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Abstract. The clausal discovery engif2.AUDIEN is presentedCLAUDIEN is an inductive logic programming

engine that fits in the descriptive data mining paradigLAUDIEN addresses characteristic induction from
interpretations, a task which is related to existing formalisations of induction in logic. In characteristic induction
frominterpretations, the regularities are represented by clausal theories, and the data using Herbrand interpretations.
Becaus&LAUDIEN uses clausal logic to represent hypotheses, the regularities induced typically involve multiple
relations or predicate’LAUDIEN also employs a novel declarative bias mechanism to define the set of clauses
that may appear in a hypothesis.
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1. Introduction

Despite the fact that the areas of knowledge discovery in databases (Fatlad995)

and inductive logic programming (Muggleton & De Raedt, 1994) have both enjoyed a

lot of attention recently, the combination of the two areas has seldomly been studied
(DZeroski, 1995). Enhancing data mining tools with relational abilities as offered by induc-

tive logic programming is of crucial importance for the practice of knowledge discovery due

to the central role of relational databases in database technology (Morik & Brockhausen,
1996). Yet, most data mining techniques focus on learning within a single relation. On

the other hand, inductive logic programming has always focused on learning classification
rules, i.e. on performing concept-learning from positive and negative examples of a con-
cept. In contrast, descriptive data mining is often aimed at finding interesting regularities
in unclassified data.

CLAUDIEN! combines data mining principles with inductive logic programming. As
such it discovers clausal regularities from unclassified data. To this aim, a novel se-
mantics (or problem-setting) for inductive logic programming has been developed, cf.
(De Raedt & Xeroski, 1994), in which examples are represented by Herbrand interpreta-
tions and the aim is to discover a logically maximally general hypothesis that has all the
examples as models. The novel semantics is called characteristic induction from inter-
pretations. The special case, where the data consists of a single model or interpretation
was earlier proposed in a slightly different form by Nicolas Helft (Helft, 1989). The set-
ting is compared and contrasted with other formalisations of inductive logic programming
and its various properties are presented. One of the properties of the proposed semantics is
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monotonicity, meaning that whenever two individual clauses are valid on the data, their con-
junction will also be valid on the data. Monotonicity is not satisfied by the usual inductive
logic programming semantics. Monotonicity makes it easy to implement a parallel clausal
discovery engine. Algorithms that address the proposed problem-setting are presented,
shown to be correct and tested on a wide range of applications.

A key ingredient of the clausal discovery engine is the definition of the declarative bias,
which determines the type of regularity searched for. Declarative bias is essential in de-
scriptive data mining as such systems have a less operational criterion of success than
concept-learning. In concept-learning, one typically searches for any hypothesis consistent
with the data whereas data mining is looking for all interesting or valid regularities. The
number of regularities satisfying the criterion can be very large as shown also in propo-
sitional approaches to data mining. As the search space of clausal logic is larger (and
even infinite) than that of propositional logic, bias is of crucial importance in clausal
discovery. To declaratively represent the bias of the clausal discovery engine, a new
formalism, calledDLAB, derived from the work of (Adet al,, 1995, Emdeet al, 1983,

Kietz & Wrobel, 1992, Bergadano & Gunetti, 1993, Cohen, 1994) is proposed. Moreover,
it is shown how the specification of the syntax of the clauses allowed in the hypothesis can
be automatically translated in a refinement operator for the considered langDage.
should also be useful in other inductive logic programming systems.

The practice of the clausal discovery engine is demonstrated using a variety of experi-
ments. The first experiment demonstrates the generality of the clausal discovery engine
in a data mining context by showing that the engine is able to emulate many of the de-
scriptive data mining systems specifically designed for particular induction tasks such as
finding functional or multi-valued dependencies and association rules. This is achieved
by tuningCLAUDIEN's parameters, especially the declarative bias. In a second example,
inspired by (Bratko & Grobelnik, 1993), we show how functors are handled to recover
loop invariants from program traces. The third experiment, in finite element mesh-design
(Dolsak & Muggleton, 1992, Lava& Dzeroski, 1994), shows thatalthoughCLAUDIEN
is not intended to perform classification taskst can also be successfully applied in this
context. Two further experiments, on mutagenesis (Srinivasah 1995b) and water-
quality ((DZeroskiet al., 1994)), showLAUDIEN's performance on particular data mining
tasks.

This paper is organised as follows: In Section 2, we review the concepts from (inductive)
logic programming used, in Section 3, we introduce the novel semantics for inductive
logic programming and contrast it with existing ones, in Section 4, we present a sequential
and parallel algorithm for performing clausal discovery, we introduce a novel mechanism to
declaratively representthe bias of the discovery engine, and present heuristics and extensions
of the proposed algorithm, in Section 5, we show the effectiveness of the engine on a wide
range of applications. Finally, in Sections 6 and 7, we conclude and touch upon related
work.
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2. (Inductive) Logic Programming Concepts

We assume some familiarity with first order logic (see (Bratko, 1986, Lloyd, 1987,
Genesereth & Nilsson, 1987, De Raedt, 1996) for an introduction).

Afirst order alphabet is a set of predicate symbols, constant symbols and functor symbols.
A clause is a formula of the form, ..., A,,, — B, ..., B, where thed; andB; are logical
atoms. An atonp(ty,...,t,) is a predicate symbal followed by a bracketea-tuple of
termst;. Atermt is a variableV or a functor symbolf (¢4, ..., tx) immediately followed
by a bracketed-tuple of termst;. Constants are functor symbols of arityfunctor-free
clauses are clauses that contain only variables as terms.

The above clause can be readsor ... orA,, if B; and ... andB,,. All variables
in clauses are universally quantified, although this is not explicitly written. Extending the
usual convention fodefinite clause¢wherem = 1), we call 44, ..., A,, the headof the
clause and3y, ..., B,, thebodyof the clause. Aactis a definite clause with an empty body,
(m=1,n=0).

A Herbrand interpretatiorover a first order alphabet is a set of ground atoms constructed
with the predicate, constant and functor symbols in the alphabet. Roughly speaking, a
Herbrand interpretation represents a kind of possible world by specifying all true facts in
the world. All facts not stated are assumed to be false.

A Herbrand interpretation is the equivalent of an example in propositional approaches
to inductive learning using e.g. attribute value representations or boolean logic. Suppose
we are using an attribute value representation where all attributes can have two values (say
true and false). An example would then state for all attributes whether its value is true
or false. This corresponds to the Herbrand interpretation consisting of all attributes (i.e.
propositions) having the value true in the example. This is also similar to computational
learning theory applied to boolean logic, which has used boolean variable assignments (i.e.
assignments of 1 or 0 to the variables).

As in concept-learning, a notion of coverage is needed. When a Herbrand interpretation is
a model for a theory, we will consider the interpretation ‘covered’ by the theory. Formally,

a Herbrand interpretatiof is a model for a clause if and only if for all grounding
substitutions) of ¢ : body(c)0 C I — head(c)d NI # 0. We also say: is true in[.
A Herbrand interpretatior is a model for a clausal theof# if and only if it is a model
for all clauses ifl". Roughly speaking, the truth of a clausé an interpretation can
be determined by running the quéty- body(c), not head(c) on a database containirdg
using a theorem prover (such BgRoLoG). If the query succeeds, the clause is falsé.in
If it finitely fails, the clause is true.

Inductive logic programming systems typically deal with background knowledge. In
our setting, background knowledge (a definite clause theory) will be used to complete an
observation (in this case, also a set of definite clauses) into a Herbrand interpretation. The
least Herbrand interpretation of a definite clause theory is the set of all ground facts (using
the predicates, functors and constants of the definite clause theory) that are logically entailed
by the definite clause theory. We will use the notatldiiT’) to denote the least Herbrand
model of a definite clause theofy:.
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Example 1 Consider the following definite clause theory:
flies(X) «— normal(X), bird(X)

normal (tweety) «—
bird(tweety) «—

Then the least Herbrand model of this theory is:
{bird(tweety), normal (tweety), flies(tweety)}
This Herbrand interpretation is a model for the clause:
flies(X) « bird(X)
The following clause is false in the Herbrand interpretation:

— bird(X), normal(X)

We will employ two notions of generality in this paper. A clausal thebyys logically
more general tham clausal theoryl; if and only if T} | Ty, i.e. if T3 logically entails
Ts. The other notion employed is Plotkinlssubsumption (Plotkin, 1970). A clause
f-subsumeslausec; if and only if there exists a substitutighsuch that;0 C cs.

3. Logical Frameworks for Induction

At present, there exist several formalisations of induction in clausal logic. Firstly, there the
normal inductive logic programming setting (sometimes also called the explanatory setting)
introduced by Gordon Plotkin (Plotkin, 1970), which is employed by the large majority of
inductive logic programming systems, cf. (Muggleton & De Raedt, 1994), which aims at
discriminating positive observations from negative ones, and hence is classification ori-
ented. Secondly, there is Nicolas Helft's non-monotonic setting (Helft, 1989), which aims
at characterising one or more observations, and hence is oriented towards descriptive data
mining. Thirdly, there is the confirmatory setting by Peter Flach (Flach, 1995). Fourthly,
there is Mannila’s general framework for data mining (cf. (Mannila, 1995)). Fifth, there
is the setting introduced by De Raedt andeoski (De Raedt & Béroski, 1994), which

we will employ for clausal discovery, and which we will call characteristic induction from
interpretations. In this section, we will introduce this induction setting and discuss its
relation to the other ones.

3.1. Characteristic induction from interpretations

Our setting for induction is derived from Nicolas Helft's non-monotonic semantics for
induction (Helft, 1989), cf. (De Raedt & Z&roski, 1994). Although it differs from Helft's
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setting in several respects, it is similar in spirit. The ideas are 1) that all observations are
completely specified, and 2) that a hypothesis should reflect what is in the data. The first
idea is implemented by representing the observations as Herbrand interpretations, with the
consequence that all observations are assumed to be completely specified (as in attribute-
value learning). The second idea is enforced by requiring all hypotheses to be true in all
of the observations. Since we are only working with one type of observation, we perform
characteristicinduction, a term which is due to (Michalski, 1983).

Ignoring for the moment the use of background knowledge, characteristic induction from
interpretations can be defined as follows.

Definition 1 (Characteristic induction from interpetations) Let O be a set Herbrand
Interpretations,£ a set of clauses.H C L is a solution if and only ifH is a logically
maximally general valitihypothesis. A hypothesi$ is valid if and only if for allo; € O,
H is true ino;.

We will impose syntactic restrictions on the space of hypotheses through the lanyuage
which determines the set of clauses that can be part of a hypothesis. The laigaage
important parameter of the induction task. It can have different properties (e.g. be infinite
or finite) depending on the problem.

Language AssumptionThe language assumption states that the alphabet of the hypotheses
languageL only contains constant, functor or predicate symbols that occur in one of the
observations or in the background theory.

Example 2 Imagine we are observing different gorilla colonies and we observe two dif-
ferent colonies

o1 = {female(liz), male(richard), gorilla(liz), gorilla(richard)}
o2 = {female(ginger), male(fred), gorilla(ginger), gorilla( fred)}.

A clause isrange-restrictedf all variables in the head of the clause also appear in the
body of the clause. K is restricted to range-restricted, constant-free clauses a solution is:

(2) gorilla(X) < female(X)

(2) gorilla(X) < male(X)

(3) male(X), female(X)- gorilla(X)
(4) «— male(X),female(X)

This is a solution because all clauses (1-4) are true in the Herbrand interpretatigns.
Furthermore, all other valid clauses over the same alphabet are logically entailed by this
hypothesis. To see this, observe that as all predicates are unary and there are only three
predicates, it suffices to restrict our attention to clauses with at most 3 literals in the head
and at most 3 literals in the body as all clauses with more literals are equivalent to one
of this form. The result then follows by enumerating the clauses, and removing logically
redundant ones.
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Background knowledge can easily be incorporated in the above definition3 beta
background theory in the form of a definite clause théotyet each observation; € O
also be a definite clause theory. Then a hypothesis will be valid if and only if for allO,
H istrueinM (BUo;). Thus, background knowledge is used to complete the observations
into Herbrand interpretations. From now on, for reasons of readability, we will act as if no
background knowledge is used. However, all of our definitions and results also hold when
background knowledge is used as just indicated.

3.2. Properties of the framework

First, each observation is a Herbrand interpretation. This is only justified when complete
knowledge of all (relevant) aspects of the observation is available. As an illustration,
suppose we have two birds, the first of which is known to be black, and the second having
an unknown colour. Under these circumstances, it is not valid to say that all birds are
black (as we do not know whether this statement holds for the second bird). Thus the use
of Herbrand interpretations assumes complete knowledge of each obseryatibauch
knowledge is not available one should be cautious with this approach.

Second, we are interested in hypotheses that are valid. Intuitively, validity means that the
hypothesis holds on the data, i.e. that the induced hypothesis postulates true regularities
present in the observations. This-isas we shall see- a stronger requirement than those
employed in the normal inductive logic programming framework. Validity is a monotone
property at the level of hypotheses:

Property 1 (Monotonicity) If H; is valid andH is valid with respect to a set of obser-
vationsO, thenH; U H, is valid.

