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Abstract. Plotkin’s notions of relativé-subsumption and relative least general generalization of clauses are
defined for full clauses, and they are defined in terms of a kind of resolution derivations called C-derivations.
Techniques for generalization of clauses relative to a theory, based on the V-operators or saturation in its original
form, have primarily been developed for Horn clauses. We show that these techniques are incomplete for full
clauses, which is due to the restricted form of resolution derivations considered. We describe a technique for
generalization of clauses relative to a theory, which is based on a generalization of the original saturation technique.
We prove that our technique properly inverts C-derivations, and that it is complete for full clauses w.r.t. relative
#-subsumption.
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1. Introduction

Inductive logic programming (ILP) is a research area for inductive learning in first-order
logic. The representation formalism usually used is Horn clauses. Every first-order formula
can be represented by a set of full clauses that is equivalent to the formula w.r.t. satisfiability,
but this is not the case for Horn clauses. Itis therefore of interest to study inductive learning
in a full clause representation language. Generalization is a main operation in inductive
learning, and the use of background knowledge is crucial in inductive learning. Plotkin's
notions of relatived-subsumption and relative least general generalization w.r.t. a theory
(background knowledge) are defined for full clauses, and they are defined in terms of a kind
of resolution derivations called C-derivations (Plotkin, 1971a, b).

Techniques for generalization of clauses relative to a theory, based on the V-operators
(Muggleton & Buntine, 1988; Muggleton, 1991) or saturation in its original form (Sammut,
1981; Rouveirol, 1990, 1992), have primarily been developed for Horn clauses. These
techniques are incomplete for full clauses, which is due to the restricted form of resolu-
tion considered. Saturation in its original form is based on a procedure called elementary
saturation (Rouveirol, 1992), which can be regarded as a V-operator. The V-operators in-
vert what has been called “linear derivations”, but in the resolution literature is known as
input (resolution) derivations (Genesereth & Nilsson, 1987). More precisely techniques
based on the V-operators invert input derivations in which the starting clause is used only
once. We call this specific form of input derivations, C-start input derivations. In Sec-
tion 3, we show that C-start input derivations and C-derivations are not equivalent w.r.t.
derivability.
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We assume the reader to be familiar with the basic notions and notations in Logic Pro-
gramming (Lloyd, 1987) and/or Automatic Theorem Proving (Chang & Lee, 1973; Gallier,
1986). In the study of relative generalization of clauses it is convenient to generalize the
concept of a clause. Usually a clause is defined as a finite set of literals. In the following
we will let aclausedenote a possibly infinite set of literals. Sometimes we say finite clause,
possibly infinite clause or infinite clause to explicitly state if we mean a finite, possibly
infinite or infinite set of literals. AHorn clauseis a clause including at most one positive
literal, and adefinite clauses a clause including exactly one positive literal. When we
sayfull clausesit is to emphasize that we mean clauses and not Horn clauses or definite
clauses.

Both the techniques based on V-operators (see Section 3) and our technique (see Section 4
for generalization relative to a theory make an assumption on the clauses in the considered
theories. We call this assumption treriable assumptigrand it means that every variable in
a clause occurs in at least two distinct literals in that clause. This should also be true for all
clausesinthe resolution derivations we consider. Theories that fulfil the variable assumption
are in (Muggleton, 1991) callestrongly generative

The variable assumption may seem as a strong restriction, but every clause can be
transformed into an equivalent clause that fulfils the assumption. This can simply be
done by adding one literabrm(x) to a clause for each variabbe that only occurs in
one literal in that clause. Then to the background theory we also add one clause
(term(f (X, ..., Xn)) <« term(xy), ..., term(x,)) for eachn-ary function symbolf in
the considered clausal language. Thus for each cons{@rary function symbol) we add
a clausg term(c) <).

If we have a theory that fulfils the variable assumption (a strongly generative theory), we
are not guaranteed that all clauses derivable by resolution from the theory fulfil the vari-
able assumption. This is due to that a factor of a clause not necessarily fulfils the variable
assumption although the clause does it. For this reason it is not enough to require the
considered theory to fulfil the variable assumption, we also require all clauses in the resolu-
tion derivations we consider to fulfil the variable assumption. Therefore the kind of clause
transformation described above, sometimes also needs to be performed on clauses obtaine
in the resolution derivation process.

Plotkin's framework for generalization of clauses relative to a theory is described in
Section 2. In Section 3, we describe the techniques for generalization relative to a theory
based on the V-operators, and show incompleteness of C-start input derivation. In Section 4,
we present our technique for generalization of clauses relative to a theory, which is based on
a generalization of the original saturation technique. We prove that our technique properly
inverts C-derivations, and that it is complete for full clauses w.r.t. rel&@tisabsumption.

