DEHASPE

dlab refh((HA,HP,BA,BP), H ← B) =
{((HA,HP ′, BA,BP), H ′ ← B)|H ′ = dlabr(HA,HP,HP ′)}

dlab refb((HA,HP,BA,BP), H ← B) =
{((HA,HP,BA,BP ′), H ← B′)|B′ = dlabr(BA,BP,BP ′)}

An initialisation function that returns the most general clauses inL completes theDlab
ª

refinement operator:

Definition 18 (dlab initialize(DGRAM)) Let DGRAM be aDlab
ª grammar, then the

following function returns the top nodes in the refinement lattice:

dlab initialize(DGRAM) = {dlab refh(dlab refb(DINFO,2))|
(HA← BA) ∈ DGRAM,
DINFO = (0 ··1 : [HA], [∗], 0 ··1 : [BA], [∗])}

We are now ready to instantiate the refinement operator in the ClausalDiscovery algorithm
(see Figure 1) toDlab

ª, with dlab optimal = true. The basic idea is to store elements
of type (DINFO, c) in queueQ. As in practise queueQ often grows to a size above
105, the explicit storage of nodes(DINFO, c) might quickly exhaust memory resources.
TheDlab

ª formalism however allows for a straightforward optimisation, where only the
Dlab

ª paths are stored inQ together with a pointer to theDlab
ª template. Corresponding

clauses can then be recovered usingdlab215. We then usedlab initialize(DGRAM) to
initializeQ to the most general element(s) inL, anddlab refine(DINFO, c) to calculate
refinements of the elements we retrieve fromQ.

Appendix C

A Dlab grammar for the mutagenesis application

muta_temps =

{active

<--

0-len:

[toggle(structural_property(SP)),

len-len:

[atom(A1, Elem1, Type1, Charge1),

0-len:[toggle(Elem1=element),

toggle(Type1=atomtype),

occurs_in(A1, SP)

],

0-len:[len-len:[atom(A2, Elem2, Type2, Charge2),

0-len:[toggle(Elem2=element),

toggle(Type2=atomtype),

occurs_in(A2, SP),

bond(A1, A2, 1-1:[_,1,2,3,4,5,7]),

len-len:[atom(A3, Elem3, Type3, Charge3),

0-len:[toggle(Elem3=element),

CLAUSAL DISCOVERY 143

toggle(Type3=atomtype),

occurs_in(A3, SP),

bond(A1, A3, 1-1:[_,1,2,3,4,5,7]),

bond(A2, A3, 1-1:[_,1,2,3,4,5,7])

]]]]]],

1-1:[eqtest(charge,1-1:[Charge1, Charge2, Charge3], #(T)),

len-len:[lumo(Lumo),eqtest(lumo,Lumo, #(T))],

len-len:[logp(LP),eqtest(logp,LP,#(T))]

]]

}

muta_vars =

{dlab_variable(eqtest,1 - 1,[lteq,gteq]),

dlab_variable(element,1 - 1,[h,c,n,o,br,cl,f,i,s]),

dlab_variable(atomtype,1 - 1,[1,3,8,10,14,16,19,21,22,25,26,27,28,29,31,32,34,

35,36,38,40,41,42,45,49,50,51,52,72,92,93,94,

95,194,195,230,232]),

dlab_variable(structural_property,1 - 1,[nitro,carbon_6_ring,benzene,ring_size_6,

ring_size_5,phenanthrene,anthracene,ball3,

hetero_aromatic_5_ring,hetero_aromatic_6_ring,

carbon_5_aromatic_ring,methyl]),

dlab_variable(toggle,1 - 1,[call,not])

}

Notes

1. Details on how to obtainClaudien can be found on the World-Wide-Web at URL:

http : //www.cs.kuleuven.ac.be/ m̃l/CWIS/claudien− E.shtml

or by FTP access to:

ftp : //ftp.cs.kuleuven.ac.be/pub/logic− prgm/ilp/claudien/claudien3.0/

2. There is some historical confusion in terminology here. Helft (Helft, 1989) introduced the term non-monotonic
induction, Flach first distinguished weak induction from strong or normal induction (Flach, 1992), but now
uses confirmatory and explanatory induction (Flach, 1994, Flach, 1995). Finally, though the setting by
(De Raedt & Džeroski, 1994) is a generalisation of Helft’s setting, they also used the term non-monotonic.
The recent paper by (De Raedt, 1996) attempts to clarify this situation.