This property means that all well-formed clausesfircan be considered completely
independent of each other. It will turn out to be very important for efficiency reasons as it
essentially allows for parallel search (cf. Section 4.3).

Third, the condition of maximal generality (cf. also (De Raedt, 1996) for an alternative
explanation). This condition appears in the definition because the mostinteresting hypothe-
ses are the most informative and hence the most general. Without this condition, the empty
hypothesis (which is always valid) would be a trivial solution and this is undesirable.

The casual reader less interested in logical and formal aspects of the framework and
relations to other logical frameworks may want to go to section 4.

The question now arises as to the circumstances under which a maximally general valid
hypothesis exists. In general, for infinite hypotheses spaces, a maximally general hypothesis
will not exist. This is demonstrated in Example 3.

Example 3 Consider the single observatigparent(luc, soetkin) «<}. Then the follow-
ing clauses are all valid:

(1) « parent(X,X;)
(2) « parent(X,Xs), parent(%,X;)
(3) < parent(4,X2), parent(%,X3), parent(>§,Xy),parent(>4,X;)



CLAUSAL DISCOVERY 105

It is clear that there exists here a strictly ascending chain (according to generality) of
clauses which are all valid. If we restriat to this set of clauses, the maximally general
hypothesis should be an infinite clause.

However, in case a maximally general hypothesis exists, then all such hypotheses are
logically equivalent.

Property 2 If there exists a solution, then the solution is unique up to logical equivalence.

Proof: suppose there are two maximally general solutifhsand H, andl~ Hy < Hs.
Because of monotonocitif; U Ho must also be valid, anél; U H, is strictly more gen-
eralthanH, and tharnf,. This contradicts the fact th&f, andH, are maximally generald

There are two possible ways to avoid the problems with infinite solutions. The first
solution is to require that the set of well-formed clausss finite. Although this solution
may appear to be undesirable, it is made by the vast majority of current approaches to
inductive logic programming. It will be used in the implementation of the clausal discovery
engine and enforced using the declarative language bias formalism. The second solution is
dueto Nicolas Helft (but generalized here) and works only when the Herbrand interpretations
are finite.

Definition 2 (Injectivity) Letcbepy,...,pm < ¢1,...,q, andletvargc) = { X1, ..., Xi }.
The clause: is injective with regard to a set of observatiofisf and only if eitherym > 0
and there exists an observatiore O, and a substitutiodf such that(g; A ... A g, A X1 #
Xo, ..., X; # Xj,...)0 is true ino augmented with standard inequality, f, = 0 and for
all k, clause~qx, < q1, ..., Qk—1, qk+1, ---, Gn IS iNjective.

Injectivity Assumption. The injectivity assumption requires that all clauses in a solution
be injective.

The problems with Example 3 disappear when the injectivity assumption is made. Indeed,
the unique maximally general injective valid clause is clause (2). The intuition here is that
one should not employ more variables than needed, and as the maximum chain of constants
linked by the parent relation is 2, we should not introduce more variables.

Property 3 Ifthe Herbrand interpretations; € O are finite and the injectivity assumption
holds, then there exists a finite set of clauses that forms a solution.

Proof: Letn be the maximum number of terms occurring in one of the Herbrand interpre-
tations. By assumptionis finite. LetX;, ..., X,, ben different variables. As each injective
clause can contain at mastifferent variables, it suffices to consider clauses with as only
variablestheXy, ..., X,,. Therefore the only literals that need to be considered are those with
the predicates and terms in the Herbrand interpretatigmed the variableX, ..., X,,. As

there are only afinite number of such literals, the number of clauses containing such literals is
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alsofinite. LetH contain all such clauses that are valid is finite and an injective solution.
|

The injectivity assumption, however, does not help when the Herbrand universe is infinite:
see Example 4.

Example 4 Leto be M ({parent(X, p(X)), human(a)}). Then the problems outlined in
Example 3 reappear.

3.2.1. Additional options
A weaker but also useful condition than injectivity is that of non-triviality.

Non-triviality Assumption. Let ¢ bepy,....,pm < q1,-..,q,. The clause: is non-trivial
w.r.t. a set of observation@ if and only if eitherm > 0 and there exists an observation
o € O and a substitutioff such that(¢g; A ... A ¢,,)0 is true ino, or, m = 0 and for allk
there exists a substitutighand an observatiomsuch thatlgs A ... A ge—1 A g1 A Gn)0

is true ino.

Non-triviality is used to exclude clauses that trivially hold from the hypotheses. Without
non-triviality, one can always postulate implications, provided that the condition part never
holds.

Example 5 Consider as background theory:

colour(X)« black(X)
colour(X) < white(X)

and as observatioq swan(s), white(s)}. Without requiring non-triviality the clause
swan(X)« black(X) is valid. This is not always desirable.

An alternative to the non-triviality condition for denials would be to demand maximally
general clauses.

Maximally general clauses. Under this assumption, it is required that all claugés a
solution H, are maximally general and valid. This means that there is no clédubkat
-subsumes and is also valid on the observatiéns

The condition of maximally general clauses is however harder to enforce than non-
triviality due to the possibility of strictly infinitely ascending chains of clauses ufider
subsumption, which may again lead to a need for adding infinite clauses to the hypotheses.

Another option relates to the issue of redundant hypotheses. Clauses that belong to the
background theory may reappear in the induced hypothesis. This is not always desirable.
It can be avoided by the non-redundancy assumption.
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Non-redundancy AssumptionNo clausec € H is logically entailed byB, i.e. for all ¢
€ H: Blec.

A related requirement requires a minimal solution, i.e. a solution in which no clause is
logically redundant with respect to the induced hypothesis.

Compactness AssumptioNo clausec € H is logically entailed byH — {c}, i.e. for all
ceH: H—{c} e

3.3. Relation to other frameworks for induction
3.3.1. Michalski’'s notions

The problem of characteristic induction from interpretations as formalized here, can be
regarded as a logical formalisation of the task addressed by MichalskiscE system
(Michalski, 1983). Employing the framework of logic programming has several advantages.
First, the definitions employed have a clear and well understood meaning. Second, using
(and implementing) background knowledge is very easy (employingBrgQLOG).

3.3.2. Helft's and Flach’s notions

The key difference with Helft's notion of induction is that Helft assumes a single obser-
vation. Working with multiple observations is more natural as many well-known machine
learning notions such as for instance incrementality have a clear meaning in our framework.
Furthermore, by working with multiple observations, the boolean PAC-learning setting is
generalized, cf. also (De Raedt &Broski, 1994). Other differences with Helft's frame-
work include the use dflerbrandmodels as well as that we allow for functors.

Flach’s adequacy conditions for induction provide a framework for reasoning about the
properties and semantics of induction. However, Flach’s adequacy conditions allow for
many instantiations. Our framework can be considered one such instantiation, which is
close to Flach’sonfirmatory setting

3.3.3.  Normal Inductive Logic Programming

Our setting for induction is specifically tailored towards the discovery of regularities that
hold in a set of (unclassified) observations or ttladracterizethe observations. Within
inductive logic programming and other forms of machine learning, people have classically
focused on learning rules thdiscriminatepositive observations from negative ones. Within
normal inductive logic programming this is captured in the following definition, due to
(Plotkin, 1970).

Definition 3 (Normal Inductive Logic Programming) Let P be a set of true observa-
tions, N be a set of false observations,a background theoryH C L is a solution if and
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only if H is complete with regard to the positive observations and consistent with regard to
the negative observations. A hypothegiss complete with regard t& and B if and only
if BUH = P; H is consistent with regard t&/ and B ifand only if B U H U N [~ O.

Example 6 Supposé = { flies(tweety), flies(woody)}, N = {—flies(oliver)}, B =
{bird(tweety), bird(woody), bird(oliver), normal(tweety), normal(woody)}. Then a
solution would be flies(X}- bird(X), normal(X).

The aim of normal inductive logic programming is to induce a hypothesis that logically
entails all of the true observations and none of the false observations. Animportant property
is:

Property 4 If H, is consistent and{, is consistent with respect to a background theory
B and a set of observation(3, thenH; U H, need not be consistent with.

This property is the cause of some well-known problems when learning multiple predicates
or recursive predicates in the normal inductive logic programming setting, cf. (De Raedt
et al, 1993, Bergadano & Gunetti, 1993, Cameron-Jones & Quinlan, 1993). The reason
for this is that inconsistencies may arise whénand H, can resolve together.

Flach’s (Flach, 1992) definition of weak induction (from which his later notion of con-
firmatory induction is derived) is the special case of normal inductive logic programming
where only consistency with the negative examples is required. The reader may notice that
also for this setting by Flach, the above property holds.

The differences between our induction setting and normal inductive logic programming
are akin to the differences between knowledge discovery (or data mining) and concept-
learning. The differences can be explained in terms of the two ideas underlying our induction
setting, i.e. learning from interpretations versus learning from implications, characteristic
versus discriminant induction.

A first important difference is due to the representation of the examples. In our setting
examples are interpretations, in normal inductive logic programming, examples are impli-
cations or clauses. Using interpretations to describe observations is the first order equivalent
of what is done in attribute value learning. In attribute value learning each example is de-
scribed by means of a complete vector of attribute value pairs. Completeness in this respect
means that a value for each attribute is known. Working with interpretations thus implicitly
corresponds to assuming that all aspects of each observation is known: all examples are
assumed to be completely described, and all facts not stated in the observation are regarded
false. This contrasts with normal inductive logic programming approaches where examples
are definite clauses (possibly obtained after applying some form of saturation on a ground
fact). Using definite clauses one can model incomplete information and induce hypotheses
that realize an inductive leap on the examples. Let us illustrate this point using a variant of
Example 6. The example can be straightforwardly transformed in a set of interpretations,
one interpretation for each of the birds, i.eweety, woody, andoliver. In this case,
complete knowledge of the birds is available. Now, both our setting and normal inductive
logic programming would considdlies(X) < bird(X), normal(X)as (part of) a solution.
However, let us assume that the fgétes(tweety) is unknown. In normal inductive logic
programming the previous solution would still hold and the induction procedure would
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postulate thaflies(tweety) holds. Hence, an inductive leap would result. However, when
working with interpertations it would no longer hold as there would be a normal bird of
which it is not known whether it flies. This clearly shows that learning from interpretations

— in contrast to learning from implications assumes complete information about the
examples and does not allow inductive leaps on the observations, i.e. applying the induced
hypotheses on the observations will not result in postulating new facts. Learning from
interpretations makes inductive leaps of a different kind, in the sense that it postulates that
the induced hypotheses will be valid on unseen observations.

This is the theoretical point of view. In practise however, learning from interpretations
can still be applied in the presence of a limited form of incompleteness. The trick is
to put the predicates that are known to be incomplete in the condition part of the rules.
Thus, with flies(tweety) unknown in Example 6, solutions in our setting would in-
clude bird(X) < flies(X)and normal(X) < flies(X) Notice we have then learned neces-
sary conditions forflies(X) instead of sufficient ones. From a theoretical perspective,
one could handle incomplete information when learning from interpretations by using in-
complete interpretations, which would list the known true, and the known false facts. A
hypothesisH would then be considered valid with an observatioand a background
theory B if and only if B A H A o £ O, which again closely corresponds to Flach’s
notion of weak induction. Some ideas along this line have also been investigated by
(Fensekt al,, 1995, Wrobel & Xeroski, 1995). From a practical perspective however,
complete knowledge is often available (cf. attribute value learning where missing values
arise only seldomly, or well-known inductive logic programming problems such as mutage-
nesis (Srinivasant al., 1995b)). Furthermore, it is the assumption of complete knowledge
that makes the monotonicity property hold, which is crucial for efficiency reasons, cf.
Section 4.3 on parallel search.

The second difference can be explained using the notions of characteristic induction
versus discriminant induction. In discriminant induction, the aim is to find a hypothesis that
discriminates observations belonging to two classes, i.e. the positive observations from the
negative ones. In characteristic induction, the aim is to find a most informative hypothesis
that explains all of the (unclassified) observations. A mostinformative hypothesis is one that
covers the least number of examples (the most specific one under coverage). When learning
forminterpretations mostinformative means logically maximally general. The reasonis that
the logically more general hypotheses have the least number of models, hence, they cover
the least number of observations (in this case a hypothesis covers an example if the example
is valid in the hypothesis). In contrast, when learning from implications most informative
means logically maximally specific, as these hypotheses cover the least observations (in
this case a hypothesis covers an example if the hypothesis logically entails the example).

These two differences motivate the use of the term characteristic induction from in-
terpretations. Furthermore, it would be adequate to name the normal inductive logic
programming setting, discriminant induction from implications (or from entailment, cf.
(De Raedt, 1996)).

