

Machine Learning, 26, 227–252 (1997)
c© 1997 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

PAL: A Pattern–Based First–Order Inductive
System

EDUARDO F. MORALES emorales@campus.mor.itesm.mx
ITESM – Campus Morelos, Apto. Postal C–99, Cuernavaca, Morelos, 62050, México

Editors: Stephen Muggleton and David Page

Abstract. It has been argued that much of human intelligence can be viewed as the process of matching stored
patterns. In particular, it is believed that chess masters use a pattern–based knowledge to analyze a position,
followed by a pattern–based controlled search to verify or correct the analysis. In this paper, a first–order system,
called PAL, that can learn patterns in the form of Horn clauses from simple example descriptions and general
purpose knowledge is described. The learning model is based on (i) a constrained least general generalization
algorithm to structure the hypothesis space and guide the learning process, and (ii) a pattern–based representation
knowledge to constrain the construction of hypothesis. It is shown how PAL can learn chess patterns which are
beyond the learning capabilities of current inductive systems. The same pattern–based approach is used to learn
qualitative models of simple dynamic systems and counterpoint rules for two–voice musical pieces. Limitations of
PAL in particular, and first–order systems in general, are exposed in domains where a large number of background
definitions may be required for induction. Conclusions and future research directions are given.

Keywords: first–order induction, ILP, chess, qualitative model, music.

1. Introduction

It is believed that chess masters use a pattern–based knowledge to analyze a position, fol-
lowed by a pattern–based controlled search to verify or correct the analysis (Charness, 1977,
de Groot, 1965). For example given the position of Figure 1, a chess player recognizes that:

• A white Rookthreatensthe black Queen.

• The black Bishop ispinned.

• The white Queen isthreatenedby a black Pawn.

• The white Knightcan forkthe black King, the black Rook and the black Knight.

• Moving the foremost white Pawn candiscover a threat, create apin, and possibly a
skewer.

• . . .

This analysis involves the recognition of concepts like,threat, pin, discovered threat, fork,
skewer, . . ., etc., which can then be used to choose a move (e.g., move the white Knight
and check the black King). Previous work has shown how playing strategies can be con-
structed following a pattern–based approach (Berliner, 1977, Bramer, 1977, Bratko, 1982,
Huberman, 1968, Pitrat, 1977, Wilkins, 1979). However, a substantial programming effort

228 E. MORALES

needs to be devoted to the definition and implementation of theright patterns for the task.
There have been also some attempts to learn chess concepts from examples described with
a set of attributes (Quinlan, 1983, Shapiro, 1987). In this case too, most of the work is
dedicated to the definition of adequate attributes to describe the examples and from which
the target concept can be constructed. This work investigates whether chess patterns (such
as those described above) which are powerful enough for play can be acquired by machine
learning techniques from simple example descriptions.

Figure 1. An example position

The limited expressiveness of attribute–based learning systems has lead to an increased
interest in learning from first–order logical descriptions, despite the increased complexity
of the learning problem. First–order learning systems have used background knowledge to
induce concepts from examples. This is important as it allows a simpler (and often more
natural) way to represent examples. Background knowledge can help as well to reduce
the inductive steps taken when learning particular concepts. Furthermore, a basic core of
background knowledge definitions can be used to learn several concepts.

Learning the chess concepts we are interested in is a non–trivial task and beyond the
capability of existing systems. There are several technical issues that need to be addressed:

1. Chess requires a relatively large amount of background knowledge. This creates severe
search problems when the background knowledge is used in learning.

2. Chess concepts are inherently non–determinate1. This is a problem for first–order
learning mechanisms.

3. Chess concepts are learned incrementally. This leads to a requirement that the learned
knowledge can be “recycled”. The most effective way to do this is to have the back-
ground knowledge in the same form as the induced knowledge.

A PATTERN–BASED LEARNING SYSTEM 229

4. In many practical domains where the trainer does not understand the details of the learn-
ing mechanism it is important that the learning mechanism is robust with respect to the
examples presented, and the order in which the examples are presented. This is par-
ticularly so with first–order systems which are particularly sensitive to such variations
since their inductive steps are powerful and underdetermined.

These issues are addressed by PAL. The central theme is that the notion of a pattern,
defined as a set of relations between components of a state (such as a chess position),
allows the efficiency issues to be addressed without compromising the quality of the induced
knowledge. In addition, PAL’s learning task is not–standard, in the sense that the name and
the number of arguments of the target concept are not explicitly stated in the examples.