In Section 5, we summarize and discuss our results.

2. Generalization relative to a theory

There is a well-known framework for generalization of clauses developed by Plotkin (1970,
1971a, b). This framework is based on two relations between clauses&ailgsumption
and relatived-subsumption, where relativiesubsumption takes into accountteory(a
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finite set of finite clauses) of background knowledge. We first give the definitigh of
subsumption, and the related notion of least general generalization.

Definition LetC andE be clauses. The@ 6-subsumes FdenotedC < E, if and only if
there exists a substitutighsuch thaCeo C E. If C < E then we say that is ad-subsumer
of E.

Definition A clauseC is ageneralizatiorof a set of clauseS = {Egy, ..., E,} ifand only
if, forevery 1<i < n, C < E;. A generalizatiorC of Sis aleast general generalization
(LGG) of Sif and only if, for every generalizatiog’ of S, C’ < C.

Plotkin showed that for every finite set of finite clauses there exists a unique LGG (up to
equivalence). This can be generalized to that for every finite set of possibly infinite clauses
there exists a possibly infinite LGG. There is a well-known algorithm for computing LGGs,
which was described by Plotkin (1971) and is frequently used in ILP.

Relativef-subsumptionis defined in termstubsumption and a particular kind of reso-
lution derivations called C-derivations. Before we give a formal definition of C-derivations,
we need some definitions concerning resolution.

Definition LetC be a clausel! € C andy an mgu ofl". ThenCy is afactorof C.

Definition A clauseR is aresolventof two clausesC and D if and only if there are
Cy, Du, A, B andf such that:

a) Cy is a factor ofC andDy is a factor ofD,
b) Cy andDu have no variables in common,
c) Aisaliteral inCy andB is a literal inDp,
d) 0 is an mgu off A, B}, and

e) Risthe claus€(Cy — {A}) U (Du — {B}))6.

The clause€ andD are calledparent clausesf R.

Definition A resolution derivatiorof a clauseR from a theoryT is a structure (a binary
tree) recursively defined as follows:

a) (—, —, R) is aresolution derivation dR from T ifand only if R € T, and

b) ((S1, S, D), (S, S,. E), R) is a resolution derivation oR from T if and only if
(S, S, D) and(S;, S,, E) are resolution derivations dd and E from T, andR is
a resolvent oD andE.

Thelengthof a resolution derivation is the number of clauses included in the resolution
derivation.

We write T % R to denote that there is a resolution derivation of a claifeom a
theoryT. We alsowriteT % {Ry, ..., Ry} when, forevery I< i < n, thereisaresolution
derivation of R, from T.
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Definition A C-derivationof a clauseR from a clauseC and a theoryl is a specific kind
of resolution derivation recursively defined as follows:

a) (—, —, R) is a C-derivation oR from C andT if and only if R = C, and
b) (S, S, D), (S, S,. E), R) is a C-derivation oR from C andT if and only if Ris a
resolvent ofD andE, and either:

i) (S, S, D)isaresolution derivation dd from T, and(S;, S,, E) is a C-derivation
of E from C andT, or

i) (S, S, D) is a C-derivation ofD from C and T, and(S;, S,, E) is a resolution
derivation ofE from T.

We write(C, T) ¢ Rto denote that there is a C-derivation of a claRfeom a clauseC
and a theoryl. A C-derivation is a resolution derivation in which a specific clause is used
exactly once. This definition slightly differs from Plotkin’s definition, in which a resolution
derivation is a C-derivation if and only if the specified clause is @wedostonce.

Definition A clauseC 6-subsumes clauseE relativeto a theoryT, denotedC <t E,
if and only if there exists a C-derivation of a clauRkdrom C andT such thatlR < E. If
C <1 E then we say that is arelatived-subsumepf E w.r.t. T.

Our definition is equivalent to Plotkin’s original definition except for clauses that logically
follow from only the theory. Strictly following Plotkin, any clause is a relativaubsumer
of a clause that logically follows from a theory. In our opinion, our definitions of relative
#-subsumption and relative least general generalization (see below) are more analogous tc
the definitions of-subsumption and least general generalization. However, the difference
only occurs for a kind of clauses usually not considered in inductive learning.

Definition A clauseC is arelative generalizatiorof a set of clauseS = {Ey, ..., En}
w.r.t. atheoryT if and only if, for every 1< i < n, C <t E;. A relative generalizatio®
of Sw.r.t. T is arelative least general generalizatiqRLGG) of Sw.r.t. T if and only if,
for every relative generalizatidd’ of Sw.rt. T,C’' < C.