These two aspects of induction allow us also to describe two other problem settings
that have been considered. First, there is the normal inductive logic programming where
the set of negative examples is empty. This setting can be describgtheteristic
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induction from implicationsit corresponds to learning from positive data only, and has
been considered by many researchers. Secondly, there is no reason why one cannot learn
clauses that discriminate interpretations in several classes, e.g. interpretations that are a
model for a theory true versus interpretations that are not. This alternative setting has been
adopted in the ICL system of (De Raedt & Van Laer, 1995). The ICL setting, discriminant
induction from interpretations, provides a clue as how problems and solutions along the
different dimensions relate to each other. It should be clear that the set of clauses output
by characteristic induction (using the positive observations only) is typically a superset
of that produced by a discriminant procedure (we are ignoring all non-logical aspects of
induction engines, such as heuristics, now). Forinstance, when working with interpretations
characteristic induction will produce a large set of clauses valid on the positive observations,
whereas discriminant induction will retain a minimal subset needed for discriminating the
negative observations.

3.3.4. Mannila’s data mining framework

Heikki Mannila (Mannila, 1995) recently introduced a general definition for data mining.
He views data mining as the process of constructing a theafy, r, ¢), whereL is a set

of sentences to considerthe data(base), andthe quality criterion. The aim then is to
find all sentences in the languagée that satisfy the quality criterion w.r.t. the datai.e.

Th(L,r,q) ={¢ € L] q(r, p(r))is true}

Our formalisation of induction is a special case of Mannila’'s one, wifecentains the
clauses to consider, and the quality criteripis true whenever the claugeis valid on the

data inr. This clearly shows that characteristic induction from interpretations is a real data
mining task.

4. A clausal discovery engine

This section provides a detailed description of our clausal discovery engine.

4.1. A Clausal Discovery Algorithm

The key to arrive at a clausal discovery algorithm for characteristic induction from inter-
pretations is the well-known property/definition of logical entailment.

Property 5 (Pruning) LetG be a logical generalisation o, i.e. G = S. If an interpre-
tation M is a model forG then M will also be a model of.

The contraposition states thatif is not a model forS' then M will not be a model for
any logical generalisatio of S. This contraposition shows that large parts of the search
space can be pruned. Indeed, given an observatim hypothesig/ such thatH is false
in o, all logical specialisations aff will be false ino and can thus be pruned.
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By now, we can apply classical machine learning principles to obtain an algorithm for
characteristic induction from interpretations. First, machine learning principles state that
induction is a search process through a partially ordered space induced by the generalisation
relation, cf. (Mitchell, 1982). Second, machine learning systems typically search the space
specific-to-general or general-to-specific. The question then arises as to which of these
strategies is the most feasible one. Theoretically, there may however be a problem when
searching (logically) specific-to-general as one should then start from the most specific hy-
pothesis which could be an infinite one. Furthermore, it is well-known in machine learning
that pruning parts of the search space is more reliable when working general-to-specific.
Therefore, we will only consider general-to-specific search. Third, as characteristic induc-
tion aims at a logically maximally general hypothesis, it should not use a covering approach
but rather an exhaustive search of the relevant parts of the search space.

In order to arrive at a general algorithm in Figure 1, we only need to define the search
space and the operator for traversing it. In the remainder of this paper, we will use the
notation £ to denote the search space consisting of clauses, and a refinement operator
based or-subsumption (Plotkin, 1970) to traverse it.

Definition 4 A refinement operatop (with transitive closurep*) for a languagel is a
mapping fromZ to 2¢ such that

1. Vee L:p(e) C{c € L] isaproper maximally general specialisationcotinder
#-subsumptiok, and

2. pis complete, i.ep*(0) = L whereO is the most general elementh

Completeness means that all elements of the language can be generated usimgr
framework, optimal refinement operators are the most desirable ones :

Definition 5 A refinement operatas (with transitive closure*) is optimal if and only if
Ve,c1,e0 € L:c € p*(er) ande € p*(ca) — ¢1 € p*(c2) Or ca € p*(c1).

Optimal refinement operators are more efficient than classical refinement operators be-
cause they generate each candidate clause exactly once. A known problem with classical
refinement operators is that they generate candidate clauses (and their refinements) more
than once, making the search intractable. Optimality is thus desirable for efficiency rea-
sons. (van der Laag & Nienhuys-Cheng, 1994) have shown that specific types of operators
(such as optimal ones) do not exist for the infinite language of full clausal logic. However,
for finite languages (which is the assumption in the implementation), optimal as well as
complete operators do exist.

The algorithm in Figure 1 starts with an empty hypothd$isand a queué) containing
only the most general element in the considered langdadighen applies a search process
where each elements deleted from the queug, and tested for validity on the observations
O. Ifthe clause is valid, and not to Ipeuned1(see below), it is added to the hypothesis: If
is invalid, its refinements generated and those refinements which are nqiriarisel2(see
below) are added to the queue. When the queue is empty, the algorithm halts and outputs
the current hypothesis.
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function ClausalDiscovery
inputs : O: set of Closed Observations, refinement operator
outputs : Characteristic Hypothesis

H:=0
Q={0}
while Q # () do

deletec from @
if cisvalidon O
and notprunel(c)
thenaddcto H
else for all¢’ € p(c) for which notprune2(c’)do
addc’ to Q
endfor
endif
endwhile
reduce(H)
endfunction

Figure 1. A clausal discovery algorithm

The ClausalDiscovery algorithm has a number of parameters, which are priitedt
They can be used to specify the many options of the clausal discovery engindeléhe
function determines the search-strategy. When delete is firstin first out one realizes breadth-
first search, whenitis lastin first out then depth-first, when itis according to some ranking of
the clauses, it is best-first. Different heuristics for ranking clauses are discussed in Section
4.6. The functiorvalid determines when a clause is accepted as (part of) a solution. When
coping with noisy data it is often useful to relax the validity requirements as detailed in
Section 4.5. The functiorrunel, prune2andreduceare meant to implement the options
(including a special type of pruning when the language is fair), cf. Section 4.2. Most
important is the language bias and corresponding refinement operator. The declarative
language bias mechanisbr.AaB and the corresponding refinement operators are discussed
in Section 4.4. Finally, a parallel version of this algorithm is indicated in Section 4.3 and
Appendix A.

4.2. Properties and Extensions

We first prove that the ClausalDiscovery engine is correct, and then discuss three extensions.
The first extension allows to deal with infinite models, the second one concerns the options
and the third one is an optimisation fiair languages.
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4.2.1. Property

Ignoring for the moment the functionwunel, prune2 andreduce which are used to
implement the options (cf. below), it is easy to see that:

Property 6 ClausalDiscovery outputs a maximally general valid hypothesis withiif
it terminates anc is complete with regard td.

Proof: If the algorithm would perform an exhaustive searciCaind would add all valid
clausestdd, the result trivially holds. Now, a clausés only pruned when it i§-subsumed
by a valid clause’ € H. Because’ logically entailsc, H is as general af A ¢, implying
thatc may be pruned without losing information. m|

4.2.2. Termination

The algorithm may not always terminate because of two reasons:

¢ therefinementgraph searched may be infinite, which may lead the algorithm to exploring
infinite paths through the search-space;

e testing whether a clause is valid on an observation uSiogy A —Head (as outlined
above) is only semi-decidable in the general case.

The first problem can be avoided when working with finite Herbrand interpretations and
using the injectivity assumption, or when using only finite languages. The second problem
only arises when the Herbrand interpretation of an observation is infinite. Two approaches
can be taken in this case. First, one can usé-aasy notion of validity (by setting the
functionvalid accordingly).

Definition 6 (h-easy validity) A clausec is h-easy valid on an observatianif and only
if an SLDNF-interpreter (with depth-bourtg fails when answering the query ?-body(c),
not head(c). on the knowledge baBeJ o.

SLDNF-resolution is the basis of the logic programming languggeLoc, see (Lloyd,

1987) for more details. By employing a depth-bound on the depth of the proof tree,
termination is guaranteed. However, soundness is lost in the following sense. If a clause is
h-easy valid, it may be invalid in the logical sense. When employiggsy validity, this

may result in finding a logically inconsistent hypotheKis= O, so care should be taken

with this approach.

Second, one can approximate the infinite models by finite subsets of them, and one can
then use a flattening approach (Rouveirol, 1994, De Raedté&@ki, 1994) to allow for
clauses that have only infinite models. Since this approach is detailed in (De Raedt &
DZeroski, 1994), we do not further elaborate on this here.
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4.2.3. Implementing the options

Prunel can be used to enforce maximally general clauses by removing all clathsxs
are not maximally general.

Prune2 can be used to enforce injectivity, non-triviality, and non-redundancy by removing
all clauses: that are not injective, trivial or redundant.

Reduce can be used to enforce compactness, cf. (De Raedt & Bruynooghe, 1993). This
involves the use of a theorem-prover. In the current implementaiamcumo by
(Manthey & Bry, 1988) is employed.

4.2.4. Fairness

An important optimisation is possible in case the language considefasd (sf. (De Raedt
& Bruynooghe, 1993)).

Definition 7 A languagel is fair if and only if vV clausesA, B, C' andV substitutiond,
suchthatd € L, AV Be LandAf#V BV C € L, we also have thatld v C € L.

Let A = —male(X), B = ~gorilla(X), C = —tall(X), andf = {}. Assume that all
conditions are satisfied, i.enmale(X); —male(X) V —gorilla(X); and—male(X) Vv
—gorilla(X) vV —tall(X) € L. Fairness then requires thatale(X) V —tall(X) € L.

If the language is fair, one can optimise the search using the following property by safely
pruning away certain clauses.

Property 7 (Fairness) Given a fair languageC, a set of observation®, a clauseA, a
refinementd v B of A, andB — A is valid in O, ClausalDiscovery may prune2V B as
well as its refinements.

Proof: We first prove that/B andv6 : A0 v C'isvalidinO ifand only if A0 v BO Vv C
is valid in O (0).

1. becausedd v C §-subsumesid v BO v C, A0 v C logically entailsAf v BO v C.
Therefore, ifA6 v C'is valid, A6 v BO Vv C is also valid.

2. Suppose now thatd v B6 v C is valid andAf v C'is invalid in O. (1)
Thenthereis a substitutiersuch thaf A9\ C') o is ground and false in some observation
o € O. ThereforemAfo A —~C is true ino. Hence-Ado is true ino. (2)
It was given thatB — A is true inO, therefore the contrapositionA — —B is also
true ino. From this and (2) it follows that Bfo is true ino.
Thereforedd v B Vv C is false ino as there is a substitutian for which it is false.
This contradicts (1) and concludes the proof of (0).

From (0) it follows thatA v B is valid if and only if A is valid (choose” = {} andf =
{}in (0)). Now, if A is valid (and part of the hypothesis}, v B need not be part of the
final hypothesis (because it is logically entailedAwand hence redundant4f is added to
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the hypothesis). I is invalid, thenA v B is invalid (henced v B should not be part of
the final hypothesis). This shows th&ty B need not be part of the final hypothesis.

We still have to show that it is safe to also prune the refinements wfB. First note
that all refinements ofl v B (underf-subsumption) are of the formd v B6 v C. From
(0), it then follows thatdd v C is valid if and only if A6 v B6 Vv C is valid, hence the two
clauses are equivalent w.r.t. validity. Because of fairndgsy C will be considered by
ClausalDiscovery. Hence, it is safe to prusé v B6 v C.

Toillustrate the property, reconsider the example above. Assume now algorthiad (X))
— male(X) is valid. The property then states that it is safe to prugerilla(X) V
—male(X), and its refinements such agorilla(X) V —male(X) V —tall(X) as equiva-
lent clauses (w.r.t. validity) such agorilla(X)V —tall(X) will be considered because of
validity. More examples of fair and unfair languages are given in Section 4.4 on declarative
language bias.

4.3. Parallellism

Due to the monotonicity property of our induction framework, it is relatively easy to par-
allellize the ClausalDiscovery engine. ClausalDiscovery essentially traverses the space of
clauses exhaustively and general-to-specific. This yields a search-tree in which the nodes
are clauses, and there is a subtree of a clause for each refinement (under the pperator
of the clause. Now, due to monotonicity all subtrees of the search-tree can be processed
independently of each other and therefore in parallel. The resulting algorithm is presented
in Appendix A.

4.4. Declarative language bias

Even if we choose the search spateo be finite, it is in most cases impractical to define
L extensionally. We then need a formalism to formulate an intensional syntactic definition
of language’.

The problem of making this type of syntactic bias a parameter to the learning or dis-
covering engine has been studied extensively, especially in frameworks that use first-order
clausal logic (see (Muggleton & De Raedt, 1994 gfdal., 1995) for an overview). For
CLAUDIEN we developed a new formalism call@i.AaB (Declarative LAnguage Bia$)

DLAB extends the syntactic bias of (Aéf al,, 1995) which in turn integrates the schemata

of (Emdeet al, 1983, Kietz & Wrobel, 1992), and the predicate sets of (Bergadano &
Gunetti, 1993, Bergadano, 1993). When compared to Cohen’s antecedent description
grammars (Cohen, 1994LAB is a special case where the definite clause grammar is
fixed and hidden. This grammar takes theaB formula as its single argument. In that
senseDLAB is a higher order formalism based on the lower order antecedent description
grammar.
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We present an overview @/L.AB in two stages. First, we discuss syntax, semantics and a
refinement operator fdPLAB®, a subset oDLAB. We then exten®1LAB® to full DLAB.
An earlier version of this section appeared in (Dehaspe & De Raedt, 1996).

