

P1: LMW

Machine Learning KL403-01-ALMQUIST January 27, 1997 12:22

Machine Learning 26, 213–226 (1997)
c© 1997 Kluwer Academic Publishers. Manufactured in The Netherlands.

Generalization of Clauses Relative to a Theory

PETER IDESTAM-ALMQUIST pi@dsv.su.se
Department of Computer and Systems Sciences, Stockholm University, Electrum 230, S-164 40 Kista, Sweden

Editors: Stephen Muggleton and David Page

Abstract. Plotkin’s notions of relativeθ -subsumption and relative least general generalization of clauses are
defined for full clauses, and they are defined in terms of a kind of resolution derivations called C-derivations.
Techniques for generalization of clauses relative to a theory, based on the V-operators or saturation in its original
form, have primarily been developed for Horn clauses. We show that these techniques are incomplete for full
clauses, which is due to the restricted form of resolution derivations considered. We describe a technique for
generalization of clauses relative to a theory, which is based on a generalization of the original saturation technique.
We prove that our technique properly inverts C-derivations, and that it is complete for full clauses w.r.t. relative
θ -subsumption.

Keywords: relative generalization, RLGG, full clauses

1. Introduction

Inductive logic programming (ILP) is a research area for inductive learning in first-order
logic. The representation formalism usually used is Horn clauses. Every first-order formula
can be represented by a set of full clauses that is equivalent to the formula w.r.t. satisfiability,
but this is not the case for Horn clauses. It is therefore of interest to study inductive learning
in a full clause representation language. Generalization is a main operation in inductive
learning, and the use of background knowledge is crucial in inductive learning. Plotkin’s
notions of relativeθ -subsumption and relative least general generalization w.r.t. a theory
(background knowledge) are defined for full clauses, and they are defined in terms of a kind
of resolution derivations called C-derivations (Plotkin, 1971a, b).

Techniques for generalization of clauses relative to a theory, based on the V-operators
(Muggleton & Buntine, 1988; Muggleton, 1991) or saturation in its original form (Sammut,
1981; Rouveirol, 1990, 1992), have primarily been developed for Horn clauses. These
techniques are incomplete for full clauses, which is due to the restricted form of resolu-
tion considered. Saturation in its original form is based on a procedure called elementary
saturation (Rouveirol, 1992), which can be regarded as a V-operator. The V-operators in-
vert what has been called “linear derivations”, but in the resolution literature is known as
input (resolution) derivations (Genesereth & Nilsson, 1987). More precisely techniques
based on the V-operators invert input derivations in which the starting clause is used only
once. We call this specific form of input derivations, C-start input derivations. In Sec-
tion 3, we show that C-start input derivations and C-derivations are not equivalent w.r.t.
derivability.

P1: LMW

Machine Learning KL403-01-ALMQUIST January 27, 1997 12:22

214 P. IDESTAM-ALMQUIST

We assume the reader to be familiar with the basic notions and notations in Logic Pro-
gramming (Lloyd, 1987) and/or Automatic Theorem Proving (Chang & Lee, 1973; Gallier,
1986). In the study of relative generalization of clauses it is convenient to generalize the
concept of a clause. Usually a clause is defined as a finite set of literals. In the following
we will let aclausedenote a possibly infinite set of literals. Sometimes we say finite clause,
possibly infinite clause or infinite clause to explicitly state if we mean a finite, possibly
infinite or infinite set of literals. AHorn clauseis a clause including at most one positive
literal, and adefinite clauseis a clause including exactly one positive literal. When we
say full clausesit is to emphasize that we mean clauses and not Horn clauses or definite
clauses.

Both the techniques based on V-operators (see Section 3) and our technique (see Section 4)
for generalization relative to a theory make an assumption on the clauses in the considered
theories. We call this assumption thevariable assumption, and it means that every variable in
a clause occurs in at least two distinct literals in that clause. This should also be true for all
clauses in the resolution derivations we consider. Theories that fulfil the variable assumption
are in (Muggleton, 1991) calledstrongly generative.

The variable assumption may seem as a strong restriction, but every clause can be
transformed into an equivalent clause that fulfils the assumption. This can simply be
done by adding one literalterm(x) to a clause for each variablex that only occurs in
one literal in that clause. Then to the background theory we also add one clause
(term(f (x1, . . . , xn)) ← term(x1), . . . , term(xn)) for eachn-ary function symbolf in
the considered clausal language. Thus for each constantc (0-ary function symbol) we add
a clause(term(c) ←).

If we have a theory that fulfils the variable assumption (a strongly generative theory), we
are not guaranteed that all clauses derivable by resolution from the theory fulfil the vari-
able assumption. This is due to that a factor of a clause not necessarily fulfils the variable
assumption although the clause does it. For this reason it is not enough to require the
considered theory to fulfil the variable assumption, we also require all clauses in the resolu-
tion derivations we consider to fulfil the variable assumption. Therefore the kind of clause
transformation described above, sometimes also needs to be performed on clauses obtained
in the resolution derivation process.

Plotkin’s framework for generalization of clauses relative to a theory is described in
Section 2. In Section 3, we describe the techniques for generalization relative to a theory
based on the V-operators, and show incompleteness of C-start input derivation. In Section 4,
we present our technique for generalization of clauses relative to a theory, which is based on
a generalization of the original saturation technique. We prove that our technique properly
inverts C-derivations, and that it is complete for full clauses w.r.t. relativeθ -subsumption.
In Section 5, we summarize and discuss our results.