Although this research was originally centered around chess, pattern–based reasoning is
not exclusive to chess. It has been argued that a large part of human intelligence can be
viewed as the process of matching stored patterns (Campbell, 1966, Lorenz, 1973). It is
shown that the same pattern–based approach can be used in qualitative modeling and in
music, where other learning systems have similar difficulties to those experienced in chess.

Section 2 provides some definitions from logic. The concepts and notations will be used
in the sections to follow. Section 3 briefly describes PAL and its generalization method.
Section 4 shows how PAL is used to learn several chess concepts, such as those illustrated in
Figure 1. In section 5, PAL is used to learn a qualitative model of a simple dynamic system.
In section 6, counterpoint rules for two–voice musical pieces are learned by PAL. Section
7 discusses PAL’s main limitations and its relation to previous work. Finally, conclusions
and future research directions are given in section 8.

2. Preliminaries

A variableis represented by a string of letters and digits starting with an upper case letter. A
function symbolis a lower case letter followed by a string of letters and digits. Apredicate
symbolis a lower case letter followed by a string of letters and digits. Aterm is a constant,
variable or the application of a function symbol to the appropriate number of terms. An
atomor atomic formulais the application of a predicate symbol to the appropriate number
of terms. A literal is an atom or the negation of an atom. Two literals arecompatible
if they have the same symbol, name and number of arguments. The negation symbol
is ¬. A clauseis a disjunction of a finite set of literals, which can be represented as
{A1, A2, . . . , An,¬B1, . . . ,¬Bm}. The following notation is equivalent:

A1, A2, . . . , An ← B1, B2, . . . , Bm.

A Horn clauseis a clause with at most one positive literal (e.g.,H ← B1, . . . , Bm). The
positive literal (H) is called thehead, the negative literals (allBis) thebody. A clause with
empty body is aunit clause. A set of Horn clauses is alogic program. F1 syntactically
entailsF2 (or F1 ` F2) iff F2 can be derived fromF1 using the deductive inference rules.
A substitutionΘ = {V1/t1, V2/t2, . . . , Vn/tn} consists of a finite sequence of distinct
variables paired with terms. Aninstanceof a clauseC with substitutionΘ, represented by
CΘ, is obtained by simultaneously replacing each occurrence of a component variable of

230 E. MORALES

Θ in C by its corresponding term. Amodelof a logic program is an interpretation for which
the clauses express true statements. We say thatF1 semantically entailsF2 (or F1 |= F2,
alsoF1 logically implies or entailsF2, or F2 is a logical consequence ofF1), iff every
model ofF1 is a model ofF2.

3. Generalization method and PAL

Inductive logic programming (ILP) is a fast growing research area which combines logic
programming with machine learning (Muggleton, 1992). A general setting for ILP is,
given a background knowledgeK (in the form of Horn clauses) and sets of positive (E+)
and negative (E−) examples, find a hypothesisH (another set of Horn clauses) for which
K ∧ H ` E+ andK ∧ H 6` E−. That is, find a hypothesis which can explain the data in
the sense that all the positive (E+) but none of the negative (E−) examples can be deduced
from the hypothesis and the background knowledge. This inductive process can be seen
as a search for logic programs over the hypothesis space and several constraints have been
imposed to limit this space and guide the search. For learning to take place efficiently,
it is often crucial to structure the hypothesis space. This can be done with a model of
generalization. Searching for hypothesis can then be seen as searching for more general
clauses given a known specialized clause.

Plotkin (Plotkin, 1969, Plotkin, 1971a, Plotkin, 1971b) was the first to study in a rigor-
ous manner the notion of generalization based onΘ-subsumption. ClauseCΘ-subsumes
clauseD iff there exists a substitutionσ such thatCσ ⊆ D. ClauseC1 is more general
than clauseC2 if C1 Θ-subsumesC2. Plotkin investigated the existence and properties
of least general generalizations orlgg between clauses and thelgg of clauses relative to
some background knowledge orrlgg. That is, generalizations which are less general, in
terms ofΘ-subsumption, than any other generalization. Thelgg algorithm replaces all the
different terms that have the same place within compatible literals by new variables (see
(Plotkin, 1969) for more details). For example, if we have two compatible literals:

L1 = threat(white,rook,square(1,3),black,bishop,square(4,3))
L2 = threat(white,queen,square(1,4),black,bishop,square(7,4))

then: lgg(L1, L2) =
threat(white,Piece1,square(1,Y),black,bishop,square(X,Y))

This generalization process is repeated between all the pairs of compatible literals within
clauses. That is, thelgg of two clausesC1 andC2 is defined as:{l : l1 ∈ C1 andl2 ∈
C2 andl = lgg(l1, l2)}.