4.4.1. DLAB®
A DLAB® grammar is a finite set of templates to which the clauses in search gpace
conform. We first give a recursive syntactic definition of eaB® formalism.

Definition 8 (DLAB® syntax)

1. aDLAB® atom is either a logical atom, or of the fortin --Max : L, with Min
and Max integers such that < Min < Maxz < length(L), and with L a list of
DLAB® atoms;

2. aDLABP template is of the forml <+ B, whereA and B are DLAB® atoms;

3. aDLAB® grammar is a set 6DLAB® templates.

The following are a few examples of syntactically well-forr®2dAaB® grammars:
o {say(Hello) «— to_world}
o {false —0-2:[male(X), female(X)]}

o {2:2:[a(X),b(Y)] «—1-2:[c(X),0--1:[d(Y)]],
0-1:[n,1-2:[0,1--1:[p,q],7],s] < true}

The hypothesis space that corresponds®rLaB® grammar is then constructed via the
(recursive) selection of all sublists afwith length within rangeVin . .. M ax from each
DLAB® atomMin --Maz : L. This idea can be elegantly formalised and implemented
using the Definite Clause Grammar (DCG) notation, which is an extensi®rof.oc
(cf. (Clocksin & Mellish, 1981, Sterling & Shapiro, 1986))

Definition 9 (DLAB® semantics) LetG be aDLAB® grammar, then
dlab_generate(G) = {dlab_dcg(A) «— dlab_dcg(B)|(A «— B) € G}

generates all clauses in the corresponding hypothesis space, villaérécg(E) is a list of
logical atoms generated hjlab_dcg:

dlab-dcg(E) — [E],{E # Min--Max : L}. (1)

dlab_dcg(Min --Maz : [|) — {Min <0},][]. (2)

dlab_dcg(Min --Max : [|L]) — dlab-deg(Min --Max : L). (3)
dlab-dcg(Min --Maz : [E|L]) — {Maz > 0},dlab-dcg(E),

dlab_dcg((Min — 1) --(Max — 1) : L). (4)

From the semantics of RLAB® grammar we derive a formula for calculating the size of
its hypothesis space.
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Property 8 (DLAB® size) LetG = {A; «+ By,..., A, <« B} be aDLAB® grammar,
then the size of the corresponding hypothesis space edudlsize(G), with

dlab_size(G) = Y1~ (ds(A;) x ds(By)) ;
ds(E) = 1,whereE is a logical atom;
(Mm Maz : [Ly,...,Ly]) = S0 ep(ds(Ly), ... ds(Ly,)) ;
eo(S1y.-y8n) =13
en(staersn) = Ty s
ek(sl,SQ, coySn) = ex(82, ..., 8,) + 81k ep_1(S2,...,8,), Withk <n .

Proof: The first rule states that the size of the language definedByss© grammar
equals the sum of the sizes of the languages defined by its individiuab® templates.
The latter size can be found by multiplying the number of headlists and the number of
bodylists covered by the head and bdayas® atoms.

A DLAB® atom which is not of the formi/in --Mazx : L has a coverage of exactly one,
as is expressed in the second rule.

Some more intricate combinatorics underlies the third rule. Basically, we éﬂbeqnects
from {L1,..., L,}, for eachk in rangeMin ... Maz, hence the summatiop .. .
Inside this summation we would have the standard formyla! « (n — k)! if our case had
been an instance of the prototypical problem of finding all combinations, without replace-
ment, ofk marbles out of an urn with marbles. This formula does not apply due to the fact
that we rather haveurns (L4, ..., L,,}) with one or more marblegl§(L;) > 1), and only
combinations that use at most one marble from each urn should be counted. Therefore we
neede(s1, ..., sn), Whereey, is the elementary symmetric function (MacDonald, 1979) of
degreek and thes; are the numbers of marbles in each urn. The first base case of this recur-
sive function accounts for the fact that there is only one way to select 0 objects. Inthe second
base case, whefe= n, one has to take an object from each urn. As for each urn there are
s; choices, the number of combinations equals the product ef.allhe final recursive case
applies ifk < n. Itis an addition of two terms, one for each possible operation on urn 1
(represented by, ). Either we skip this urn, and then we still have to seleetements from
urns 2ton. The number of such combinations is giverelyss, . . . , s, ). Orelse we do take
a marble from the first urn. We then have to multiply the choices for the first urn, with
ex—1(s2,...,8,), the number ok — 1 order combinations of elements from urns Zito

]

Given aDLAB® atom Min --Maz : L, four choices of values for/in and Mazx
determine the following cases of special intetest

1. all sublists: Min =0, Max = len
e.9.Gl={h—0-len:[a,b, ]}

2. all non-empty sublists Min =1, Max =1
e.g.G2={h«—1-len:[a,b, |}

3. exclusiveor Min =1, Max =1
e.0.G3={h—1-1:[a,b,c]}
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4. combined occurence Min = Max = len
e.g.G4d={h —len-len:[a,b, ]}

These special cases can be nested to construct more complex grammars exemplified below.

Gs={h«1-len:[a,1--1:[b,¢]]}

G6 = {h «— 1-len: [a,len--len: [b,c]]}
G7={h«—len-len:[a,1-1:[b,]]}

G8 ={h «—0-len:[len--len: [a,0--len: [len --len : [b,0--len : []]]]}

Table 1 gives the corresponding hypothesis spaces for grangiarsGs. A ./ in the
column of grammag: marks the clauses of the first column that are in the corresponding
hypothesis space.

Except forg8, all grammars in Table 1 define fair languages (see Definition 7). Grammar
g8 illustrates how taxonomies can be encoded, such that each atomic formula necessarily
co-occurs withall its ancestors and never combines with other nodes. In the césg of
only co-occurs with its both ancestaers. Itis the exlusion of the combination of an atomic
formula with a strict subset of ancestots € in our example) which causes the definition
of fairness to be violated. A more elaborate example is grangifiawhich encodes the
taxonomy for suits of playing cards:

G9 = {0k(C) «
len --len : [card(C),
0-1:[len--len: [red(C),0--1: [hearts(X), diamonds(C)]],
len --len : [black(C),0 -1 : [clubs(X), spades(C)]],

] I}

[0k (C)] « [card(C)]

[0k(C)] « [card(C),red(C)]

[0k(C)] <« [card(C), red(C), hearts(C)]
dlab_generate(G9) = | [0k(C)] «— [card(C),red(C), diamonds(C')]

[0k(C)] « [card(C),black(C))

[0k(C)] « [card(C),black(C), clubs(C)]

[0k(C)] « [card(C), black(C), spades(C))

Table 1.The semantics of some samfe.AB grammars

Gl G2 G3 G4 G5 G6 G7T G8
(A] <] v v
(7] < [a] v vV v Vv v
[R] < [b] v vV v
[R] < [c] v vV v
(7] < [a, ] v oV v v oV
(7] < [a, ] VA v v
[R] < [b.c] v Vv v
[A] —fa,bc] | vV v v v
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In Appendix B, we show how a refinement operator foDaAB® language can be
obtained from théDLAB® grammar. Furthermore, Appendix B touches upon some of the
key implementation aspects of tieAuDIEN engine.

4.4.2. DLAB® Extended:DLAB

In an extended versioPL.AB mainly two features have been added to improve readability
of more complex grammars: second order variables, and sublists on the term level.

Definition 10 (DLAB syntax)
1. aDLaB termis either

(A) avariable symbol, or
(B) of the formf(¢4,...,t,), wheref is a function symbol followed by a bracketed
n — tuple (0 < n) of DLAB termst;, or

(C) oftheformMin --Max : L, whereMin and M ax are integers with) < Min <
Mazx < length(L), and withL a list of DLAB terms;

2. aDLAB atom is either

(A) of the formp(t4,...,t,), wherep is a predicate symbol followed by a bracketed
n — tuple (0 < n) of DLAB termst;, or

(B) of the formMin --Max : L, whereMin and M ax are integers with) < Min <
Mazx < length(L), and withL a list of DLAB atoms;

3. aDLAB template is of the forml < B, whereA and B are DLAB atoms;

4. aDuas variable is of the formilab_var(py, Min --Mazx, [p1, . .., pn]), whereMin
and M ax are integers with) < Min < Max < n, and withp; a predicate symbol or
a function symbol

5. aDLAB grammar is a couplé7, V), whereT is a set ofDLAB templates, and’ a
set of DLAB variables.

We will now define the conversion @iLaB grammarg7, V) to theDLAB® format such
that the above definitions of semantics, size, and a refinement operator remain valid for the
enriched formalism. First, to remove the second order variablee recursively replace
all DLaB terms and atoms

p(t1,...,ty) In T such thadlabvar(p, Min --Maz, [p1, . ..,pm]) € V, with
Min--Maz : [p1(t1, .. ytn)y s Dm(t1y ooy tn)] -
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Next we recursively remove sublists on the termlevel by replacing from left to right all
DLAB terms

p(tl,...,ti,Min--Mcw::[Ll,...,Ln],ti+2,...,tm),with
Min~-Mar : [p(tl,...,tq;,Ll,ti+2,...,tm),...,p(tl,...,ti,Lﬂ,,ti+2,...,tnL)] .

When applied subsequently, these two algorithms transfdPmas grammaig = (7, V)
into (G',0), whereg’ is an equivalenDLAB® grammar.

For a demonstration of the power Bi.AB® andDLAB we refer to the experiments in
Section 5.

4.5. Quantifying Validity

There are at least three reasons whyltugcal validity requirement should be quantified

and sometimes relaxed. First, when coping with real data, it is an illusion to find rules that
are valid on all of the observations. The same situation arises in discriminant induction
when trying to discriminate two classes of observations. As very often complete and
consistent hypotheses do not exist, discriminant induction allows to relax the completeness
and consistency requirements. It is therefore also of practical interest to see how the
validity requirement of characteristic induction from interpretations can be relaxed. This
corresponds to relaxing thein Mannila’s definition. Secondly, a quantified notion of
validity will also be useful to label the induced clauses, and to rank them according to
validity. Such a ranking is essential for expert evaluation and post-processing of discovered
rules. Thirdly, quantified notions of validity may turn out useful for heuristically searching
the space, cf. Section 4.6.

There are two natural ways to quantify validity. For the first one we introduce the
concept of non-trivial observations. The 68tC O of hon-trivial observations contains all
observations for which clausgs non-trivial (cf. non-triviality assumption in Section 3.2).

We can then relax the condition that clauses in hypotheses are vaditl observations,
and rather require validity on a certain percentage of all non-trivial observations. This can
be realized by setting’ A(c) larger than a fixed percentage.

Definition 11 (Global Accuracy) Let be a clause, le©’ be the non-trivial observations
for ¢, letpg(c) be the number of observations@ which are a model foe, let ng(c) be
the number of observations i1’ which are not a model foe. ThenGA(c), the global
accuracy of the clause is pg(c)/(pg(c) + ng(c)).

Global accuracy still requires that the clause is completely true on a number of observa-
tions. When the observations are incomplete, even global accuracy will be hard to obtain.
Furthermore, there is the special case of the framework, where only a single observation is
taken into account. This special case is important in a data mining context, as one often
deals with a single interpretation (in which various observations are mixed). Local accuracy,
which measures the degree to which a clause is true in an interpretation may offer a solution
in this case. Local accuracy employs the notions of positive and negative substitutions.

We first introduce the notions of positive and negative substitutions of a clause.
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Definition 12 (Positive and Negative Substitutionsy is a positive substitution for a
clauseps, ..., pm < q1, ..., ¢, Withm > 0, and observation®, if and only if 1)(p1, ..., pm

— q,-..,qn)0 is ground, 2) there exists an observatigne O such that (a)g; A ... Agp)0

is true and ground i, and (b)(p1 V ... V py,)@ is true ino;.

6 is a negative substitution if and only if it satisfies (1) and (2a) and does not satisfy (2b).

This definition should only be applied when the clause is range-restricted. From a practical
point of view, there are often problems when merely counting substitutions because there
is no direct correspondence guaranteed between what is being counted (substitutions) and
the entities the clause deals with (e.g. birds, or meshes, or molecules, ...). Secondly, the
above definition will result in problems when applying it to denials (i.e. clauses of the form
— q1,...,qn). Therefore it is often convenient to transform a clause

P1y-sPm < (41, ---,4n

where allp;, ¢; are logical atoms, into the following logically equivalent form

Pis s Pms 7Qit1y ooy Gn < 41, -5 44

before constructing positive and negative substitutions. The positive and negative substi-
tutions of the two clauses will not necessarily be the same. However, by appropriately
choosing the literalg, ..., ¢; it is possible that meaningful entities are counted. In the
CLAUDIEN implementation, the user is offered the possibility of specifying which literals
to consider in the body of the clause and which ones in the head, when considering positive
and negative substitutions.