3. Notice that ‘valid’ does not mean ‘tautology’ here !

4. It is also possible to use non-definite clause theories. However, then the minimal Herbrand model of the theory
may not be unique. Helft (Helft, 1989) shows how to deal with this situation.

5. One might as well use implication as a notion of generality, though this would be computationally harder.

6. Dlab is available as aProlog library at URL

http : //www.cs.kuleuven.ac.be/ m̃l/CWIS/dlab− E.shtml

or by FTP access to:

ftp : //ftp.cs.kuleuven.ac.be/pub/logic− prgm/ilp/dlab

144 L. DE RAEDT AND L. DEHASPE

7. To simplify our definition of a generation function we here introduce (and will continue to use) a special list
notation in which the head and the body of clauses are written as lists:[A1, . . . , Am]← [B1, . . . , Bn].

8. As a minor extension we will also allowDlab
ª atoms of the typeMin ··len : L or len ··len : L, where

len is a constant symbol that abbreviateslength(L).
9. As cpu time was measured, we could test parallelClaudien with degrees above 4 on a machine with only

4 processors. It should be kept in mind however that the speedups here reported will only correspond to real
time speedups if a separate processor is dedicated to all concurrent processes.

10. Remember that we assume every process can execute on a separate processor. If not enough processors are
available, they have to be switched between processes. By ever increasing the number of processes scheduled
for a single processor we will finally overload the operating system.

11. More sophisticated systems for interprocess communication exist, but for reasons of simplicity we will continue
to use the most general and basic constructs throughout.

12. UNIXTM Trademark of Bell Laboratories

13. Depending on theDlab
ª grammar, this refinement (underθ-subsumption) can be proper or not.

14. In fact, both measures merely prevent the same couple ofDlab
ª paths (one for the head, one for the body)

from being generated more that once. In case the list of body- or headliterals of a single clause corresponds
to n > 1 Dlab

ª paths, e.g.[male(X)] givenDlab
ª atom1 · ·1 : [male(X),male(X),male(X)]

(n = 3),Dlab
ª is likely to generate this clausen times. Part of the responsibility for optimality is thus left

to theDlab
ª user.

15. In a more sophisticated version ofDlab
ª theDlab

ª paths are flat lists of symbols0, 1, ∗, such that groups
of 4 elements in the path can be further compressed to one 81-ary digit.

References

Adé, H., De Raedt, L. and Bruynooghe, M. 1995. Declarative Bias for Specific-to-General ILP Systems.Machine
Learning, 20(1/2):119 – 154.

Agrawal, R., Imielinski, T. and Swami, A. 1993. Mining association rules between sets of items in large databases.
In Proceedings of the 1993 International Conference on Management of Data (SIGMOD 93), pages 207–216.

Bergadano, F. & Gunetti, D. 1993. An interactive system to learn functional logic programs. InProceedings of
the 13th International Joint Conference on Artificial Intelligence, pages 1044–1049. Morgan Kaufmann.

Bergadano, F. 1993. Towards an inductive logic programming language. Technical Report ESPRIT project no.
6020 ILP Deliverable TO1, Computer Science Department, University of Torino.

Bratko, I. & Grobelnik, M. 1993. Inductive learning applied to program construction and verification. In
Proceedings of the 3rd International Workshop on Inductive Logic Programming, pages 279–292.

Bratko, I. 1986.Prolog Programming for Artificial Intelligence. Addison-Wesley.
Cameron-Jones, R.M. & Quinlan, J.R. 1993. Avoiding pitfalls when learning recursive theories. InProceedings

of the 13th International Joint Conference on Artificial Intelligence, pages 1050–1055. Morgan Kaufmann.
Clark, P. & Niblett, T. 1989. The CN2 algorithm.Machine Learning, 3(4):261–284.
Clocksin, W.F. & Mellish, C.S. 1981.Programming in Prolog. Springer-Verlag, Berlin.
Cohen, W.W. 1994. Grammatically biased learning: learning logic programs using an explicit antecedent

description language.Artificial Intelligence, 68:303–366.
De Raedt, L. & Bruynooghe, M. 1993. A theory of clausal discovery. InProceedings of the 13th International

Joint Conference on Artificial Intelligence, pages 1058–1063. Morgan Kaufmann.
De Raedt, L. & Džeroski, S. 1994. First orderjk-clausal theories are PAC-learnable.Artificial Intelligence,

70:375–392.
De Raedt, L. & Van Laer, W. 1995. Inductive constraint logic. InProceedings of the 5th Workshop on Algorithmic

Learning Theory, Volume 997 of Lecture Notes in Artificial Intelligence. Springer-Verlag.
De Raedt, L., Lavraˇc, N. & Džeroski, S. 1993. Multiple predicate learning. InProceedings of the 13th

International Joint Conference on Artificial Intelligence, pages 1037–1042. Morgan Kaufmann.
De Raedt, L. 1996. Induction in logic. In R.S. Michalski and Wnek J., editors,Proceedings of the 3rd International

Workshop on Multistrategy Learning, pages 29–38.