2. Generalization relative to a theory

There is a well-known framework for generalization of clauses developed by Plotkin (1970,
1971a, b). This framework is based on two relations between clauses calledθ -subsumption
and relativeθ -subsumption, where relativeθ -subsumption takes into account atheory(a

P1: LMW

Machine Learning KL403-01-ALMQUIST January 27, 1997 12:22

GENERALIZATION OF CLAUSES RELATIVE TO A THEORY 215

finite set of finite clauses) of background knowledge. We first give the definition ofθ -
subsumption, and the related notion of least general generalization.

Definition. LetC andE be clauses. ThenC θ -subsumes E, denotedC ¹ E, if and only if
there exists a substitutionθ such thatCθ ⊆ E. If C ¹ E then we say thatC is aθ -subsumer
of E.

Definition. A clauseC is ageneralizationof a set of clausesS = {E1, . . . , En} if and only
if, for every 1≤ i ≤ n, C ¹ Ei . A generalizationC of S is a least general generalization
(LGG) of S if and only if, for every generalizationC′ of S, C′ ¹ C.

Plotkin showed that for every finite set of finite clauses there exists a unique LGG (up to
equivalence). This can be generalized to that for every finite set of possibly infinite clauses
there exists a possibly infinite LGG. There is a well-known algorithm for computing LGGs,
which was described by Plotkin (1971) and is frequently used in ILP.

Relativeθ -subsumption is defined in terms ofθ -subsumption and a particular kind of reso-
lution derivations called C-derivations. Before we give a formal definition of C-derivations,
we need some definitions concerning resolution.

Definition. Let C be a clause,0 ⊆ C andγ an mgu of0. ThenCγ is afactorof C.

Definition. A clauseR is a resolventof two clausesC and D if and only if there are
Cγ, Dµ, A, B andθ such that:

a) Cγ is a factor ofC andDµ is a factor ofD,
b) Cγ andDµ have no variables in common,
c) A is a literal inCγ andB is a literal inDµ,
d) θ is an mgu of{A, B̄}, and
e) R is the clause((Cγ − {A}) ∪ (Dµ − {B}))θ .

The clausesC andD are calledparent clausesof R.

Definition. A resolution derivationof a clauseR from a theoryT is a structure (a binary
tree) recursively defined as follows:

a) (−, −, R) is a resolution derivation ofR from T if and only if R ∈ T , and
b) ((S1, S2, D), (S′

1, S′
2, E), R) is a resolution derivation ofR from T if and only if

(S1, S2, D) and (S′
1, S′

2, E) are resolution derivations ofD and E from T , and R is
a resolvent ofD andE.

The lengthof a resolution derivation is the number of clauses included in the resolution
derivation.

We write T `R R to denote that there is a resolution derivation of a clauseR from a
theoryT . We also writeT `R {R1, . . . , Rn} when, for every 1≤ i ≤ n, there is a resolution
derivation ofRi from T .

P1: LMW

Machine Learning KL403-01-ALMQUIST January 27, 1997 12:22

216 P. IDESTAM-ALMQUIST

Definition. A C-derivationof a clauseR from a clauseC and a theoryT is a specific kind
of resolution derivation recursively defined as follows:

a) (−, −, R) is a C-derivation ofR from C andT if and only if R = C, and
b) ((S1, S2, D), (S′

1, S′
2, E), R) is a C-derivation ofR from C andT if and only if R is a

resolvent ofD andE, and either:

i) (S1, S2, D) is a resolution derivation ofD from T , and(S′
1, S′

2, E) is a C-derivation
of E from C andT , or

ii) (S1, S2, D) is a C-derivation ofD from C andT , and(S′
1, S′

2, E) is a resolution
derivation ofE from T .

We write(C, T) `C R to denote that there is a C-derivation of a clauseR from a clauseC
and a theoryT . A C-derivation is a resolution derivation in which a specific clause is used
exactly once. This definition slightly differs from Plotkin’s definition, in which a resolution
derivation is a C-derivation if and only if the specified clause is usedat mostonce.

Definition. A clauseC θ -subsumesa clauseE relativeto a theoryT , denotedC ¹T E,
if and only if there exists a C-derivation of a clauseR from C andT such thatR ¹ E. If
C ¹T E then we say thatC is arelativeθ -subsumerof E w.r.t. T .

Our definition is equivalent to Plotkin’s original definition except for clauses that logically
follow from only the theory. Strictly following Plotkin, any clause is a relativeθ -subsumer
of a clause that logically follows from a theory. In our opinion, our definitions of relative
θ -subsumption and relative least general generalization (see below) are more analogous to
the definitions ofθ -subsumption and least general generalization. However, the difference
only occurs for a kind of clauses usually not considered in inductive learning.

Definition. A clauseC is a relative generalizationof a set of clausesS = {E1, . . . , En}
w.r.t. a theoryT if and only if, for every 1≤ i ≤ n, C ¹T Ei . A relative generalizationC
of Sw.r.t. T is arelative least general generalization(RLGG) of Sw.r.t. T if and only if,
for every relative generalizationC′ of Sw.r.t. T, C′ ¹ C.

Example. Consider the following clauses:

C = (r (x) ← p(x), q(x)),

D1 = (p(x), q(x) ← s(x)),

D2 = (p(x) ← q(x)),

D3 = (q(x) ← p(x)),

R1 = (p(x) ← s(x)),

R2 = (r (x) ← p(x)),

R3 = (r (x) ← s(x)),

R4 = (r (x) ← q(x)),

E1 = (r (a) ← s(a)), and

E2 = (r (b) ← p(b)).