By now we can define local accuracy.

Definition 13 (Local Accuracy) Let be a clause, le© be the observations considered,
let pl(c) be the number of positive substitutions éotet ni(c) be the number of negative
substitutions for. ThenL A(c), the local accuracy of the clauseispl(c)/(nl(c) 4+ pl(c)).

Again, validity can be relaxed by settidg4(c) larger than a fixed percentage.

In data mining, one often labels the induced rules with information indicating accuracy
of the rule and in how many cases it applies, i.e. the coverage. The above notions of
accuracy are useful as an accuracy label of clauses. The following notions of global and
local coverage will be used as coverage labels of clauses.

Definition 14 (Global Coverage) Le©’ be the non-trivial observations far, let pg(c)
andng(c) be computed w.rt. the observatiofs. Then the global coverage of a clause

GC(c) = pg(c) +ng(c).

The reason for restricting the attention to those observations for which the clause is non-
trivial is that otherwise all clauses will have a global coverage equal to the number of
observations. When applying global coverage to valid denials, the coverage will be 0, by
Definitions 3.2.1 and 14 of non-triviality and global coverage. Therefore, in that case one
should first apply the clause transformation introduced above.
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Definition 15 (Local Coverage) The local coverage of a claugg(c) = pl(c) + nl(c).

The notions accuracy and coverage are related to the confidence and support thresholds
used in the literature on discovery of association rules in large databases(Agtaalal
1993).

4.6. Heuristics

Discriminant approaches employ various types of heuristics to guide the search towards
those clauses that best discriminate the positive from the negative examples, or to prune
clauses from the search space. Various heuristics have been proposed, e.g. information
content (Quinlan, 1990), minimal length description (Srinivasal., 1992), accuracy es-
timates (Lavra'& DZeroski, 1994), etc.

Our induction framework can easily adapt these heuristics using the measures of valid-
ity defined in the previous subsection. More specifically, whereas discriminant induction
heuristics are based on the proportions of positive and negative examples, clausal discovery
can use the notions of positive and negative substitutidrdni, or alternatively, the
number of positive and negative observatippsandng. Given a clause, a set of obser-
vationsO, and a background theory, one can now basically employ all favourite heuristics.
One only has to substitute our numbers in the well-known formulae. This procedure works
for evaluating clauses as well as for evaluating refinement steps. An example of a the first
type of heuristic is accuracy, and of the second type of heuristic, entropy as apglied.in
(Quinlan, 1990). Many other heuristics are known in the literature, for an overview see
(Lavrac & DZeroski, 1994) and (KiSgen, 1996).

As clausal discovery aims at a maximally general hypothesis, and the number of clauses
in such a maximally general hypothesis may be very large, characteristic induction proce-
dures should try to discover as many interesting clauses as possible using a limited amount
of resources. Indeed, as resources are always limited (one cannot search forever), clausal
discovery heuristics should employ heuristics of the first type, focusing on the most inter-
esting clauses first. Using heuristics and limited resources (whether time or space), certain
unpromising parts of the search space may not be considered. This leads to the view that
characteristic induction procedures shouldabg timealgorithms, i.e. algorithms that are
able to find approximate solutions in any time, and improve upon those (by discovering
more clauses) when more resources are available.

In the experiments with th€LAUDIEN system we will mainly employ the following
heuristic (based on the minimal description length principi) + n) wherep accounts
for the positive substitutions or interpretationsfor the negative ones, arids the clause
length, computed as the number of literals in the clause tested. The heuristic is then
combined with the local or global measures provided earlier. It is merely used to order the
clauses on the queue, implementing an any time algorithm. Though the heuristic works fine
in practice, it is unclear whether it is the most adequate one. Other well-known heuristics
from the data mining paradigm could also be employed (cfogEn, 1996)).
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5. Applications of Clausal Discovery

The distinction between characteristic and discriminant induction discussed in Section 3
cascades to the level of the presentation of experimental results. For discriminating learners
there is a standard two-phased assessment method in which classification rules learnt in a
training stage are tested on (unseen) data. The quality of the system is typically associated
with the percentage of successful class predictions. The domain of clausal discovery (as
well as data mining in general) lacks such a clear cut evaluation criterion. The main goalisto
discoverinterestingproperties, buinterestingness in general hard to quantify, subjective

and dated. Even worse, contrary to classification accuracy, which is based on elementary
statistics, it can only be judged upon by an expert in the application domain.

An alternative evaluation criterion for discovery systems is then based on the iterative
nature of the knowledge discovery process. Feedback from the domain expert will often
trigger new, slightly altered experiments. Discovery systems that are highly tunable and
versatile are better prepared to take this kind of feedback into account, and thmerare
likely to produce interesting output in the end. Our aim in this section is then to give a
flavour of the tunability and versatility ¢f. AUDIEN. We will demonstrate hoWLAUDIEN
can solve different discovery tasks, and how the system can be tuned to discover different
types of rules in the same dataset. All tests were done on a SPARCserver1000.

5.1. Clausal discovery for data mining

One of the popular subjects in the field of knowledge discovery in databases is to induce large
sets of rules of a particular type or syntax, cf. Mannila’s definition of data mining in Section
3.2.3. The types of rules considered include: functional and multivalued dependencies
(see e.g. (Flach, 1993, Savnik & Flach, 1993, Kanatlal,, 1992)), determinations (see

e.g. (Schlimmer, 1991, Shen, 1992)), association rules (cf. (Agretved] 1993)), and
strong rules (cf. (Piatetsky-Shapiro, 1991)). Various special purpose algorithms have been
developed to handle the different types of rules. However, it turns out that because of the
expressiveness of first order logic and ieaB formalism of CLAUDIEN, many of the

tasks performed by these special purpose algorithms can be reformulated in terms of the
CLAUDIEN framework. As a consequence, the task performed by these algorithms is a
special case of that performed 8By AUDIEN.

Let us first provide evidence for this claim, and then discuss its implications and restric-
tions.

We start by showing hoWwLAUDIEN can induce functional and multi-valued dependen-
cies on an example that is due to Flach (Flach, 1993). W€ramwDIEN on the following
data from Flach (the tertmain(F'rom, Hour, Min,To) denotes that there is a train from
Fromto To attime Hour, Min):
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train(utrecht,8,8,den-bosch) train(tilburg,8,10,tilburg)
train(maastricht,8,10,weert) train(utrecht,8,25,den-bosch)
train(utrecht,9,8,den-bosch) train(tilburg,9,10,tilburg)
train(maastricht,9,10,weert) train(utrecht,9,25,den-bosch)

train(utrecht,8,13,eindhoven-bkin) train(tilburg,8,17,eindhoven-bkin)
train(utrecht,8,43,eindhoven-bkin)  train(tilburg,8,47,eindhoven-bkin)
train(utrecht,9,13,eindhoven-bkin)  train(tilburg,9,17,eindhoven-bkin)
train(utrecht,9,43,eindhoven-bkin) train(tilburg,9,47,eindhoven-bkin)
train(utrecht,8,31,utrecht)

usingDLAB grammar(train_temps, §):

train_temps = {1-1 : [Froml = From2, Hourl = Hour2, Minl = Min2, Tol = To2]
<m
len-len : [train(From1,Hour1,Min1,Tol,Platl),
train(From2,Hour2,Min2,To2,Plat2),
O-len:[From1 = From2, Hourl = Hour2,
Minl = Min2, Tol = To2]

}
CLAUDIEN found (as Flach’'$NDEX) the following two dependencies:

Froml = From2 <-- train(From1,Hourl,Min1,Tol),train(From2,Hour2,Min2,To2),
Tol=To2,Min1=Min2

Froml = From2 <-- train(From1,Hourl,Min1,Tol),train(From2,Hour2,Min2,To2),
From1=From2,Min1=Min2

It is straightforward to writeDLAB statements that would find only determinations of
theformP(X,Y) — Q(X, Z), R(Z,Y) (as (Shen, 1992)), determinations as (Schlimmer,
1991) and multivalued dependencies as in (Flach, 1993).

Very popular in the data mining literature are association rules. Association rules are
defined over a single relation composed of a set of attribit@ser the binary domain
{0,1}. An association rule is then of the for = Y whereX C RandY C (R — X).
Typically, one is interested in all association rutder which LA(c) > ¢ andLC/(c) > 7,
for a certain threshold. Using local validity and the following typelafaB declaration,
CLAUDIEN would also solve the problem of finding association rules. Phes declaration
(assoc_temps, assoc_vars) assumes that the relation under consideration is r with arity
‘=" denotes unification, and further that each attribute can have only two values: 0 and 1.
The statement can be trivially generalized when an attribute can have more or other values.
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assoc_temps = {
{(X1, ..., Xn) = (Y1, ... ,Yn)
e
len-len:
[r(X1, ... , Xn),
1-1:[len-len:[Y1 = bit,
0-len:[1-1:[X2,Y2],1-1:[X3,Y3],...,1-1:[Xn,Yn]] = bit
1
len-len:[Y2 = bit,
0-len:[1-1:[X1,Y1],1-1:[X3,Y3],...,1-1:[Xn,Yn]] = bit
]

ién-len:[Yn = bit,
0-len:[1-1:[X1,Y1],1-1:[X2,Y3],...,1-1:[Xn-1,Yn-1]] = bit
1
]
}

assoc_vars = {dlab_variable(bit, 1-1, [0,1]}

The DrLAB statement will allow at most one literal per attribute in the body of the
clause. If the literal is of the form X=value, then it occurs in tkiepart of the associ-
ation ruleX =Y, otherwise in th&” part. A clause generated by tHi%.AB grammar
could be e.g.(X1,X2, X3, X4) = (Y1,Y2,Y3,Y4) — r(X1,X2,X3,X4), X1 =0,

Y2 =1,Y4 = 0 denoting the association ru1 =0=Y2=1AY4 =0.

Strong rules (Piatetsky-Shapiro, 1991) can be defined in a similar way. Facilities offered

by CLAUDIEN to prune potentially large sets of association rules include:

e increase thd.A(c) threshold
e increase thd.C(c) threshold

e make theDLAB template more specific

These examples clearly illustrate tBataubpieN can perform many of the tasks addressed
in the data mining literature. We therefore believe iakunpIiEN should be considered
as a general purpose data mining environment and framework, which can be used for
reasoning about and experimenting with various data mining problems. Of course, data
mining research has always aimed at coping with large data sets in an efficient way, leading
to very fast algorithms. As there is a general trade-off between generality of systems and
their efficiency,CLAUDIEN cannot be expected to solve the above data mining problems
as efficient as the best data mining algorithms. Nevertheless, we believe (and the other
experiments in this section confirm our belief) tlataUDIEN is reasonably efficient and
can cope with reasonably large data sets. Furthermore, though data mining has focused
on handling large data sets, inductive logic programming has focused on searching large
hypotheses spaces.
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5.2. Recovering program loop invariants

A standard method for the design and development of program loops is based on the list of
relations between variable values which remain invariant during the repetition. Such a list

of invariant relations fully captures the behaviour of loops and as such provides a key to their
understanding and to proving their correctness. We here demonstrate Rowien can re-

cover this type of specifications from program traces (see also (Bratko & Grobelnik, 1993)).

function Product
inputs : x, y: positive integers,
outputs : z: the product ofc andy

z=0u=z;vi=y;
while { (u # 0) do
if odd(u) then z := 2 + v;
u = udiv 2;
=2x%v
endwhile
return z
endfunction

Figure 2. An algorithm for calculating the product of two positive integers

To generate data for this experiment we ran the algorithm in Figure 2 121 times, with
inputsz, y varying between 0 and 10. During each run we recorded at each iteration the
values ofz, u, v at positiont preceding the test: # 0) of the loop. We thus produced
121 observations with a single fabtput(z(X),y(Y)) and a varying number of facts
trace(z(Z),u(U),v(V)). A sample of these observations is given in Table 2.

Table 2.Sample observations in the invariant relations application

observation 1 observation 2 observation 3
. wmnput(x(9),y(10
;nput(z( ), 4(6)) (6 trsce((z((O)) y(( )))(10))
input(z(0), y(0)) t:ZZEEzEe‘; E3; 51)2))) trace(=(10), u(4), v(20))
trace OO O trace(=(18), u(t) o2 | recet=ch V)
trace(z(42), u(0), v(48)) trace(z(90),u(0), v(160))

With theDLAB grammar(ir_temps, ir_vars) shown in Figure 3CLAUDIEN discovered
the following two invariant relations:

U >= 0 <-- input(x(X),y(Y)), trace(z(Z),u(U),v(V))
Term = XY <-- input(x(X),y(Y)), trace(z(Z),u(U),v(V)),
XY is X*Y, _TermisZ+ U?*V
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ir_temps = {0-1:[compare(U, 0), _Term = XY]
<--
len-len:[input(x(X), y(Y)),
trace(z(2), u(U), v(V)),
O-len:;[XY i s X * Y,

1-1:[Term i s Z + U,

Term is Z + V,
Term is Z + U + V,
Termis Z * U + V,
Termis Z + U * V
Termis Z *V + U
Termis Z* U *V

] ] ]
}
ir_vars = {dlab_variable(compare, 1-1, [<, >, =, =<, >=]}

Figure 3. A DLAB grammar for the invariant relations application

which is equivalent tdz + u = v = x * y) A (u > 0). Notice that if this relation is indeed
invariant at position;, then whenever the loop terminates @n= 0, the intended final
relationz = x * y holds.