Example Consider the following clauses:

C = (r(x) < p(x),q(x)),
D1 = (p(X), q(X) < s(x)),
D2 = (p(x) < qx)),

D3 = (q(X) < p(x)),

Ri = (pX) < s(x)),

R = (r(x) < p(x)),

Rs = (r(X) <= s(x)),

Ry = (r(x) <= q(x)),

E1 = (r(a) < s(a)), and
Ez = (r(b) < p(b)).
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Figure L A C-derivation ofR3 from C and{D1, D, D3}.

LetT = {D4, D, D3} be a theory. Thef 8-subsumeg; relative toT, since there exists
a C-derivation (of length 7) oR; from C andT (see figure 1), namely

(((=, =, Do), (=, —, D2), Ry), ((=, =, D3), (=, =, C), R2), Ra),

and R; < E;. The clauseC alsof-subsume<, relative toT, since there exists a C-
derivation (of length 3) oR, from C andT, namely

((_’ ) D3)’ (_7 ) C)a R4)7
andR, < E». InfactC is an RLGG of{Eq, Eo} wirt. T. O

In general there exists no finite RLGG of a finite set of finite clauses w.r.t. a theory.
However, for every such set of clauses there exists a possibly infinite RLGG, and that is the
reason why we generalized the concept of a clause to be a possibly infinite set of literals.

3. Relative generalization using V-operators

Inverting resolution derivations is a technique for learning missing clauses in a theory
(Muggleton & Buntine, 1988; Rouveirol & Puget, 1989; Wirth, 1989; Rouveirol, 1990;
Hume & Sammut, 1991; Idestam-Almquist, 1992), and it has strong connections to the
definitions of relativéd-subsumption and RLGG (Muggleton, 1991). If we know the resol-
vent and one of the parent clauses in a resolution step, a V-operator can derive the other
parent clause. Two such V-operators for first-order clauses are presented in (Muggleton &
Buntine, 1988). To restrict the number of alternatives in the construction of the unknown
parent clause, these V-operators used a number of different assumptions. A better way to
restrict the number of alternatives is to only construct maximally specific alternatives of
the unknown parent clause. Most specific V-operators and a fungfipwhich describes

the set of maximally specific clauses that can be constructed by iterative application of the
V-operators, are presented in (Muggleton, 1991).

Definition Let E be a clause and a theory. Then the functiol"(T, E) is recursively
defined as follows:
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a) V)T, E) = {E}, and
b) VYWT,E) = VW XT,E)U{(FU{L}9) | LeDeT and FeV" T, E) and
(D—{LHo S F}(n>0).

The closure)*(T, E) = VT, E)UVXT,E)U---

Note that the clauséF U {L}6) is only completely determined under the variable assump-
tion.

Example Consider the following clauses:

D =(p <« q(x)),and
E=(p<«).

The variable assumption does not hold, since the varialgaly occurs in one literal in
D. Let E be a resolvent oD and an unknown clauge. Then the most specific alternative
C’ of Cis a clausgE U {L}#) such thatL € D and(D — {L})# C E. We haveC’' =
(p,g(x) <)@ for any ground substitutiof. ThusC’ can not be completely determined.

Saturation was originally presented in Rouveirol (1990) and further developed in
Rouveirol (1992). Elementary saturation can be regarded as a V-operator, and then the
process of saturation is included in the functidh

The functionV" inverts a sequence ofresolution steps. Theorem 1 below is given in
Muggleton (1991), and it describes a relationship between an RLGG of a set of Horn clauses
w.r.t. alogic program and an LGG of a set of clauses obtained from the Horn clauses by
the closureV* of the functionV". A logic programis a finite set of finite definite clauses.
LetUV(T, E) denote the clause formed by taking the union of the clause8(n, E).

Theorem 1 (Relationship between RLGG and LGG: Horn claused)et P be a logic
program and let {Hq, ..., Hy} be a set of Horn clauses. Thednnder the variable
assumption an LGG of the set of clausda)V*(P, Hy), ..., UV*(P, Hy)} is an RLGG
of {Hq, ..., Hy}. w.rt. P.

This theorem only consider Horn clauses, and it should be observed that an RLGG of
two Horn clauses w.r.t. a logic program not necessarily is a Horn clause. Evenhiyhen
and H, are finite, the clausesV*(P, Hi) anduV*(P, Hy) may be infinite, and thus the
RLGG of H; andH, may also be infinite. However, if we replat® with V¥, for some
natural numbek, we have a technique for computing approximate RLGGs, as described
in Algorithm 1.

Algorithm 1 (Computation of approximate RLGGs: Horn clauses).

Input A finite set of finite Horn clausg#y, . .., Hy}, alogic program B and a natural
number K.