P1: LMW

Machine Learning KL403-01-ALMQUIST January 27, 1997 12:22

GENERALIZATION OF CLAUSES RELATIVE TO A THEORY 217

Figure 1. A C-derivation ofR3 from C and{D1, D2, D3}.

Let T = {D1, D2, D3} be a theory. ThenC θ -subsumesE1 relative toT , since there exists
a C-derivation (of length 7) ofR3 from C andT (see figure 1), namely

(((−, −, D1), (−, −, D2), R1), ((−, −, D3), (−, −, C), R2), R3),

and R3 ¹ E1. The clauseC alsoθ -subsumesE2 relative toT , since there exists a C-
derivation (of length 3) ofR4 from C andT , namely

((−, −, D3), (−, −, C), R4),

andR4 ¹ E2. In factC is an RLGG of{E1, E2} w.r.t. T . 2

In general there exists no finite RLGG of a finite set of finite clauses w.r.t. a theory.
However, for every such set of clauses there exists a possibly infinite RLGG, and that is the
reason why we generalized the concept of a clause to be a possibly infinite set of literals.

3. Relative generalization using V-operators

Inverting resolution derivations is a technique for learning missing clauses in a theory
(Muggleton & Buntine, 1988; Rouveirol & Puget, 1989; Wirth, 1989; Rouveirol, 1990;
Hume & Sammut, 1991; Idestam-Almquist, 1992), and it has strong connections to the
definitions of relativeθ -subsumption and RLGG (Muggleton, 1991). If we know the resol-
vent and one of the parent clauses in a resolution step, a V-operator can derive the other
parent clause. Two such V-operators for first-order clauses are presented in (Muggleton &
Buntine, 1988). To restrict the number of alternatives in the construction of the unknown
parent clause, these V-operators used a number of different assumptions. A better way to
restrict the number of alternatives is to only construct maximally specific alternatives of
the unknown parent clause. Most specific V-operators and a functionVn, which describes
the set of maximally specific clauses that can be constructed by iterative application of the
V-operators, are presented in (Muggleton, 1991).

Definition. Let E be a clause andT a theory. Then the functionVn(T, E) is recursively
defined as follows:

P1: LMW

Machine Learning KL403-01-ALMQUIST January 27, 1997 12:22

218 P. IDESTAM-ALMQUIST

a) V0(T, E) = {E}, and
b) Vn(T, E) = Vn−1(T, E) ∪ {(F ∪ {L̄}θ) | L ∈ D ∈ T and F ∈Vn−1(T, E) and

(D − {L})θ ⊆ F} (n > 0).

The closureV∗(T, E) = V0(T, E) ∪ V1(T, E) ∪ · · ·
Note that the clause(F ∪ {L̄}θ) is only completely determined under the variable assump-
tion.

Example. Consider the following clauses:

D = (p ← q(x)), and

E = (p ←).

The variable assumption does not hold, since the variablex only occurs in one literal in
D. Let E be a resolvent ofD and an unknown clauseC. Then the most specific alternative
C′ of C is a clause(E ∪ {L̄}θ) such thatL ∈ D and(D − {L})θ ⊆ E. We haveC′ =
(p, q(x) ←)θ for any ground substitutionθ . ThusC′ can not be completely determined.

Saturation was originally presented in Rouveirol (1990) and further developed in
Rouveirol (1992). Elementary saturation can be regarded as a V-operator, and then the
process of saturation is included in the functionVn.

The functionVn inverts a sequence ofn resolution steps. Theorem 1 below is given in
Muggleton (1991), and it describes a relationship between an RLGG of a set of Horn clauses
w.r.t. a logic program and an LGG of a set of clauses obtained from the Horn clauses by
the closureV∗ of the functionVn. A logic programis a finite set of finite definite clauses.
Let ∪Vn(T, E) denote the clause formed by taking the union of the clauses inVn(T, E).

Theorem 1 (Relationship between RLGG and LGG: Horn clauses).Let P be a logic
program, and let {H1, . . . , Hn} be a set of Horn clauses. Then(under the variable
assumption) an LGG of the set of clauses{∪V∗(P, H1), . . . ,∪V∗(P, Hn)} is an RLGG
of {H1, . . . , Hn}. w.r.t. P.

This theorem only consider Horn clauses, and it should be observed that an RLGG of
two Horn clauses w.r.t. a logic program not necessarily is a Horn clause. Even whenH1

and H2 are finite, the clauses∪V∗(P, H1) and∪V∗(P, H2) may be infinite, and thus the
RLGG of H1 and H2 may also be infinite. However, if we replaceV∗ with Vk, for some
natural numberk, we have a technique for computing approximate RLGGs, as described
in Algorithm 1.

Algorithm 1 (Computation of approximate RLGGs: Horn clauses).
Input: A finite set of finite Horn clauses{H1, . . . , Hn}, a logic program P, and a natural

number k.
Output: An approximate RLGG of{H1, . . . , Hn} w.r.t. P.

1) For every1 ≤ i ≤ n, compute Gi = ∪Vk(P, Hi).
2) Compute and return the LGG of{G1, . . . , Gn}.

P1: LMW

Machine Learning KL403-01-ALMQUIST January 27, 1997 12:22

GENERALIZATION OF CLAUSES RELATIVE TO A THEORY 219

Figure 2. A C-start input derivation ofRk from C and{D1, . . . , Dk}.