This application demonstrates thaitAUDIEN is able to handle structured terms (e.g.
Z + U x V). Though, in this experiment built-in predicates were employed, similar results
would have been obtained using the pbBmeoLoc notation for natural numbers, i.e. using
0 and the successor functor.

5.3. Finite element mesh-design

One standard benchmark for inductive logic programming systems operating under the
discriminant setting, is that of learning finite element mesh-design (see e.gsalD&I”
Muggleton, 1992, Lavia& DZeroski, 1994)). Here we will address the same learning
task. However, whereas the other approaches require positive as well as negative examples,
CLAUDIEN needs only the positive. Secondly, the other approaches employ Michalski’s
covering algorithm, where the aim is to find hypotheses that cover each positive example
once.CLAUDIEN follows an alternative approach, as it merely looks for valid rules. There
is therefore no guarantee that hypotheses foun@drbypien will cover all positives and
also a hypothesis may cover a positive example several times. We believel our
experiments in mesh-design shevthat when the data are sparse,dhe unIEN approach
may be preferrable.

The original mesh-application contains data about 5 different structures (a-e), with the
number of edges per structure varying between 28 and 96. There are 278 positive ex-
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amples (and 2840 negative ones) and the original background theory contains 1872 facts.
The original background theory was made determinate (becaudédhem system of
(Muggleton & Feng, 1990) cannot work with indeterminate clauses)C1AsJDIEN does

not suffer from this restriction, we could compact the database to 639 (equivalent) facts.
An example of a positive example isesh(b11,6) meaning that edge 11 of structure
should be divided ifs subedges. Background knowledge contains information about edge
types, boundary conditions, loading, and the geometry of the structure. Some of the facts
are shown below:

Edge types long(bl9), short(b10), notimportant(b2), shortforhole(b28),
hal f circuit(b3), hal f circuithole(bl)

Boundary conditionsfized(bl), twoside fized(b6)

Loading notloaded(bl), contloaded(b22)

Geometry neighbour (b1, b2), opposite(bl, b3), same(bl, b3)

We ranCLAUDIEN on this data-set using a slightly different but equivalent representa-
tion for examples, using the leave-one-out strategy. All data were put into one observation.
Counts of local accuracfA(c) and local coveragéC/(c) were done w.r.t. to the literal
mesh(E, R). Further settings include:

search strategy: best first
heuristic:p/(I + n)

LA(c) threshold: 0.9

LC(c) threshold: 2

DLAB grammar: see Figure 4

The DLAB grammar in Figure 4 defines a language of abb@t« 107 rules. The an-
tecedents of these rules specify at least the type, boundary conditions, loading or resolution
of the edges that occur in the rule. Moreover, if two edges occur, the antecedent specifies
their topology. The power of thPLAB formalism is thus used to prevent the generation of
a large class of uninteresting rules.

On averag€LAUDIEN halted after 7972 cpu seconds, visited 48534 nodes, which corre-
sponds to about.01%, of the total search space, and discovered 495 valid rules. The high
number of solutions can be explained by the Ib@(c) threshold.

In accordance to the any time characteCoRUDIEN, the discovered rules were tested
against the structure left out at regular cpu time intervals. In cases where more than one rule
applied, the earliest found rule with the highest heuristic value was preferred. In Figure 5
the percentage of correct predictions is plotted against cpu time elapsed. Notice the quality
of the theory improves more or less logarithmically. Figure 5 also shows resulisfiarm
andFoIL as they are reported in (Law& DZeroski, 1994).

We believe the results of these tests are very encouraging because the rules learned
by CLAUDIEN have by far the best classification accuracy and also because the cpu-
requirements o LAUDIEN are of the same order as those by the other systems. The
high classification accuracy can be explained by the sparseness of the data and the non-
covering approacht'or, andGoLEM are implemented in C, ar@LAUDIEN in PROLOG.
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The experiment clearly shows that an any time algorithm (implemented@L.oc) is not
necessarily slower than a covering approach. (Part of) a possible explanation for this may
be thatCLAUDIEN is the only system that does not need to employ the (large number) of
negative examples.

5.4. Mutagenesis

To illustrate the scientific discovery potential@fAUDIEN we selected a problem from the
field of organic chemistry which was recently brought to the attention of the inductive logic
programming community by the Oxford University Computing Laboratory, in collabora-
tion with the London Biomolecular Modelling Laboratory (Srinivagdral, 1995b). An
observation here corresponds to a nitroaromatic compound with an associated mutagenicity
value. There are 188 observations, 125 of which are labelled “active”, meaning they have
high mutagenicity. The observations further listinformation on atom and bond structures, a
measure of hydrophobicitydgp), the energy of the compound’s lowest unoccupied molec-
ular orbital (umo), and generic structural characteristics. For more details we refer to
(Srinivasaret al,, 1995b).

So far experiments have focused on finding theories that discriminate between active
and inactive compounds. For instance, withocorL (Muggleton, 1995) a predictive

mesh_temps =
{R = resolution
<
len-len:[ mesh(E,R),
1-len: [type(E),boundary(E),loading(E)],
O-len: [len-len: [geometry(E,E2),
1-len: [mesh(E2,resolution),
type(E2),boundary(E2),loading(E2)
] ] ] ]
}

mesh_vars =
{dlab_variable(resolution,1-1,[1,2,3,4,5,6,7,8,9,10,11,12,17]),
dlab_variable(type,1-1,[long,usual,short,circuit,half_circuit,
quarter_circuit,short_for_hole,long_for_hole,
circuit_hole,half_circuit_hole,notimportant]),
dlab_variable(boundary,1-1,[free,one_side_fixed,two_side_fixed,
fixed]),
dlab_variable(loading,1-1,[noload,one_side_loaded,two_side_loaded,
cont_loaded]),
dlab_variable(geometry,1-1,[neighbour,opp,eq])}

Figure 4. A DLAB grammar for the mesh application




130 L. DE RAEDT AND L. DEHASPE

45

claudien —
foil o
40 golem + A

percentage correct

0 L L L
1 10 100 1000 10000
cpu tine (s)

Figure 5. ComparingCLAUDIEN to FoiL andGOLEM.

accuracy of 0.88 was obtained from a 10-fold cross-validation (Sriniveisaly 1995a).
Despite the classification oriented approachraibcoL, the most interesting outcome of

the experiments of the Oxford - London teanmist a classification criterion, but rather

a new structural alert for mutagenic compounds. The new structural alert encodes one of
the rules found byProcoL. However, aPrROGOL aims at classification, it is interested

in as short a hypothesis as possible, implying that it aims at a minimal number of rules.
Indeed, according to Michalski’s covering approach, if a positive example is covered once
by a rule in the hypothesis, it is no longer considered. Because of this, greedy classification
algorithms may miss alternative explanations of the same dataupien performing
essentially an informed exhaustive search, will not miss such alternative explanations.

To test this hypothesis, we r@hLAUDIEN on the mutagenisis problem with the aim of
finding as much regularities of high accuracy and coverage as possible. THeLfull
grammar for this task can be found in Appendix C. We here mention only a special feature
# borrowed fromProGoOL to generate thresholds for the valdesp, lumo, and atomic
charge. Clauses output B9LAB contain bodyliterals such ageteq(logp, LP, #(T)),
where, before validity of the clause is calculatg¢dl") is replaced by a constant such that
the clause is non-trivially valid in at least one observation.

A sample of the results is shown below and was obtained in several rihs\ObIEN,
with a best-first search, with heuristi¢(I +n), sometimes with slight variants of ti&.AB
grammar, sometimes with alternative thresholdsdot(c) andGC/(c). We ran first ran
CLAUDIEN with settingsGA(c) > 0.9 andGC(c) > 80. In 90 cpu seconds, 35 rules were
discovered, all variants of the following two:

active <-- lumo(Lumo) , Iteq(lumo,Lumo,-1.62)
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(accuracy: 0.9, coverage: 90)

active <-- not methyl(SP) , logp(LP) , gteq(logp,LP,3)
(accuracy: 0.9, coverage: 103)

We then lowered th&/C(c) threshold to 70. In two short subsequent runs, first with
tests on thresholds fdogp, lumo, and atomic charge disallowed, then with the struc-
tural characteristienethyl removed from the language, two alternative explanations were
discovered:

active <-- not methyl(SP) , atom(Al,Elem1,Typel,Chargel) , Typel = 27,
atom(A2,Elem2,Type2,Charge2), bond(A1,A2,7)
(accuracy: 0.91, coverage: 76)

active <-- benzene(SP),atom(Al,Elem1,Typel,Chargel),Typel = 27,
Iteq(charge,Charge1,0.006)
(accuracy: 0.93, coverage: 70)

The underlying idea here is that the insights of one run, can be used in the nextrun. E.g. if
thenot methykondition was allowed, nearly all rules discovered contained that condition.
By excluding this condition, alternative explanations were found. Thus, the expert can and
should guide the discovery process.

5.5. River water quality

The next application is taken from the domain of environmental monitoriagi@skiet al.,
1994) (see also (EEroski, 1995)). The goal here is to capture the expertise of an expert river
ecologist who classified 292 field samples of benthic communities from British Midland
Rivers. Each sample is described by means of the abundances (recorded on a scale of 0 to
6) of eighty different microinvertebrate families. The expert classified the samples into five
classes.

In a first experiment we limited ourselves to discovering characteristics of poorest quality
water. A simplified version of th®1LAB grammar used is shown in Figure 6.

The size of the actual language used was of or@¥&t. The accuracy threshold f6tA(c)
was set to 1, but we used an extra featuréwfupieN to list (but not prune) all rules with
accuracy above a lower accuracy level set to 0.3. \2H of the samples belonging to
water quality class 0, the idea here was to delineate subgroups of water samples with a
percentage of class 0 above average. Other relevant settings were:

search strategy: best first
heuristic:p/(I + n)
GC(c) threshold: 10

We ranCLAUDIEN for about 1500 cpu seconds. In this period 2752 rules were discovered.
After post-processing, we derived chains of the following type, where the addition of extra
conditions on each new line leads to an increas@ 4fc) and a decrease 6fC'(c).
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eco_temps = {class(0)
<=
O-len:[len-len:[ancylidae(Al),
0-1:[compare(abundance,Al)]],
len-len:[asellidae(A2),
0-1:[compare(abundance,A2)]],

len-len:[veliidae(A80),
0-1:[compare(abundance,A80)]]

}

eco_vars = {dlab_variable(compare, 1-1, [=,<,>],
dlab_variable(abundance, 1-1, [0,1,2,3,4,5,6]}

Figure 6. A DLAB grammar for the river water quality application

GA(c) GC(e)
class(0) if true, 0.20 292
heptageniidae(D32), 0.69 75
hydropsychidae(D37), 0.73 49

oligochaeta(D54), 0.74 46
perlodidae(D57), 0.89 35
rhyacophilidae(D69), 0.93 29
tipulidae(D76), 0.96 26
D76 =2 1 17

This setting where low accuracy rules are shown but not pruned, seems particularly
interesting in cases where no rules with both high accuracy and high coverage are to be
expected, for instance when sufficient conditions have to be discovered for the occurrence
of rare “faults” in processes, machines, or human beings.

For a second experiment with the river quality data, we turned the lower accuracy facility
off, setGA(c) to 0.95, and modified the language such that rules could cover more than

one class:

eco_temps = {class(1-2:[0,1,2,3,4])
<Lam

!

“In a search space, now of ordél’”, CLAUDIEN discovered 49 rules in 24 hours of cpu
time. For instance,
class(2) <-- asellidae(A2), chironomidae(All), gammaridae(A26),

A26 = 2, lymnaeidae(A46)
(accuracy: 0.96, coverage: 28)
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class(2), class(3) <-- asellidae(A2), glossiphoniidae(A28), physidae(A59)
(accuracy: 0.95, coverage: 22)

Ten of these rules have the disjunctidiass(2), class(3) in the head, the others only
class(2). After we eliminated the abundance level tests, and lowered'thg) threshold
to 0.9,CrauDpIEN discovered the following two rules with class disjunction within 20 cpu
seconds:

class(2), class(3) <-- physidae(A59), tubificidae(A77)
(accuracy: 0.9, coverage: 40)

class(2), class(3) <-- asellidae(D2), physidae(D59)
(accuracy: 0.92, coverage: 39)

Finally, we removediass(2) from the language, and raised €’ (c) threshold to 30.
In this modified settingCLAUDIEN discovered 65 rules within 14 hours of cpu time, three
of which are shown below:

class(0), class(l) <-- perlodidae(D57)
(accuracy: 1, coverage: 57)

class(0), class(l) <-- elminthidae(D21) , tubificidae(D77)
(accuracy(0.9), coverage: 80)

class(0), class(l) <-- heptageniidae(D32)
(accuracy: 1, coverage: 75)

In a similar experiment reported in g@roskiet al,, 1994) class disjunction turned out to
be the main reason why domain experts judgedUDIEN rules to be the most intuitive
and promising, as compared to rules discovered by an extended version of the propositional
learner CN2 (Clark & Niblett, 1989, groskiet al, 1993) andGoLEM. This experiment
illustratesCLAUDIEN can also be applied when class boundaries are vague or based on a
discretisation of a continuous space. If permitted by/?he B bias,CLAUDIEN will attempt
to disjunctively combine classes to construct valid rules. An analysis of the discovered
hypothesis might then inspire the expert to introduce new (super)classes for frequent class
combinations.