Output An approximate RLGG diHy, ..., Hy} w.rt. P.
1) Foreveryl <i < n, compute G= UVX(P, H;).
2) Compute and return the LGG ¢4, ..., Gu}.
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Figure 2 A C-start input derivation oR, from C and{Dy, ..., Dy}.

Theorem 1 can not be extended to full clauses, because the funétionly inverts
resolution derivations, where in each resolution step one of the parent clauses is a clause
in the theory. This specific kind of resolution derivations are called “linear derivations” in
Muggleton (1991), butinthe resolution literature itis known as input (resolution) derivations
(Genesereth and Nilsson, 1987). More precisely the fundtibmverts input derivations
where the starting clause is used only once. We call such input derivations, C-start input
derivations.

Definition A C-start input derivatiorof a clauseR from a clauseC and theoryT is a
specific form of resolution derivation recursively defined as follows:

a) (—, —, R) is a C-start input derivation d® from C andT if and only if R = C, and

b) (S, S, D), (—, —, E), R)isaC-startinput derivation d® from C andT if and only if
(S, S, D) is a C-start input derivation dd from C andT, E € T andRis a resolvent
of D andE.

A C-start input derivations can graphically be described as in figure 2. Every C-start
input derivation is a C-derivation, but not the converse. For example the C-derivation in
figure 1 is not a C-start input derivation. More important to notify is that C-start input
derivations and C-derivations are not equivalent w.r.t. derivability. In Theorem 2, we show
that there are C-derivations for which there are no corresponding C-start input derivations.
It follows from this theorem that techniques for generalization relative to a theory, based
on the V-operators or saturation in its original form, are not complete for full clauses. For
example the RLGG in the example on page 5 can not be found by such techniques.

Theorem 2 (Incompleteness of C-start input derivation)There exist clauses C and, R
and a theory T such that there exists a C-derivation of R from C andoiit there exists
no C-start input derivation of R fromC and T.
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Proof: LetC= { p, CI}, Dl = {p’ ﬁq}’ D2 = {ﬁ p, q}’ D3 = {r, -p, _'q}v T= {Dlv D2,
D3} andR = {r}. Then there exists a C-derivationRffrom C andT, nhamely(((C, —, —),
(D1, =, =), Ry, (D2, —, =), (D3, —, ), R2), R), whereRy = {p} and R, = {r, = p}.

The clauseR includes none of the literalp, —p, q or —q. However, every clause
derivable by C-start input derivation fro@®andT includes at least one of these literals. If
we resolve away @ or —p by using a clause i then the resolvent will include either
or —g, and vice versa. Consequently, there exists no C-start input derivatigrirom C
andT. m]

4. Relative generalization using complementation and resolution

In this section we present a technique for inverting C-derivations and computing RLGGs,
whichis complete for full clauses. The technique is based on a generalization of the original
saturation technique (Rouveirol, 1990, 1992), and the saturations of the considered clauses
are computed by using complementation and resolution.

The complement of a formula s the negation of the formula. Since all variablesin a clause
implicitly are universally quantified, all variables in the complement of a clause should be
existentially quantified. However, existentially quantified variables can not be expressed
in a clausal language. We therefore replace each existentially quantified variable by a new
constant (a Skolem constant). Then we obtain a formula that can be represented by a set o
clauses, and that is equivalent to the original formula w.r.t. satisfiability.

Definition Thecomplemen# of a positive literalA is — A, and thecomplement A of a
negative literakAis A.

Definition Leto be a substitutionC be a clauseT a set of clauses ané the set of
function symbols occurring i U {C}. Theno is a Skolem substitutiofor C w.r.t. T

if and only if {X1/ay, ..., Xx/ak} C o where{xy, ..., X} is the set of variables occurring
inC, ay, ..., a are distinct constants, akdnN {a,, ..., a} = 9.
Definition LetC={L4,...,Ln} be a clauseT a set of clauses, and = {x;/ay, ...,

Xk/a} a Skolem substitution fo€ w.r.t. T. Then the set of ground unit claus€s=
{{L1}o, ..., {Lm}o}, is thecomplementf C by o w.r.t. T.

Definition Let C be a clauseT a set of clausesy = {Xi/ay, ..., Xk/ax} a Skolem
substitution forC w.r.t. T, andD a set of ground unit clauses derivable by resolution from
T UC, whereC is the complement of by o w.r.t. T. Theno =t = {ay /X4, . .., a/Xk} iS
aninverse Skolem substitutidor D w.r.t. T U C.

Definition Let D be a clause, and ™! = {a;/x4, ..., a/X«} an inverse Skolem substi-
tution. ThenDo %, theanti instanceof D by o1, is the clause obtained frol by for
every 1< i <k, simultaneously replacing each occurrence of the conatantD by the
variablex; .