Theorem 1 can not be extended to full clauses, because the functionVn only inverts
resolution derivations, where in each resolution step one of the parent clauses is a clause
in the theory. This specific kind of resolution derivations are called “linear derivations” in
Muggleton (1991), but in the resolution literature it is known as input (resolution) derivations
(Genesereth and Nilsson, 1987). More precisely the functionVn inverts input derivations
where the starting clause is used only once. We call such input derivations, C-start input
derivations.

Definition. A C-start input derivationof a clauseR from a clauseC and theoryT is a
specific form of resolution derivation recursively defined as follows:

a) (−, −, R) is a C-start input derivation ofR from C andT if and only if R = C, and
b) ((S1, S2, D), (−, −, E), R) is a C-start input derivation ofR fromC andT if and only if

(S1, S2, D) is a C-start input derivation ofD from C andT, E ∈ T andR is a resolvent
of D andE.

A C-start input derivations can graphically be described as in figure 2. Every C-start
input derivation is a C-derivation, but not the converse. For example the C-derivation in
figure 1 is not a C-start input derivation. More important to notify is that C-start input
derivations and C-derivations are not equivalent w.r.t. derivability. In Theorem 2, we show
that there are C-derivations for which there are no corresponding C-start input derivations.
It follows from this theorem that techniques for generalization relative to a theory, based
on the V-operators or saturation in its original form, are not complete for full clauses. For
example the RLGG in the example on page 5 can not be found by such techniques.

Theorem 2 (Incompleteness of C-start input derivation).There exist clauses C and R,

and a theory T, such that there exists a C-derivation of R from C and T, but there exists
no C-start input derivation of R from C and T .

P1: LMW

Machine Learning KL403-01-ALMQUIST January 27, 1997 12:22

220 P. IDESTAM-ALMQUIST

Proof: LetC = {p, q}, D1 = {p, ¬q}, D2 = {¬p, q}, D3 = {r, ¬p, ¬q}, T = {D1, D2,

D3} andR = {r }. Then there exists a C-derivation ofR fromC andT , namely(((C, −, −),

(D1, −, −), R1), ((D2, −, −), (D3, −, −), R2), R), whereR1 = {p} andR2 = {r, ¬p}.
The clauseR includes none of the literalsp, ¬p, q or ¬q. However, every clause

derivable by C-start input derivation fromC andT includes at least one of these literals. If
we resolve away ap or ¬p by using a clause inT then the resolvent will include eitherq
or ¬q, and vice versa. Consequently, there exists no C-start input derivation ofR from C
andT . 2

4. Relative generalization using complementation and resolution

In this section we present a technique for inverting C-derivations and computing RLGGs,
which is complete for full clauses. The technique is based on a generalization of the original
saturation technique (Rouveirol, 1990, 1992), and the saturations of the considered clauses
are computed by using complementation and resolution.

The complement of a formula is the negation of the formula. Since all variables in a clause
implicitly are universally quantified, all variables in the complement of a clause should be
existentially quantified. However, existentially quantified variables can not be expressed
in a clausal language. We therefore replace each existentially quantified variable by a new
constant (a Skolem constant). Then we obtain a formula that can be represented by a set of
clauses, and that is equivalent to the original formula w.r.t. satisfiability.

Definition. Thecomplement̄A of a positive literalA is ¬Ā, and thecomplement¬A of a
negative literal¬A is A.

Definition. Let σ be a substitution,C be a clause,T a set of clauses andF the set of
function symbols occurring inT ∪ {C}. Thenσ is a Skolem substitutionfor C w.r.t. T
if and only if {x1/a1, . . . , xk/ak} ⊆ σ where{x1, . . . , xk} is the set of variables occurring
in C, a1, . . . , ak are distinct constants, andF ∩ {a1, . . . , ak} = ∅.

Definition. Let C = {L1, . . . , Lm} be a clause,T a set of clauses, andσ = {x1/a1, . . . ,

xk/ak} a Skolem substitution forC w.r.t. T . Then the set of ground unit clausesC̄ =
{{L1}σ, . . . , {Lm}σ }, is thecomplementof C by σ w.r.t. T .

Definition. Let C be a clause,T a set of clauses,σ = {x1/a1, . . . , xk/ak} a Skolem
substitution forC w.r.t. T , andD̄ a set of ground unit clauses derivable by resolution from
T ∪ C̄, whereC̄ is the complement ofC by σ w.r.t. T . Thenσ−1 = {a1/x1, . . . , ak/xk} is
an inverse Skolem substitutionfor D̄ w.r.t. T ∪ C̄.

Definition. Let D be a clause, andσ−1 = {a1/x1, . . . , ak/xk} an inverse Skolem substi-
tution. ThenDσ−1, theanti instanceof D by σ−1, is the clause obtained fromD by for
every 1≤ i ≤ k, simultaneously replacing each occurrence of the constantai in D by the
variablexi .

P1: LMW

Machine Learning KL403-01-ALMQUIST January 27, 1997 12:22

GENERALIZATION OF CLAUSES RELATIVE TO A THEORY 221

Definition. Let D̄ = {{L1}, . . . , {Lm}} be a set of ground unit clauses,T a set of clauses,
andσ−1 = {a1/x1, . . . , ak/xk} an inverse Skolem substitution for̄D w.r.t. T . Then the
clauseD = {L1, . . . , Lm}σ−1 is thecomplementof D̄ by σ−1 w.r.t. T .

Example. Consider the following clauseC and set of clauses̄C:

C = (p(x) ← q(x), r (a)), and

C̄ = {(← p(b)), (q(b) ←), (r (a) ←)}.