5.6. ParallelCLAUDIEN

In the final experiment, our aim was to measure and compare the speed at which sequential
and paralleCLAUDIEN traverse the same hypothesis space. We tuned the mesh and ecology
experiments such that in an exhaustive€unUnIEN visited about 120000 nodes. We then
ran CLAUDIEN using a depth-first search strategy with 1, 2, 4, 8, and 16 processes. With
each tested clause, and again with each solution found, we recorded the consumed cpu time
in second$.

Theresults of runningLaubpiEN with 1, 2, 4, 8, and 16 processes are reported in Figure 7.
In the charts on top, the values on the y-axis are the number of explored nodes.thie
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degree of concurrency, amdplored(p, t) the number of nodes explored by procgssdter

p has consumedcpu seconds, thep = f(t) = 22:1 explored(p,t). The clauses that
were found to be valid are marked with a diamond. A separate chart with the number of
solutions is presented in the lower half of Figure 7.

MESH DATA ECOLOGY DATA
120000 g — 140000
; :
I / og o
; 120000 § 4 e W
100000 4 A § 4 iy
w” L8 Y 4 8 ’ s
2 S s £ 100000 #
§ 80000 1 § ’ g l’ y /
= 198 . W serial — 2 80000 / rial
° 50000 -2 e parallel -2 - o ' 4 parallel-2 —
° ! hE paral el -4 ° e parailel-4 -
5 §0 ; /"’/ parallel -8 5 60000 , parailel-
S 40000 - parallel-16 - = b paral fel-16 ---
3 ; 3
3 8,}, sofutions o S 40000 @5 ol-uti-on
s A
20000 s 20000 B,
0 0
0 2000 4000 6000 8000 10000 12000 14000 0 500 1000 1500 2000 2500 3000 3500 4000
cpu tinme (s) cpu tine (s)
MESH DATA ECOLOGY DATA
70 300
5 ; r / i -
60 ‘,‘ = / 250 |4 ; 7
1 v
50 fbe Ry /—
» { » 200 ! i
5 a0 fi 5 : P
= ! = 150 Lot r-al
5 - E i ;
- 30 f e = ! J paraklel -2 ----
R S - - J serial — 3 i ’I_’/_’ paraflel -4 -
20 i - parallel-2 - il T VA e ki Hhott
J/,_/—/—J parallel -4 - E paraliel-16 ---
1 parallel -8 -
10 parar el =16 === 50 P
0 o &
0 2000 4000 6000 8000 10000 12000 14000 0 500 1000 1500 2000 2500 3000 3500 4000

cpu tinme (s) cpu tine (s)

Figure 7. Results of the experiment with paraltél AuDIEN

The results shown in Figure 7 indicate that for up to 16 processes, the speedup is approx-
imately proportional to the number of processes executing the task: the consumed cpu time
is roughly halved each time the number of processes is doubled.

An important question related to the results of our experiments with pafallefpiEN
is how long we can go on adding new processes to reduce the consumed cpu time. Apart
from obvious hardware restrictiols there are mainly two software related limitations we
should take into account when trying to solve this question.

The first, application-dependent, upper boundary on the degree of concurrency stems from
the fact that a (near) linear speedup can only be obtained if all processes are more or less
constantly working on a subtask, i.e. if most of the time there are enough sublandyages
available. The maximal number of candidate sublanguages available at a given time equals
the total size of all local queu&gC' (see Figure A.1) and is related to the application-specific
average branching factor. It is for instance easy to see that in the extreme case where the
branching factor equals 1, concurrency will produce no speedup at all.

Secondly, interprocess communication requires a certain amount of computational over-
head. If this overhead increases with the degree of concurrency, as it does witdiaur
implementation of parallefLAUDIEN, there will be a point where adding more processes
is useless, or even counter-productive in terms of consumed cpu time.
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6. Related Work

The clausal discovery engine presented here is related to data mining research, semantics
for induction and inductive logic programming.

First, the techniques presented fit in an attempt to upgrade the data mining paradigm to
considering multiple relations (cf. @@foski, 1995)). Evidence for this claim was provided
by showing how the semantics for characterizing induction from interpretations fits in Man-
nila’s general framework for data mining as well as by showing&hatypien can emulate
many of the existing data mining systems. The emulations also demonstrate the generality
of afirst order clausal discovery engine as compared to propositional ones. As we discussed,
the price to pay for generality and for expressive power, is a potential loss in efficiency on
specific tasks. HoweveLAUDIEN was shown not only to be able to search complex
and vast hypotheses spaces, but also to handle reasonably large data sets. Furthermore,
the task addressed By.AUDIEN is PAC-learnable (cf. (De Raedt &4@foski, 1994)), and
the implemented engine is much more efficient than the naive algorithm used to prove the
PAC-learning results. ThugLAUDIEN should not be considered inefficient.

Secondly, the presented work also contributes to the semantics for induction. More
specifically, it adopts the frameworks by (De Raedt &dboski, 1994) and (Helft, 1989).

It generalizes the work of Helft by the use of multiple observations (and models) as well as
the use of Herbrand interpretations. Furthermore, it discusses many variants, options and
extensions of the pure logical view of Helft and De Raedt amdrDski.

Thirdly, clausal discovery is also a contribution to the field of inductive logic program-
ming, in that it shows how a slightly different formalisation of induction within logic
programming results in new possibilities and challenges for inductive logic programming.
One important contribution in this respect is the extension from definite clause logic to full
clausal logic made possible by the novel semantics.

7. Conclusions

We have presented a clausal discovery engine based on a novel semantics for induction for
use in a data mining setting. Theoretical properties of the engine as well as experiments
with the engine were presented. A key ingredient of the engine was a declarative language
bias formalism, with a corresponding refinement operator.

The clausal discovery engine and theory can be extended in various directions. First, it
would be interesting to see how it can handle incompletely specified observations (using
partial models). Secondly, how it can perform discriminating induction. A step in this di-
rection was already taken by (De Raedt & Van Laer, 1995). Thirdly, it would be interesting
to see how the engine can be coupled to a relational database system and evaluate its per-
formance on huge data bases. Finally, we wonder whether the clausal logic representation
can be extended towards full first order logic.

We hope that the presented framework will provide a sound basis for combining data
mining principles with inductive logic programming.



136 L. DE RAEDT AND L. DEHASPE

Acknowledgments

We would like to thank Ss0 DZeroski and Maurice Bruynooghe for their involvement in
the research that finally lead to this paper. Further discussions with Nada| Stephen
Muggleton and Peter Flach proved to be very fruitful. Bojan DolsakpS2eroski and
Ashwin Srinivasan generously provided the mesh, ecology and mutagenisis data used in
the experiments. Patrick Weemeeuw and Bart Demoen provided advice on the parallel
implementation of LAUDIEN. We also thank Wim Van Laer for his significant contribution
to the implementation afLAUDIEN, and for his comments on this paper. Finally, Hendrik
Blockeel as well as a (large) number of master’s students experimented with earlier versions
of theCLAUDIEN implementation.

Luc De Raedt is supported by the Belgian National Fund for Scientific Research and by
the ESPRIT projects no. 6020 and 20237 on Inductive Logic Programming and Inductive
Logic Programming Il.



CLAUSAL DISCOVERY 137
Appendix A
A parallel implementation

ParallelClausalDiscovery (see Algorithm A.1) is the main function of the parallel version
of the algorithm. The input parameterdetermines the degree of parallellism, i.e. the

function ParaClausalDiscovery
inputs : O: set of Closed observationB; background theory,
p: refinement operator, : number of processors
outputs : Characterizing Hypothesis

Q(1) ={o}
foralli€2...ndoQ(i) =0
H, :=fork(ParaCD(2))

H,, :=fork(ParaCD(n))
H, :=ParaCD(1)

H = UHZ'

reduce(H)

return H

endfunction

function ParaCD
inputs : p: name of processor,
outputs : Partial Confirmatory Hypothesis

Hy,:=0

while not Vi € 1...n: Q(i) = 0) do
whilenot (Vi € 1...n: Q(¢) = 0) and (Q(p) = 0) do skip
Queue := Q(p)
while Queue # () do

foralliel...n do‘ if Q(i) = 0 then move part of Queue to Q(ib

delete c from Queue
if ¢ iswvalid on O and notprunel(c)
then addc to H,
else for all¢’ € p(c) for which notprune2(c’)do addc’ to Queue
endif
endwhile
Q(p) =0
endwhile
return H,
endfunction

Figure A.1.A parallel clausal discovery algorithm
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maximal number of processes that will be executing concurrently. Processes exchange
information through the use of the shared varia@Qle. For each of the: processes,

this variable contains a queue equivalent to quéuim ClausalDiscovery. Initially, all
gueues inQ except the one of the first process are set to empty. The queue of the first
process is initialized to the top node of the hypothesis space,i.&he UNIX!'? inspired

fork instruction creates a newl{ild) process that will execute the call given as the single
argument off ork concurrently with the callinggaren) process. ParallelClausalDiscovery
calls ParaCDq times. Thefork instruction causes — 1 of these calls to be executed
concurrently with the parent processin- 1 newly created processes. All results are stored

in Hy ... H, and combined td{, which is ultimately returned as the solution.

The single input parametgiof ParaCD ranges between 1 andgnd identifies the present
process. Global variabl@(p) contains a queue of clauses that represents the root of the
subtree to be explored hy The outmost loop terminates the moment this queue is empty
for all processes. Atthat moment the local solutigpis returned and ParaCD stops. There
are two more nested loops. The first one terminates either if the same condition of the outer
loop is fulfilled or if the current process has received a new subtree. The body of this loop
is empty but for the do-nothing-instructictkip. After termination of this first inner loop,
Queue gets the value of)(p). The second inner loop is a near copy of ClausalDiscovery.
The only difference is that at the beginning of each €pdp searched for empty queues. If
such an empty queue is found on positi@amQ), proces® cedes part of its subtree to process
1 by moving part ofQueue to Q(¢). Which part ofQueue is moved will depend on the
search strategy chosen by the user (cf. parandetete in Figure 1). Animportant general
restriction is that thenoveinstruction should not be allowed to emgy.eue, as this might
result in a loop where the same subtask is passed round forever. From the nipmeant
contains no further candidates for refinemep(p) is set to empty in order to inform the
other processes that process ready to receive a new subtask, i.e. a new subtree.

In case common variables suchtaare used for interprocess communication the synchro-
nisation problem of mutual exclusion occubdutual exclusions concerned with ensuring
that a sequence of statements, calledtical section is treated as an indivisible operation
that can not be executed by more than one process at the same time. In ParaCD the boxes
mark two critical sections. They should prevent that two processes are simultaneously
writing to Q(¢) or that the incompleté)(p) is copied toQueue while it is being written by
some other process.

Itis easyto see that ParallelClausalDiscovery has the same behaviour as ClausalDiscovery.

Appendix B

A DLABP refinement operator

A refinement operatop (cf. Definition 4) for DLAB® is based on the observation that
clausesc in dlab_generate(DGRAM) are defined by a sequence of sublist selections
from DLAB® atoms occurring iDGRAM. If we enlarge one of these sublists then the
clausec’ D c defined by the new sequence is a specialisationuwiderf-subsumption.

If we somehow enlarge one sublist in a minimal way, thewill be a refinement, i.e. a
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maximally general specialisation@f. Toimplement this idea we adapt the definite clause
grammardiab_dcg in Definition 9 in three steps.

First, in order to formalize the above notion of a sequence of sublist selections, we add
to dlab_dcg an extra argument we will refer to as tia.AB® path. TheDLAB® path is
meant to keep track of applications of Rules (3) and (4jlib_dcg. The application of
these rules determines whether the flPstaB® atom in list L of Min --Max : L is either
skipped (Rule (3)) or included in the sublist (Rule (4)).