CLAUSAL DISCOVERY 145

Dehaspe, L. & De Raedt, L. 1996. DLAB: A declarative language bias formalism. InProceedings of the
International Symposium on Methodologies for Intelligent Systems (ISMIS96), volume 1079 ofLecture Notes
in Artificial Intelligence, pages 613–622. Springer-Verlag.

Dolšak, B. & Muggleton, S. 1992. The application of Inductive Logic Programming to finite element mesh design.
In S. Muggleton, editor,Inductive logic programming, pages 453–472. Academic Press.

Džeroski, S., Cestnik, B. & Petrovski, I. 1993. Using the m-estimate in rule induction.Journal of Computing
and Information Technology, 1(1):37 – 46.

Džeroski, S., Dehaspe, L., Ruck, B. & Walley, W. 1994. Classification of river water quality data using machine
learning. InProceedings of the 5th International Conference on the Development and Application of Computer
Techniques to Environmental Studies.

Džeroski, S. 1995. Inductive logic programming and knowledge discovery in databases. In U. Fayyad,
G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, editors,Advances in Knowledge Discovery and Data
Mining, pages 118–152. The MIT Press.

Emde, W., Habel, C.U. & Rollinger, C.R. 1983. The discovery of the equator or concept driven learning.
In Proceedings of the 8th International Joint Conference on Artificial Intelligence, pages 455–458. Morgan
Kaufmann.

Fayyad, U., Piatetsky-Shapiro, G., Smyth, P. & Uthurusamy, R. editors. 1995.Advances in Knowledge Discovery
and Data Mining. The MIT Press.

Fensel, D., Zickwolff, M. & Wiese, M. 1995. Are substitutions the better examples? In L. De Raedt, editor,
Proceedings of the 5th International Workshop on Inductive Logic Programming.

Flach, P. 1992. A framework for inductive logic programming. In S. Muggleton, editor,Inductive logic
programming. Academic Press.

Flach, P. 1993. Predicate invention in inductive data engineering. In P. Brazdil, editor,Proceedings of the
6th European Conference on Machine Learning, Volume 667 of Lecture Notes in Artificial Intelligence, pages
83–94. Springer-Verlag.

Flach, P.R. 1994. Inductive logic programming and philosophy of science. In S. Wrobel, editor,Proceedings of
the 4th International Workshop on Inductive Logic Programming, volume 237 ofGMD-Studien, Sankt Augustin,
Germany. Gesellschaft f¨ur Mathematik und Datenverarbeitung MBH.

Flach, P. 1995. An inquiry concerning the logic of induction. PhD thesis, Tilburg University, Institute for
Language Technology and Artificial Intelligence.

Genesereth, M. & Nilsson, N. 1987.Logical foundations of artificial intelligence. Morgan Kaufmann.
Helft, N. 1989. Induction as nonmonotonic inference. InProceedings of the 1st International Conference on

Principles of Knowledge Representation and Reasoning, pages 149–156. Morgan Kaufmann.
Kantola, M., Mannila, H., Raiha, K.J. & Siirtola, H. 1992. Discovering functional and inclusion dependencies in

relational databases.International Journal of Intelligent Systems, 7(7):561–607.
Kietz, J-U. & Wrobel, S. 1992. Controlling the complexity of learning in logic through syntactic and task-oriented

models. In S. Muggleton, editor,Inductive logic programming, pages 335–359. Academic Press.
Kl ösgen, W. 1996. Explora: A multipattern and multistrategy discovery assistant. In U. Fayyad, G. Piatetsky-

Shapiro, P. Smyth, and R. Uthurusamy, editors,Advances in Knowledge Discovery and Data Mining. The MIT
Press.