Then the substitutionσ = {x/b} is a Skolem substitution forC, and the set of clauses
C̄ is the complement ofC by σ . We also have thatσ−1 = {b/x} is an inverse Skolem
substitution forC̄, and thatC is the complement of̄C by σ−1.

When inverting a C-derivation, we know a clauseR that follows by C-derivation from an
unknown clauseC and a known theoryT . A least general alternative for the clauseC can
then be found by adding all literals toR that can be resolved away by some clauses inT .
This can be accomplished by the saturation technique described below.

Definition. Let E be a clause andT a theory. Then a clauseF is asaturationof E w.r.t.
T if and only if:

a) Ē is the complement ofE by a Skolem substitutionσ w.r.t. T ,
b) F̄ is the set of all unit clauses derivable by resolution fromT ∪ Ē, and
c) F is the complement of̄F by σ−1 w.r.t. T .

If we only consider resolution derivations of a maximal length ofk then we say thatF is
ank-saturationof E w.r.t. T .

Note that it is only under the variable assumption that all unit clauses inF̄ are ground. Our
definition of saturation is a generalization of the original definition in (Rouveirol, 1990),
which is only defined for definite clauses and requires the head of saturation to be equal to
the head of the original clause.

A saturation of a clauseE w.r.t. a theoryT is a least general alternative for the clause
C in a C-derivation ofE from C and T . Moreover, a saturation of a clauseE w.r.t. a
theoryT is also a least general relativeθ -subsumer ofE w.r.t. T , which is stated in the
Theorem 3. In Theorem 4 we show that an LGG of saturations of a set of clauses is an
RLGG of the original set of clauses, which is an extension of Theorem 1 to full clauses.
Proofs of Theorem 3 and Theorem 4 can be found in appendix.

Theorem 3 (Inverting relativeθ -subsumption: full clauses).Let E be a clause, T a
theory, and F a saturation of E w.r.t. T . Then(under the variable assumption) F ¹T E,

and for every relativeθ -subsumer F′ of E w.r.t. T, F ′ ¹ F.

Theorem 4(Relationship between RLGG and LGG: full clauses).Let T be a theory, and
{E1, . . . , En} and{F1, . . . , Fn} be two sets of clauses, such that for every1 ≤ i ≤ n, Fi is

P1: LMW

Machine Learning KL403-01-ALMQUIST January 27, 1997 12:22

222 P. IDESTAM-ALMQUIST

a saturation of Ei w.r.t. T . Then(under the variable assumption) an LGG of{F1, . . . , Fn}
is an RLGG of{E1, . . . , En} w.r.t.T .

Example. Consider the following clauses and sets of clauses:

D1 = (p(x) ← q(x)),

D2 = (r (x) ← s(x)),

E1 = (p(a) ← r (b)),

E2 = (q(y) ← s(y)),

E1 = {(← p(a)), (r (b) ←)},
E2 = {(← q(c)), (s(c) ←)},
F1 = {(← p(a)), (← q(a)), (r (b) ←)},
F2 = {(← q(c)), (r (c) ←), (s(c) ←)},
F1 = (p(a), q(a) ← r (b)),

F2 = (q(y) ← r (y), s(y)), and
G = (q(z) ← r (w)).

Let T = {D1, D2} be a theory. The complement ofE1 andE2 by the Skolem substitution
σ = {y/a, z/b} is the sets of clausesE1 and E2. Then F1 is the set of all unit clauses
derivable by resolution fromT ∪ E1, and F2 is the set of all unit clauses derivable by
resolution fromT ∪ E2. The complement ofF1 andF2 by the inverse Skolem substitution
σ−1 = {a/y, b/z} are the clausesF1 andF2. ThusF1 andF2 are saturations ofE1 andE2.
We have that the clauseG is an LGG of{F1, F2}, and thus an RLGG of{E1, E2} w.r.t. T .

A saturation of a finite clause is in general an infinite clause, but ak-saturation for some
specified positive integerk is always finite. This leads us to our technique for computation
of approximate RLGGs, which is summarized in Algorithm 2.

Algorithm 2 (Computation of approximate RLGGs: full clauses).
Input: A finite set of finite clauses{E1, . . . , En}, a theory T, and a positive integer k.
Output: An approximate RLGG of{E1, . . . , En} w.r.t. T .
1) For every1 ≤ i ≤ n, compute the k-saturation Fi of Ei w.r.t. T .
2) Compute and return the LGG of{F1, . . . , Fn}.

5. Concluding remarks

We have studied the problem of generalization of a set of full clauses relative to a theory
of full clauses. We first described Plotkin’s framework for relative generalization w.r.t. a
theory. We then noted that techniques for relative generalization, based on the V-operators
or saturation in its original form, primarily have been developed for Horn clauses, and
showed that they are incomplete for full clauses. We therefore presented a generalization
of the original saturation technique, and proved that it is complete for full clauses, which
is our main contribution. Similar ideas have earlier been presented in (Idestam-Almquist,
1992; Muggleton, 1993), but without proofs.

P1: LMW

Machine Learning KL403-01-ALMQUIST January 27, 1997 12:22

GENERALIZATION OF CLAUSES RELATIVE TO A THEORY 223

A relative generalization of a set of clauses w.r.t. a theory is defined in terms of C-deri-
vations, which means that the generalization only need to be used once in a proof of any of
the clauses in the considered set of clauses. By such a definition we only consider relative
generalizations underθ -subsumption, and not relative generalizations under implication.
However, to find relative generalizations under implication that are not relative generaliza-
tions underθ -subsumption, we can combine our saturation technique with the technique
for generalization of full clauses under implication found in (Idestam-Almquist, 1995).