GENERALIZATION OF CLAUSES RELATIVE TO A THEORY 221

Definition LetD = {{L1},..., {Lm}} be a set of ground unit clausésa set of clauses,
ando ! = {aa/x1, ..., &/X} an inverse Skolem substitution f@r w.r.t. T. Then the
clauseD = {Ly, ..., Lp}otis thecomplementf D by ot w.rt. T.

Example Consider the following clausé and set of clauses:

C = (p(xX) < q(x),r(@),and
C = {(« p)), (q(b) <), (r@ <)}

Then the substitutioa = {x/b} is a Skolem substitution fo€, and the set of clauses
C is the complement of by o. We also have that‘l = {b/x} is an inverse Skolem
substitution forC, and thatC is the complement of by o 2.

When inverting a C-derivation, we know a clauR¢hat follows by C-derivation from an
unknown claus€ and a known theory . A least general alternative for the claGean
then be found by adding all literals ® that can be resolved away by some claus€E.in
This can be accomplished by the saturation technique described below.

Definition Let E be a clause andl a theory. Then a claude is asaturationof E w.r.t.
T if and only if:

a) E is the complement oE by a Skolem substitution w.rt. T,
b) F is the set of all unit clauses derivable by resolution fréro E, and
c) F isthe complement of byo~tw.rt. T.

If we only consider resolution derivations of a maximal lengthk tfen we say thaf is
ank-saturationof E w.r.t. T.

Note that it is only under the variable assumption that all unit clauseésie ground. Our
definition of saturation is a generalization of the original definition in (Rouveirol, 1990),
which is only defined for definite clauses and requires the head of saturation to be equal to
the head of the original clause.

A saturation of a claus& w.r.t. a theoryT is a least general alternative for the clause
C in a C-derivation ofE from C andT. Moreover, a saturation of a claugew.r.t. a
theoryT is also a least general relatigesubsumer o w.r.t. T, which is stated in the
Theorem 3. In Theorem 4 we show that an LGG of saturations of a set of clauses is an
RLGG of the original set of clauses, which is an extension of Theorem 1 to full clauses.
Proofs of Theorem 3 and Theorem 4 can be found in appendix.

Theorem 3 (Inverting relatived-subsumption: full clauses).Let E be a clauseT a
theory and F a saturation of E w.r.t. T. Theunder the variable assumptipir <t E,
and for every relativé-subsumer Fof E w.rt. T, F' < F.

Theorem 4(Relationship between RLGG and LGG: full clausesl.et T be a theoryand
{E1,..., En}and{Fy, ..., F,} be two sets of clauses, such that forevergi < n, F is
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a saturation of Ew.r.t. T. Thenunder the variable assumptipan LGG of{F4, ..., F,}
isan RLGG of E,, ..., En} W.rt.T.

Example Consider the following clauses and sets of clauses:

D1 = (pXx) < qx)),

D2 = (r(x) < s(x)),

E1=(p@ <« r(b)),

Ez = (q(y) < s(y)).

E1 ={(«< p@). (r(b) <)},

Ez = {(+- 9(0)), (s(c) <)},
F1={(«<p@)), (< q@), (r(b) <)},
Fo = {(«<=q(c)), (r(c) <), (s(c) <)},
Fi1=(p@),q@ «r()),

F2 = (q(y) < r(y),s(y)),and

G =(q(2 «<r(w)).

LetT = {D;, Dy} be a theory. The complement Bf andE;, by the Skolem substitution
o = {y/a, z/b} is the sets of clause8; and E,. ThenF; is the set of all unit clauses
derivable by resolution fronT U E;, and F; is the set of all unit clauses derivable by
resolution fromT U E,. The complement oF; andF, by the inverse Skolem substitution
o~ = {a/y, b/z} are the clauseB; andF,. ThusF; andF, are saturations dE; and E.
We have that the clause is an LGG of{Fy, F,}, and thus an RLGG dfEy, E;} w.r.t. T.

A saturation of a finite clause is in general an infinite clause, lusaturation for some
specified positive integdeis always finite. This leads us to our technique for computation
of approximate RLGGs, which is summarized in Algorithm 2.

Algorithm 2 (Computation of approximate RLGGs: full clauses).

Input A finite set of finite clausds,, . .., E,}, a theory T, and a positive integer k.
Output An approximate RLGG dfEy, ..., Enjw.rt. T.

1) For everyl <i < n, compute the k-saturation; I6f E; w.r.t. T.

2) Compute and return the LGG §F4, ..., Fp}.