Lavrač, N. & Džeroski, S. 1994.Inductive Logic Programming: Techniques and Applications. Ellis Horwood.
Lloyd, J.W. 1987.Foundations of logic programming. Springer-Verlag, 2nd edition.
MacDonald, I.G. 1979.Symmetric functions and Hall polynomials. Clarendon Oxford.
Mannila, H. 1995. Aspects of data mining. In Y. Kodratoff, G. Nakhaeizadeh, and G. Taylor, editors,Proceedings

of the MLnet Familiarization Workshop on Statistics, Machine Learning and Knowledge Discovery in Databases,
pages 1–6, Heraklion, Crete, Greece.

Manthey, R. & Bry, F. 1988. SATCHMO: a theorem prover implemented in Prolog. InProceedings of the 9th
International Conference on Automated Deduction (CADE88), pages 415–434. Springer-Verlag.

Michalski, R.S. 1983. A theory and methodology of inductive learning. In R.S Michalski, J.G. Carbonell, and
T.M. Mitchell, editors,Machine Learning: an artificial intelligence approach, volume 1. Morgan Kaufmann.

Mitchell, T.M. 1982. Generalization as search.Artificial Intelligence, 18:203–226.
Morik, K. & Brockhausen, P. 1996. A multistrategy approach to relational discovery in databases. In R.S.

Michalski and Wnek J., editors,Proceedings of the 3rd International Workshop on Multistrategy Learning,
pages 17–28.

Muggleton, S. & De Raedt, L. 1994. Inductive logic programming : Theory and methods.Journal of Logic
Programming, 19,20:629–679.

146 L. DE RAEDT AND L. DEHASPE

Muggleton, S. & Feng, C. 1990. Efficient induction of logic programs. InProceedings of the 1st conference on
algorithmic learning theory, pages 368–381. Ohmsma, Tokyo, Japan.

Muggleton, S. 1995. Inverse entailment and Progol.New Generation Computing, 13.
Piatetsky-Shapiro, G. 1991. Discovery, analysis, and presentation of strong rules. In G. Piatetsky-Shapiro and

W. Frawley, editors,Knowledge Discovery in Databases, pages 229–248. The MIT Press.
Plotkin, G. 1970. A note on inductive generalization. InMachine Intelligence, volume 5, pages 153–163.

Edinburgh University Press.
Quinlan, J.R. 1990. Learning logical definitions from relations.Machine Learning, 5:239–266.
Rouveirol, C. 1994. Flattening and saturation: Two representation changes for generalization.Machine Learning,

14:219–232.
Savnik, I. & Flach, P.A. 1993. Bottom-up induction of functional dependencies from relations. InProceedings of

the AAAI’93 Workshop on Knowledge Discovery in Databases, pages 174–185. AAAI Press. Washington DC.
Schlimmer, J. 1991. Learning determinations and checking databases. InProceedings of the AAAI’91 Workshop

on Knowledge Discovery in Databases, pages 64–761. Washington DC.
Shen, W.M. 1992. Discovering regularities from knowledge bases.International Journal of Intelligent Systems,

7(7).
Srinivasan, A., Muggleton, S. & Bain, M. 1992. Distinguishing exceptions from noise in non-monotonic learning.

In Proceedings of the 2nd International Workshop on Inductive Logic Programming, 1992.
Srinivasan, A., Muggleton, S.H. & King, R.D. 1995. Comparing the use of background knowledge by inductiv e

logic programming systems. In L. De Raedt, editor,Proceedings of the 5th International Workshop on Inductive
Logic Programming. IOS Press.

Srinivasan, A., Muggleton, S.H., Sternberg, M.J.E. & King, R.D. 1995. Theories for mutagenicity: a study in
first-order and feature-based induction.Artificial Intelligence. To appear.

Sterling, L. & Shapiro, E. 1986.The art of Prolog. The MIT Press.
van der Laag, P.R.J. & Nienhuys-Cheng, S.-H. 1994. Existence and nonexistence of complete refinement operators.

In F. Bergadano and L. De Raedt, editors,Proceedings of the 7th European Conference on Machine Learning,
volume 784 ofLecture Notes in Artificial Intelligence, pages 307–322. Springer-Verlag.

Wrobel, S. & Džeroski, S. 1995. The ILP description learning problem: Towards a general model-level definition
of data mining in ILP. Technical report, Presented at the 1995 Workshop of the GI Special Interest Group
Machine Learning (FGML-95).

Received December 8, 1995
Accepted June 5, 1996
Final Manuscript January 7, 1997