Appendix

In this appendix we give the proofs of Theorems 3 and 4. Lemmas 1 and 3 are used in
the proof of Theorem 3, and Lemma 2 is used in the proof of Lemma 3. In the proof of
Theorem 4 we use Theorem 3 and Lemma 4.

Lemma 1. Let T be a theory, E a clause, Ē the complement of E by a Skolem substitution
σ w.r.t. T, and F̄ a set of ground unit clauses such that T∪ Ē `R F̄ and Ē ⊆ F̄ . Then
F ¹T E, where F is the complement ofF̄ byσ−1 w.r.t. T .

Proof: The proof is by mathematical induction on the numbern of clauses inF̄ − Ē (the
set of clauses in̄F that are not inĒ). It should be noted that̄F , in the statement of the
lemma, in the proof is indexed byn.

Base step(n = 0): We haveF0 = Ē, and thenF0 = E, whereF0 is the complement of
F0 by σ−1 w.r.t. T . Then(F0, T) `C F0 andF0 ¹ E, and consequentlyF0 ¹T E.
Induction hypothesis(n = k): If Fk includesk clauses that are not in̄E, thenFk ¹T E,
whereFk is the complement ofFk by σ−1 w.r.t. T .

Induction step(n = k + 1): By the induction hypothesisT ∪ Ē `R Fk. Let Fk+1 =
Fk ∪ {{L}}, where{L} is a ground unit clause such thatT ∪ Ē `R {L} and {L} 6∈ Fk.
Then there must exist a clauseD such thatT `R D and(D, Fk) `C {L}. Then we have
D ⊆ Fk ∪ {L}σ−1 and {L}σ−1 ⊆ D. Then Fk is a resolvent ofFk+1 and D. By the
induction hypothesis there exists a clauseR such that(Fk, T) `C R andR ¹ E. Thus we
have(Fk+1, T) `C R, and consequentlyFk+1 ¹T E. 2

Lemma 2. Let C and D be clauses, Rγ an instance of a resolvent R of C and D, andRγ

the complement of Rγ by a Skolem substitutionσ . Then(under the variable assumption)

there exists a unit clause H such that C¹ Rγ ∪ H and{D} ∪ Rγ `R H̄ , whereH̄ is the
complement of H byσ .

Proof: Let C′ = {A1, . . . , Am} be a factor ofC, D′ = {B1, . . . , Bn} a factor ofD, θ an
mgu of{Ak, Bp}, andR = {A1, . . . , Ak−1, Ak+1, . . . , Am, B1, . . . , Bp−1, Bp+1, . . . , Bn}θ .

Then Rγ = {{Ā1}θγ σ, . . . , {Āk−1}θγ σ , {Āk+1}θγ σ, . . . , {Ām}θγ σ , {B̄1}θγ σ, . . . ,

{B̄p−1}θγ σ , {B̄p+1}θγ σ, . . . , {B̄n}θγ σ }.
Let H = {B̄p}θγ . Since B̄pθ = Akθ , we have{A1, . . . , Am}θγ ⊆ Rγ ∪ H . Then

C′θγ ⊆ Rγ ∪ H , and consequentlyC ¹ Rγ ∪ H .

P1: LMW

Machine Learning KL403-01-ALMQUIST January 27, 1997 12:22

224 P. IDESTAM-ALMQUIST

We haveH̄ = {{Bp}θγ σ }. We also have{{B1, . . . , Bn}, {B̄1}θγ σ, . . . , {B̄p−1}θγ σ ,
{B̄p+1}θγ σ, . . . , {B̄n}θγ σ } `R {Bp}δ, whereδ ⊆ θγ σ include bindings of all variables in
Bp that also occur in{B1, . . . , Bp−1, Bp+1, . . . , Bn}. By the variable assumption{Bp}δ =
{Bp}θγ σ , and consequently{D} ∪ Rγ `R H̄ . 2

Lemma 3. Let C be a clause, T a theory, Rγ an instance of a clause R such that
(C, T) `C R, and let Rγ be the complement of Rγ by σ . Then(under the variable
assumption) there exist a set of unit clauses{H1, . . . , Hn} such that C¹ Rγ ∪H1∪ · · · ∪Hn

and T ∪ Rγ `R H1 ∪ · · · ∪ Hn, where for every1 ≤ i ≤ n, Hi is the complement of Hi
byσ .

Proof: The proof is by mathematical induction on the number of resolution stepsn in the
branch fromC to R in the C-derivation ofR from C andT . It should be noted thatR, in
the statement of the lemma, in the proof is indexed byn.

Base step(n = 0): We haveR0 = C, and thusCγ0 = R0γ0. Then there exists an
empty set of unit clauses{H1, . . . , H0} such that triviallyC ¹ R0γ0 ∪ H1 ∪ · · · ∪ H0 and
T ∪ R0γ `R H1 ∪ · · · ∪ H0, where for every 1≤ i ≤ 0, Hi is the complement ofHi by σ .