Definition 16 (DLAB® path) Let DATOM be aDLAB® atom, andC a list of literals
generated bydlab_dcg(DATOM). DPATH is a DLAB® path of C' with regard to
DATOM if and only if

e DATOM # Min--Max : LandDPATH = DATOM or

e DATOM = Min --Maz : [L1,...,L,) and DPATH = [Py, ..., P,], with, for
eachP, € DPATH,

— P, ==xand[L; is excluded during generation 6f (application of Rule (3)/(B.3)),
or

— P; is theDLAB® path of C' with regard toDLAB® atom L; and L; is included
during generation of” (application of Rule (4)/(B.4))

For instance,

DATOM =0--2: [gorilla(X),1--1: [female(X), male(X)]]
C = dlab_dcg(DATOM) | DLAB® path ofC with regard toD ATOM
[ [+, %]

[male(X)] [*, [, male(X)]]
[female(X) e, [female(X), 4]
[gorilla(X)] [gorilla(X), ]

[gorilla(X), male(X)] [gorilla(X), [*, male(X)]]
[gorilla(X), female(X)] [gorilla(X), [female(X), *]]

The following is an adaptation @fab_dcg, with theDLAB® path in the second argument
position.

dlab2(A,A) — [A],{A # Min--Max : L}. (B.1)

dlab2(Min --Maz : [|,[]) — {Min <0},][). (B.2)

dlab2(Min --Maz : [|L], [*]Y]) — dlab2(Min--Maz : L,Y). (B.3)
)

dlab2(Min --Maz : [A|L], [X]Y]) — {Maz > 0},dlab2(A, X),

dlab2((Min — 1) --«(Max — 1) : L,Y). (B.4)

In asecond step, we can usehieaB® pathD P of a list of literalsC to generate superlists
of C. Everyxin D P marks an occasion for extending In terms of Definition 16: we have
to locate aP; = x in D P indicating the correspondirBLAB® atomL; is excluded during
generation ofC' , and then includd.; during generation of superlists’ of C. Definite
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clause grammadiabs does that, and moreover returns ieaB® path D P’ of C’ in the
third argument position.

dlabs(---Maz : [, [l,[) — [ (B.5)
dlabs(_--Mazx : [A|L], [*|Y], [X|Z]) — {Mazx > 0}, dlab2(A, X),
dlabs(_--(Max — 1) : L,Y, Z). (B.6)
dlabs(---Max : [-|L], [*|Y], [*|Z]) — dlabs(---Max : L,Y, Z). (B.7)
dlabs(---Mazx : [A|L],[P|Y],[Q|Z]) — {P # x, Max > 0},dlabs(A, P,Q),
dlabs(_--(Max — 1) : L,Y, Z). (B.8)
dlabs(---Maz : [A|L], [X|Y],[X|Z]) — {X # %, Maz > 0},dlab2(A, X),
dlabs(---«(Max — 1) : L,Y, Z). (B.9)

Notice how in Rule (B.6) ofllabs the previously excluded (cf. thex in Arg2) is now
included with the call ofilab2(A, X'). For instance,

DATOM =0--3: [gorilla(X), female(X ), male(X)]
C = [female(X)]
DP = [*, female(X), #|
C" = dlabs(DATOM, DP, DP) DP
[gorilla(X), female(X), male(X)] | [gorilla(X), female(X), male(X)]

[gorilla(X), female(X)] [gorilla(X), female(X), *]
[female(X), male(X)] [x, female(X), male(X)]

[female(X)) [x, female(X), ]

The rulesinilabs can be used to find all specialisatiansf c. As we want our refinement
operator to generate only maximally general specialisationsafinal adaptation aflabs
is required such that it will generate only smallest superlists.oRoughly stated, exactly
onex in the DLAB® path DP of a list of literalsC should be expanded, and then only in
a minimal way. The first requirement, again in terms of Definition 16, says that we should
locate exactly oné’; = xin DP , and then includé.; during generation of superlists 6f.
The second requirement says that the inclusiof;aéhould be minimal in the sense that
the correspondin@LAB® path P/ should contain the maximally allowed numbersds.
For this we need a modified versiondif:b2, that, given é@DLAB® atomMin --Mazx : L,
will only generate sublists of length/in. The first requirement is realized ifiabr by
eliminating some recursive calls, the second by initialisation of the newly inclidead®
atom A with dlabi instead ofdlab2.

dlabr(Min --Maz : [A|L], [*|Y], [X|Y])

dlabr(Min --Maz : [-|L], [*|Y], [*| Z])
dlabr(Min --Max : [A|L], [X|Z],[Y|Z])

dlabr(Min - Maz : [A|L], [X|Y], [X|2))

{not(dlab_optimal, member(E,Y), E # %)},
{Maz > 0}, dlabi(A, X),

dlab2((Min — 1) --(Maz — 1) : L,Y). (B.10)
dlabr(Min --Max : L,Y, Z). (B.11)
{X # %, Max > 0}, dlabr(A, X,Y),
dlab2((Min — 1) --(Maz —1): L, Z). (B.12)
{X # %, Maz > 0}, dlab2(A, X),

dlabr((Min — 1) --(Maz — 1) : L,Y, Z).(B.13)
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dlabi(A, A) — [A],{not(A = Min--Max : L)}. (B.14)
dlabi(0 -+~ ) — [ (B.15)
dlabi(Min - : [A|L], [X|Y]) — dlabi(A, X),
dlabi((Min —1) --_: L,Y). (B.16)
dlabi(Min --_: [-|L], [*]Y]) — dlabi(Min--_: L,Y). (B.17)

Notice that Rule B.10 ofilabr contains an extra initial condition:
not(dlab_optimal, member(E,Y ), E # %)

A call to dlab_optimal should succeed, if we want the refinement operator to be optimal
(cf. Definition 5), and fail otherwise.

The extra condition ensures that when working in optimal mode, the refinement operator
will never expand’s to the left of already expandeds. For instance,

DATOM =0 -3 : [gorilla(X), female(X), male(X)]
C = [female(X)]
DP =[x, female(X), |

dlab_optimal | C' = dlabr(DATOM,DP, DP’) DP’
false [gorilla(X), female(X)) [gorilla(X), female(X), *]
[female(X), male(X)] [*, female(X), male(X)]
true [female(X), male(X)] [x, female(X), male(X)]

To further enforce optimality we have to make sure refinement of the head of a clause
blocks all future refinements of the body, or vice-vétsa

We can now formulate the definition of2LAB® refinement operator based on the twelve
definite clause grammar rules d@ffabr, dlabi, anddlab2.

Definition 17 (dlab_refine(DINFO,c)) Given

e DLAB® templateH A «— BA,

clausec = H « B, withc € dlab_generate({HA — BA})
e HP aDLAB® path of H with regard toH A,
e BP aDLAB® path of B with regard toB A,

DINFO = (HA, HP, BA, BP),

If dlab_optimal = false
dlab_refine(DINFO,c) = dlaborefh(DINFO, ¢) U dlab_re fb( DINFO, c)

If dlab_optimal = true
dlabrefine(DINFO,c) = dlabrefh((HA, HP,[],]]),¢) Udlab-refo(DINFO,c)
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dlabrefh((HA, HP,BA,BP),H «— B) =
{((HA,HP',BA,BP),H' «— B)|H' = dlabr(HA,HP, HP')}

dlab_refb((HA,HP,BA,BP),H «— B) =
{(HA, HP,BA, BP'), H «— B')|B' = dlabr(BA, BP, BP')}

Aninitialisation function that returns the most general clausésdompletes th®LAB®
refinement operator:

Definition 18 (dlab_initialize(DGRAM)) Let DGRAM be @LAB® grammar, then the
following function returns the top nodes in the refinement lattice:

dlab_initialize(DGRAM) = {dlab_refh(dlab_refb(DIN FO,0))]
(HA — BA) € DGRAM,
DINFO = (0--1: [HA] [#],0--1:[BA], [*])}

We are now ready to instantiate the refinement operator in the ClausalDiscovery algorithm
(see Figure 1) t@LAB®, with dlab_optimal = true. The basic idea is to store elements
of type (DINFO,c) in queueQ. As in practise queu€) often grows to a size above
10°, the explicit storage of nodé 1N FO, ¢) might quickly exhaust memory resources.
TheDLAB® formalism however allows for a straightforward optimisation, where only the
DLABP® paths are stored if) together with a pointer to tHBLAB® template. Corresponding
clauses can then be recovered usihgh2'®>. We then usellab_initialize( DGRAM) to
initialize @ to the most general element(s)@nanddlab_re fine(DIN FO, c) to calculate
refinements of the elements we retrieve frmn

Appendix C
A D1AB grammar for the mutagenesis application

muta_temps =
{active
<L mm
O-len:
[toggle(structural_property(SP)),
len-len:
[atom(Al, Eleml, Typel, Chargel),
0-len:[toggle(Eleml1=element),
toggle(Typel=atomtype),
occurs_in(Al, SP)
1
0-len:[len-len:[atom(A2, Elem2, Type2, Charge2),
0-len:[toggle(Elem2=element),
toggle(Type2=atomtype),
occurs_in(A2, SP),
bond(Al1, A2, 1-1: ,1,2,3,4,5,7)),
len-len:[atom(A3, Elem3, Type3, Charge3),
0-len:[toggle(Elem3=element),
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toggle(Type3=atomtype),

occurs_in(A3, SP),

bond(Al1, A3, 1-1:[ ,1,2,3,4,5,7]),

bond(A2, A3, 1-1:] ,1,2,3,4,5,7])
] | ] ] | 1

1-1:[eqtest(charge,1-1:[Chargel, Charge2, Charge3], #(T)),
len-len:[lumo(Lumo),eqtest(lumo,Lumo, #(T))],
len-len:[logp(LP),eqtest(logp,LP,#(T))]
1 ]

}

muta_vars =
{dlab_variable(eqtest,1 - 1,[lteq,gteq]),
dlab_variable(element,1 - 1,[h,c,n,o0,br,clf,i,s]),
dlab_variable(atomtype,1 - 1,[1,3,8,10,14,16,19,21,22,25,26,27,28,29,31,32,34,
35,36,38,40,41,42,45,49,50,51,52,72,92,93,94,
95,194,195,230,232)),
dlab_variable(structural_property,1 - 1,[nitro,carbon_6_ring,benzene,ring_size_6,
ring_size_5,phenanthrene,anthracene,ball3,
hetero_aromatic_5_ring,hetero_aromatic_6_ring,
carbon_5_aromatic_ring,methyl]),
dlab_variable(toggle,1 - 1,[call,not])
}

Notes

1. Details on how to obtai@LAUDIEN can be found on the World-Wide-Web at URL:
hitp : //www.cs.kuleuven.ac.be/ ml/CWIS/claudien — E.shtml
or by FTP access to:

ftp : /] ftp.cs.kuleuven.ac.be/pub/logic — prgm/ilp/claudien/claudien3.0/

2. Thereis some historical confusion in terminology here. Helft (Helft, 1989) introduced the term non-monotonic
induction, Flach first distinguished weak induction from strong or normal induction (Flach, 1992), but now
uses confirmatory and explanatory induction (Flach, 1994, Flach, 1995). Finally, though the setting by
(De Raedt & Xeroski, 1994) is a generalisation of Helft's setting, they also used the term non-monotonic.
The recent paper by (De Raedt, 1996) attempts to clarify this situation.

Notice that ‘valid’ does not mean ‘tautology’ here !

Itis also possible to use non-definite clause theories. However, then the minimal Herbrand model of the theory
may not be unique. Helft (Helft, 1989) shows how to deal with this situation.

One might as well use implication as a notion of generality, though this would be computationally harder.
6. DLAB is available as & ROLOG library at URL

http : //www.cs.kuleuwven.ac.be/ ml/CWIS/dlab — E.shtml
or by FTP access to:

ftp : /] ftp.cs.kuleuven.ac.be/pub/logic — prgm/ilp/dlab
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7. To simplify our definition of a generation function we here introduce (and will continue to use) a special list
notation in which the head and the body of clauses are written as[lists: . ., Ay,] < [Bi1, ..., Bn].

8. As a minor extension we will also alloRLAB® atoms of the typéfin --len : L orlen --len : L, where
len is a constant symbol that abbreviatesgth(L).

9. As cpu time was measured, we could test parglielupien with degrees above 4 on a machine with only
4 processors. It should be kept in mind however that the speedups here reported will only correspond to real
time speedups if a separate processor is dedicated to all concurrent processes.

10. Remember that we assume every process can execute on a separate processor. If not enough processors are
available, they have to be switched between processes. By ever increasing the number of processes scheduled
for a single processor we will finally overload the operating system.

11. More sophisticated systems for interprocess communication exist, but for reasons of simplicity we will continue
to use the most general and basic constructs throughout.

12. UNIXTM Trademark of Bell Laboratories
13. Depending on th®LABS grammar, this refinement (und@isubsumption) can be proper or not.

14. In fact, both measures merely prevent the same coufle.aB® paths (one for the head, one for the body)
from being generated more that once. In case the list of body- or headliterals of a single clause corresponds
ton > 1 DLAB® paths, e.g.[male(X)] given DLAB® atom1 --1 : [male(X), male(X), male(X)]
(n = 3), DLAB® is likely to generate this clausetimes. Part of the responsibility for optimality is thus left
to theDLAB® user.

15. In a more sophisticated version®f.AB® theDLAB® paths are flat lists of symbols 1, *, such that groups
of 4 elements in the path can be further compressed to one 81-ary digit.
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