5. Concluding remarks

We have studied the problem of generalization of a set of full clauses relative to a theory
of full clauses. We first described Plotkin's framework for relative generalization w.r.t. a
theory. We then noted that techniques for relative generalization, based on the V-operators
or saturation in its original form, primarily have been developed for Horn clauses, and
showed that they are incomplete for full clauses. We therefore presented a generalization
of the original saturation technique, and proved that it is complete for full clauses, which
is our main contribution. Similar ideas have earlier been presented in (Idestam-Almquist,
1992; Muggleton, 1993), but without proofs.
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A relative generalization of a set of clauses w.r.t. a theory is defined in terms of C-deri-
vations, which means that the generalization only need to be used once in a proof of any of
the clauses in the considered set of clauses. By such a definition we only consider relative
generalizations undet-subsumption, and not relative generalizations under implication.
However, to find relative generalizations under implication that are not relative generaliza-
tions undem-subsumption, we can combine our saturation technique with the technique
for generalization of full clauses under implication found in (Idestam-Almquist, 1995).

Appendix

In this appendix we give the proofs of Theorems 3 and 4. Lemmas 1 and 3 are used in
the proof of Theorem 3, and Lemma 2 is used in the proof of Lemma 3. In the proof of
Theorem 4 we use Theorem 3 and Lemma 4.

Lemmal LetT beatheoryE aclause E the complement of E by a Skolem substitution
o w.rt. T, and F a set of ground unit clauses such thatJTE -z F andE € F. Then
F <t E, where F is the complement Bfbyo—t w.r.t. T.

Proof: The proof is by mathematical induction on the numief clauses irF — E (the
set of clauses irF that are not inE). It should be noted thaE, in the statement of the
lemma, in the proof is indexed by,

Base stefin = 0): We haveF, = E, and thenFq = E, whereF is the complement of
Fobyotw.rt. T. Then(Fo, T) Fc Fp andFy < E, and consequentlfy <1 E.
Induction hypothesign = k): If F, includesk clauses that are not i, thenF, <1 E,
whereFy is the complement o, by o~ w.r.t. T.

Induction step(n = k + 1): By the induction hypothesi U E +x Fy. Let Fyq =
Fr U {{L}}, where{L} is a ground unit clause such tHatU E +z {L} and{L} ¢ F.
Then there must exist a clauBesuch thafl +z D and(D, F) Fc {L}. Then we have
D € FrU{L}o~tand{L}oc~t < D. ThenF is a resolvent ofF,; and D. By the
induction hypothesis there exists a clai&such thatF¢, T) Fc RandR < E. Thus we
have(Fx,1, T) ¢ R, and consequentli 1 <1 E. m]

Lemma?2 LetC and D be clausedky an instance of a resolvent R of C and &ndRy
the complement of Rby a Skolem substitution. Then(under the variable assumptipn
there exists a unit clause H such thatCRy U H and{D} U Ry Fx H, whereH is the
complement of H by .

Proof: LetC’' = {A4,..., An} beafactor ofC, D' = {By,..., By} a factor ofD, § an
mgu Of{Ak, Bp}, an_dR = {Al, cees A1, Ak+1,_. .., Am, B, .. . Bp_l, Bp+_1, ceey Bn}9.
_Then Ry = {{Adbyo, ..., {A-1l0yo, {Acaldyo, ... . {Anlfyo, {Bi}byo,...,
(Bp-1)0y0, (Bpi1}oyo, ..., [Balyo).
Let H = {Bp}oy. SinceByd = Acf, we have{Aq, ..., An}dy € Ry U H. Then
C’'dy € Ry UH, and consequentlg < Ry U H.
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‘We haveH = {{Bp}fyo}. We also have(By, ..., Bn}, {Bi}0yo, ..., {Bp_1}0yo,
{Bpt1}0yo, ..., {Ba}0yo} Fr {Bp}s, wheres C 6y o include bindings of all variables in
By that also occur ifBy, ..., Bp_1, Bp+1, ..., Bn}. By the variable assumptigBy}s =

{Bp}éyo, and consequentlyD} U Ry Fr H. O

Lemma 3. Let C be a clauseT a theory Ry an instance of a clause R such that
(C,T) Fc R, and let Ry be the complement ofyRby o. Then(under the variable
assumptionthere exista set of unitclausgd, . .., Hy} suchthatC< RyUH;U --- UH,
and TURy k¢ HiU--- U H,, where for evenll. < i < n, H; is the complement of ;H
byo.

Proof: The proof is by mathematical induction on the number of resolution stépthe
branch fromC to R in the C-derivation oR from C andT. It should be noted thaR, in
the statement of the lemma, in the proof is indexechby

Base stepn=0): We haveRy=C, and thusCyy; = Rpy. Then there exists an
empty set of unit clausgdy, . .., Ho} such that triviallyC < Ryyo U H; U --- U Hg and
T URyy Fr HiU--- U Hg, where for every Ik i < 0, H; is the complement off; by o.