Induction hypothesis(n = k): There exists a set of unit clauses{H1, . . . , Hk} such that
C ¹ Rkγ ∪ H1 ∪ · · · ∪ Hk andT ∪ Rkγ `R H1 ∪ · · · ∪ Hk, where for every 1≤ i ≤ k, Hi

is the complement ofHi by σ .
Induction step(n = k + 1): One of the parent clauses ofRk+1 is Rk. Let D be the other

parent clause, and we haveT `R D. By Lemma 2 (under the variable assumption) there
exists a unit clauseHk+1 such thatRk ¹ Rk+1γk+1 ∪ Hk+1 andRk+1γk+1 ∪ {D} `R Hk+1,
whereHk+1 is the complement ofHk+1 by σ . Hence, there exists a substitutionγk such
that Rkγk ⊆ Rk+1γk+1 ∪ Hk+1.

By the induction hypothesis there exists a set of unit clauses{H1, . . . , Hk} such that
C ¹ Rkγk ∪ H1∪· · ·∪ Hk. SinceRkγk ⊆ Rk+1γk+1∪ Hk+1, we haveRkγk ∪ H1∪· · ·∪ Hk ⊆
Rk+1γk+1 ∪ H1 ∪ · · · ∪ Hk+1. Consequently,C ¹ Rk+1γk+1 ∪ H1 ∪ · · · ∪ Hk+1.

By the induction hypothesis we also haveT ∪ Rkγk `R H1 ∪ · · · ∪ Hk, where for every
1 ≤ i ≤ k, Hi is the complement ofHi by σ . SinceRkγk ⊆ Rk+1γk+1 ∪ Hk+1, we have
Rkγk ⊆ Rk+1γk+1 ∪ Hk+1, and thus triviallyRk+1γk+1 ∪ Hk+1 `R Rkγk. Then since
Rk+1γk+1∪{D} `R Hk+1, we haveRk+1γk+1∪{D} `R Rkγk ∪ Hk+1. Then sinceT `R D,
we haveT ∪ Rk+1γk+1 `R Rkγk ∪ Hk+1. Then sinceT ∪ Rkγk `R H1 ∪ · · · ∪ Hk, we have
T ∪ Rk+1γk+1 `R H1 ∪ · · · ∪ Hk+1.

Consequently (under the variable assumption) there exists a set of unit clauses{H1, . . . ,
Hk+1} such thatC ¹ Rγ ∪ H1 ∪ · · · ∪ Hk+1 andT ∪ Rγ `R H1 ∪ · · · ∪ Hk+1, where for
every 1≤ i ≤ k + 1, Hi is the complement ofHi by σ . 2

Theorem 3 (Inverting relativeθ -subsumption: full clauses).Let E be a clause, T a
theory, and F a saturation of E w.r.t. T. Then(under the variable assumption) F ¹T E,

and for every relativeθ -subsumer F′ of E w.r.t. T, F ′ ¹ F.

Proof: Let Ē be the complement ofE by a Skolem substitutionσ w.r.t. T , and F̄ the
complement ofF by σ . By the definition of saturation,̄F is the set of all unit clauses

P1: LMW

Machine Learning KL403-01-ALMQUIST January 27, 1997 12:22

GENERALIZATION OF CLAUSES RELATIVE TO A THEORY 225

derivable by resolution fromT ∪ Ē, and thusĒ ⊆ F̄ . By the variable assumption, all
clauses inF̄ are ground. Then by Lemma 1, we haveF ¹T E.

Let F ′ be an arbitrary relativeθ -subsumer ofE w.r.t. T . Then there exists a clauseR
such that(F ′, T) `C R andR ¹ E. Then there exists a substitutionγ such thatRγ ⊆ E.
Let Rγ be the complement ofRγ byσ . Then by Lemma 3 (under the variable assumption),
there exists a set of unit clauses{H1, . . . , Hn} such thatF ′ ¹ Rγ ∪ H1 ∪ · · · ∪ Hn and
T ∪ Rγ `R H1 ∪ · · · ∪ Hn, where for every 1≤ i ≤ n, Hi is the complement ofHi by σ .

Since Rγ ⊆ E, we haveRγ ⊆ Ē. Thus T ∪ Ē `R Rγ ∪ H1 ∪ · · · ∪ Hn, and
Rγ ∪H1∪ · · · ∪Hn ⊆ F̄ . Then we haveRγ ∪H1∪ · · · ∪Hn ⊆ F , andRγ ∪H1∪ · · · ∪Hn ¹
F . ConsequentlyF ′ ¹ F . 2

Lemma 4. Let T be a theory, and C, R and G clauses such that(C, T) `C R and G¹ C.
Then there exists a clause H such that(G, T) `C H and H ¹ R.

Proof: The proof is by mathematical induction on the number of resolution stepsn in the
branch fromC to R in the C-derivation ofR from C andT . It should be noted thatR, in
the statement of the lemma, in the proof is indexed byn.

Base step(n = 0): We haveR0 = C. Then letH0 = G, and we have(G, T) `C H0 and
H0 ¹ R0.

Induction hypothesis(n = k): There exists a clauseHk such that(G, T) `C Hk and
Hk ¹ Rk.

Induction step(n = k + 1): We have thatRk+1 is a resolvent ofRk and a clauseD such
that T `R D. Let R′

k be a factor ofRk, D′ a factor ofD, A a literal in R′, B a literal in
D′, andθ an mgu of{A, B̄}. ThenRk+1 = ((R′

k − {A}) ∪ (D′ − {B}))θ . By the induction
hypothesisHk ¹ Rk, and then there exists a substitutionγ such thatHkγ ⊆ Rk. Then there
exists a substitutionδ such thatHkδ ⊆ R′

k.
If Hkδ ⊆ (R′

k − {A}) then Hkδθ ⊆ Rk+1, and thusHk ¹ Rk+1. By the induction
hypothesis(G, T) `C Hk. Let Hk+1 = Hk, and consequently there exists a clauseHk+1

such that(G, T) `C Hk+1 andHk+1 ¹ Rk+1.
If Hkδ 6⊆ (R′

k − {A}) then there exists a literalL ∈ Hk such thatLδ = A. Then there
exists an mgu ofµ of {L , B̄}. ThusHk+1 = ((Hk − {L}) ∪ (D′ − {B}))µ is a resolvent
of Hk and D. By the induction hypothesis(G, T) `C Hk, and thus(G, T) `C Hk+1.
SinceHkγ ⊆ R′

k, there exists a substitutionρ such that(Hk − {L})µρ ⊆ (R′
k − {A})θ and

(D′ − {B})µρ = (D′ − {B})θ , and thusHk+1ρ ⊆ Rk+1. Consequently there exists a clause
Hk+1 such that(G, T) `C Hk+1 andHk+1 ¹ Rk+1. 2

Theorem 4(Relationship between RLGG and LGG: full clauses).Let T be a theory, and
{E1, . . . , En} and{F1, . . . , Fn} be two sets of clauses, such that for every1 ≤ i ≤ n, Fi is
a saturation of Ei w.r.t. T . Then(under the variable assumption) an LGG of{F1, . . . , Fn}
is an RLGG of{E1, . . . , En} w.r.t. T .

Proof: By Theorem 3, for every 1≤ i ≤ n, Fi ¹T Ei . Thus, for every 1≤ i ≤ n, there
exists a clauseRi such that(Fi , T) `C Ri andRi ¹ Ei . Let G be an LGG of{Fi , . . . , Fn}.
Then by Lemma 4, for every 1≤ i ≤ n, there exists a clauseHi such that(G, T) `C Hi

P1: LMW

Machine Learning KL403-01-ALMQUIST January 27, 1997 12:22

226 P. IDESTAM-ALMQUIST

and Hi ¹ Ri . Thus, for every 1≤ i ≤ nHi ¹ Ei andG ¹T Ei . Hence,G is a relative
generalization of{E1, . . . , En} w.r.t. T .

Let G′ be an arbitrary relative generalization of{E1, . . . , En} w.r.t. T . Then for every
1 ≤ i ≤ n, G′ ¹T Ei . Then by Theorem 3, for every 1≤ i ≤ n, G′ ¹ Fi . Then by the
definition of an LGG, we haveG′ ¹ G. ConsequentlyG is an RLGG of{E1, . . . , En}. 2

Acknowledgments

This work has been supported by the Swedish Research Council for Engineering Sciences
(TFR) and the European Community ESPRIT BRA 6020 Inductive Logic Programming.

References

Chang, C., & Lee, R. (1973).Symbolic Logic and Mechanical Theorem Proving, London: Academic Press.
Gallier, J.H. (1986).Logic for Computer Science—Foundations of Automatic Theorem Proving, Harper & Row

Publishers.
Genesereth, M.R., & Nilsson, N.J. (1987).Logical Foundations of Artificial Intelligence, Morgan Kaufmann.
Hume, D., & Sammut, C. 1991. Using inverse resolution to learn relations from experiments. InProceedings of

the Eighth International Workshop on Machine Learning, Morgan Kaufmann.
Idestam-Almquist, P. (1992). Learning missing clauses by inverse resolution. InProceedings of the International

Conference on Fifth Generation Computer Systems 1992, Tokyo: Ohmsha Publishers.
Idestam-Almquist, P. (1995). Generalization of clauses under implication.Journal of Artificial Intelligence Re-

search, 3:467–489.
Lloyd, J.W. (1987).Foundations of Logic Programming, Springer-Verlag. Second edition.
Muggleton, S. (1991). Inductive logic programming.New Generation Computing Journal, 8(4):295–318.
Muggleton, S. (1993). Inductive logic programming: Derivations, successes and shortcomings. InProceedings of

the Sixth European Conference on Machine Learning, Springer-Verlag.
Muggleton, S. & Buntine, W. (1988). Machine invention of first-order predicates by inverting resolution. In

Proceedings of the Fifth International Conference on Machine Learning, Morgan Kaufmann.
Plotkin, G.D. (1970). A note on inductive generalization. In B. Meltzer & D. Michie (Eds.),Machine Intelligence,

Edinburgh University Press, 5:153–163.
Plotkin, G.D. (1971).Automatic Methods of Inductive Inference. Ph.D. thesis, Edinburgh University.
Plotkin, G.D. (1971). A further note on inductive generalization. In B. Meltzer & D. Michie (Eds.),Machine

Intelligence, Edinburgh University Press, 6:101–124.
Rouveirol, C. (1990). Saturation: Postponing choices when inverting resolution. InProceedings of the Ninth

European Conference on Artificial Intelligence, Pitman.
Rouveirol, C. (1992). Extensions of inversion of resolution applied to theory completion. In S. Muggleton (Ed.),

Inductive Logic Programming, San Diego, California: Academic Press.
Rouveirol, C. & Puget, J.-F. (1989). A simple solution for inverting resolution. InProceedings of the Fourth

European Working Session on Learning, Pitman.
Sammut, C. (1981). Concept learning by experiment. InProceedings of the Seventh International Joint Conference

on Artificial Intelligence. Loss Altos, California: William Kaufmann.
Wirth, R. (1989). Completing logic programs by inverse resolution. InProceedings of the Fourth European Working

Session on Learning, Pitman.

Received November 15, 1995
Accepted June 25, 1996
Final Manuscript August 1, 1996