Induction hypothesign = k): There exists a set of unit clausgds, ..., Hy} such that
C <Ry UHiU.---UHcandT URgy Fr HiU---U Hy, where for every k< i <k, H;
is the complement ofl; by o.

Induction stegn = k 4+ 1): One of the parent clauses B, 1 is R¢. Let D be the other
parent clause, and we haVerz D. By Lemma 2 (under the variable assumption) there
exists a unit clausely, ; such thatRq < Rei1vki1 U Herr and R 1vkar U {D} Fr Hiia,
whereHy, 1 is the complement oHy, 1 by 0. Hence, there exists a substitutignsuch
that Rayx S Reg1vker U Hiqa.

By the induction hypothesis there exists a set of unit clagbks. .., Hy} such that
C < RokUHU- - -UHy. SinceRayk © Rir1vkr1U Hirr, we haveRay UH U- - -UHk C
Ret1skt1 U HiU -+ - U Hiy1. ConsequenthC < Riyayira U Hi U -+ - U Hipa.

By the induction hypothesis we also havéJ Ry -z Hy U - - - U Hy, where for every
1 <i <k, H; is the complement oH; by 0. SinceRk € Rii11k+1 U Hiy1, We have
Rak € Reravkrr U Hia, and thus tr|V|aIIyRk+1yk+1 U Hkyi1 Fr Rek. Then since
Rit1vk+1U{D} Fr Hysa, We haveRig1v1U{D} Fr Ra U Hiya. Thensined x D,
we haveT U 1aveTl U R 1kt I—R Reyk U Hi1. Then sincel U Rax Fr Hi U - - - U Hy, we have
T URavksr br HiU -+ U Hega

Consequently (under the variable assumption) there exists a set of unit dlal4ses ,
Hi, 1) suchthaC < Ry UH; U --- U Hypg andT U Ry g Hi U --- U Hyy1, where for
every 1<i < k4 1, H; is the complement ofi; by o. O

Theorem 3 (Inverting relatived-subsumption: full clauses).Let E be a clauseT a
theory, and F a saturation of E w.r.t. T. Theiunder the variable assumptipfr <t E,
and for every relativé-subsumer Fof E w.rt. T, F' < F.

Proof: Let E be the complement df by a Skolem substitutionr w.r.t. T, and F the
complement ofF by o. By the definition of saturationf- is the set of all unit clauses
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derivable by resolution fronT U E, and thusE € F. By the variable assumption, all
clauses irF are ground. Then by Lemma 1, we have<t E.

Let F' be an arbitrary relative-subsumer ok w.r.t. T. Then there exists a clauge
such thatF’, T) -c RandR =< E. Then there exists a substitutipnsuch thatR, < E.
Let Ry be the complement &y by o. Then by Lemma 3 (under the variable assumption),
there exists a set of unit clausgld, ..., Hy} such thatF” < Ry U H; U --- U H, and
TURy g HiU---U H,, where for every k< i < n, H; is the complement ofl; by o.

SinceRy € E, we haveRy € E. ThusTUE g Ry UH; U--- U H,, and
RyUHU---UH, € F. Thenwe hav®y UH,U --- UH, € F,andRyUHU - -- UH, <
F. ConsequentlyF’ < F. ]

Lemmad4. LetT beatheoryandC, R and G clauses suchth@, T) c Rand G=< C.
Then there exists a clause H such th@t T) ¢ H and H < R.

Proof: The proof is by mathematical induction on the number of resolution stapthe
branch fromC to R in the C-derivation oR from C andT. It should be noted theR, in
the statement of the lemma, in the proof is indexechby

Base stegn = 0): We haveRy, = C. Then letHy = G, and we haveG, T) ¢ Hp and
Ho < Ro.

Induction hypothesign = k): There exists a clauskdy such that(G, T) ¢ Hy and
Hk < R«.

Induction stepgn = k + 1): We have thaRy 1 is a resolvent oRy and a claus® such
thatT -z D. Let R, be a factor ofR, D’ a factor of D, A a literal in R’, B a literal in
D’, andd an mgu of{ A, B}. ThenR1 = ((R, — {A) U (D’ — {B}))6. By the induction
hypothesiHy < Rk, and then there exists a substitutipsuch thatHyy € Ry. Thenthere
exists a substitutiod such thatHxs € R;.

If Hd € (R, — {A}) then H80 S Reyq1, and thusHkx < Reyq. By the induction
hypothesig G, T) ¢ Hk. Let He.1 = Hy, and consequently there exists a clatizg;
such tha’(G, T) Fc Hk+1 and Hk+1 < Rk+1.

If Hd € (R, — {A}) then there exists a literdl € Hy such thatL§ = A. Then there
exists an mgu oft of {L, B}. ThusHy 1 = ((H« — {L}) U (D’ — {B})))u is a resolvent
of Hx and D. By the induction hypothesi€G, T) ~¢c Hy, and thus(G, T) F¢ Hys.
SinceHyy C Ry, there exists a substitutignsuch thaiHx — {L}) o < (R, — {A})6 and
(D' —{Bhup = (D' —{B})#, and thusHy, 10 € R¢;1. Consequently there exists a clause
Hy1 such thafG, T) ¢ Hyy1 andHgy 1 < Ry O

Theorem 4(Relationship between RLGG and LGG: full clauses)et T be a theoryand
{Es1, ..., En}and{F4, ..., F,} be two sets of clauses, such that for everyi < n, F is
a saturation of Ew.r.t. T. Thenlunder the variable assumptipan LGG of{F,, ..., F,}
isan RLGG of Eq, ..., EpJ w.rt. T.

Proof: By Theorem 3, forevery ki <n, F <1 Ej. Thus, forevery 1< i < n, there
exists a claus® suchtha(F, T) -c R andR, < E;. LetGbeanLGGoflF, ..., F.}.
Then by Lemma 4, for every £ i < n, there exists a claugg; such thatG, T) ¢ H;
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andH; < R.. Thus, forevery 1< i < nH, < E andG =<t E;. Hence,G is a relative
generalization ofEy, ..., Ej} w.rt. T.

Let G’ be an arbitrary relative generalization{ds, ..., E,} w.r.t. T. Then for every
1<i=<nG =1 Ej. Then by Theorem 3, forevery2 i < n,G' < F. Then by the
definition of an LGG, we hav&’ < G. Consequentl$ isan RLGG of(Ey, ..., E,}. O

Acknowledgments

This work has been supported by the Swedish Research Council for Engineering Sciences
(TFR) and the European Community ESPRIT BRA 6020 Inductive Logic Programming.

References

Chang, C., & Lee, R. (1973pymbolic Logic and Mechanical Theorem Proyihgndon: Academic Press.

Gallier, J.H. (1986)Logic for Computer Science—Foundations of Automatic Theorem Prodiugper & Row
Publishers.

Genesereth, M.R., & Nilsson, N.J. (198Epgical Foundations of Artificial Intelligencélorgan Kaufmann.

Hume, D., & Sammut, C. 1991. Using inverse resolution to learn relations from experimeRteckedings of
the Eighth International Workshop on Machine LearniMprgan Kaufmann.

Idestam-Almquist, P. (1992). Learning missing clauses by inverse resolutiBrod¢eedings of the International
Conference on Fifth Generation Computer Systems 1B8&/0: Ohmsha Publishers.

Idestam-Almquist, P. (1995). Generalization of clauses under implicat@mmnal of Artificial Intelligence Re-
search 3:467-489.

Lloyd, J.W. (1987)Foundations of Logic Programmin&@pringer-Verlag. Second edition.

Muggleton, S. (1991). Inductive logic programmim¢ew Generation Computing Journ(4):295-318.

Muggleton, S. (1993). Inductive logic programming: Derivations, successes and shortcomPigsdedings of
the Sixth European Conference on Machine LearnBringer-Verlag.

Muggleton, S. & Buntine, W. (1988). Machine invention of first-order predicates by inverting resolution. In
Proceedings of the Fifth International Conference on Machine Learaggan Kaufmann.

Plotkin, G.D. (1970). A note on inductive generalization. In B. Meltzer & D. Michie (Ediéachine Intelligence
Edinburgh University Press, 5:153-163.

Plotkin, G.D. (1971)Automatic Methods of Inductive Inferenéth.D. thesis, Edinburgh University.

Plotkin, G.D. (1971). A further note on inductive generalization. In B. Meltzer & D. Michie (Etiéachine
Intelligence Edinburgh University Press, 6:101-124.

Rouveirol, C. (1990). Saturation: Postponing choices when inverting resolutidProtreedings of the Ninth
European Conference on Artificial Intelligend&tman.

Rouveirol, C. (1992). Extensions of inversion of resolution applied to theory completion. In S. Muggleton (Ed.),
Inductive Logic ProgrammindSan Diego, California: Academic Press.

Rouveirol, C. & Puget, J.-F. (1989). A simple solution for inverting resolutionPioceedings of the Fourth
European Working Session on Learniigtman.

Sammut, C. (1981). Concept learning by experimerrbteedings of the Seventh International Joint Conference
on Artificial Intelligence Loss Altos, California: William Kaufmann.

Wirth, R. (1989). Completing logic programs by inverse resolutioRroteedings of the Fourth European Working
Session on Learninditman.

Received November 15, 1995
Accepted June 25, 1996
Final Manuscript August 1, 1996