More recently, Buntine (Buntine, 1988) defined a model–theoretic characterization of
Θ-subsumption, calledgeneralized subsumptionfor Horn clauses (see (Buntine, 1988) for
more details). Buntine also suggested a method for constructingrlggs using Plotkin’slgg
algorithm between clauses. The general idea of therlgg algorithm is to augment the body
of the example clauses with facts derived from the background knowledge definitions (K)
and the current body of the example clauses, and then generalized these “saturated” clauses
using Plotkin’slgg algorithm.

A PATTERN–BASED LEARNING SYSTEM 231

• given:

– a logic program (K)

– a set of example clauses (SC)

• Take an example clause (C1) from SC. Let θ1,1 be a substitution grounding the variables in the head ofC1 to
new constants andθ1,2 grounding the remaining variables to new constants

• Construct a new clause (NC) defined as:
NC≡ C1θ1,1 ∪ {¬A1,1,¬A1,2, . . .} where
K ∧ C1bodyθ1,1θ1,2 |= A1,i, andA1,i is a ground atom

• SetSC= SC−{C1}
• while SC 6= {∅}

– Take a new example clause (Cj) from SC. Let θj,1 be a substitution grounding the variables in the head
of Cj to new constants, andθj,2 grounding the remaining variables to new constants

– Construct a new clause (C′j) defined as:
C′j ≡ Cjθj,1 ∪ {¬Aj,1,¬Aj,2, . . .} where
K ∧ Cjbodyθj,1θj,2 |= Aj,k andAj,k is a ground atom

– SetNC = lgg(C′j ,NC)

– SetSC= SC−{Cj}

• output NC

Table 1.A plausiblerlgg algorithm for a set of example clauses

Following (Buntine, 1988), the basis for a learning algorithm usingrlgg is as follows
(see Table 1): LetK be a logic program or theory,θi,1 be a substitution grounding the
variables in the head of clauseCi to new constants andθi,2 grounding the remaining
variables to new constants. Ifrlgg(C1, C2, . . . , Cn) exists, it is equivalent w.r.t.K to the
lgg(C ′1, C

′
2, . . . , C

′
n), where for1 < i < n,

C ′i ≡ Ciθi,1 ∪ {¬Ai,1,¬Ai,2, . . .} (1)

whereK ∧ Cibodyθi,1θi,2 |= Ai,k,Ai,k is a ground atom, and theAi,ks are all the possible
ground atoms deduced from the theory. Equation 1 can be rewritten as:

C ′i ≡ Ciheadθi,1 ← Cibodyθi,1, Ai,1, Ai,2, . . . (2)

Let the resulting least general generalization ofN clauses be denoted as:

GC(n) = lgg(C ′1, C
′
2, . . . , C

′
n).

Sincelgg(C ′1, C
′
2, . . . , C

′
n) ≡ lgg(C ′1, lgg(C ′2, . . . , lgg(C ′n−1, C

′
n) . . .)) (Plotkin, 1971b),

then,

GC(n) = lgg(C ′n, GC(n− 1)).

232 E. MORALES

This can be used for constructing therlgg of a set of clauses. If a set of examples is described
with a set of clauses, a learning algorithm can accept a new example, construct a clause
with it and atoms derived from the background knowledge (logic program), and gradually
generalize the clause by takinglggs of this clause and subsequent clauses constructed from
new examples until meeting a termination criterion. PAL’s learning algorithm is based on
this framework. A direct implementation of it is impractical for all but the simplest cases, as
it essentially involves the deduction of all ground atoms logically implied by the theory (see
(Niblett, 1988) for a more thorough discussion on generalization). However,rlgg exists
for theories without variables (as in Golem (Muggleton & Feng, 1990)), theories without
function symbols (as in Clint (De Raedt & Bruynooghe, 1988)), and when only a finite
number of facts are deducible from the theory, either by limiting the depth of the resolution
steps taken to derive facts and/or by constraining the background knowledge definitions, as
in PAL. Even with a finite set of facts, thelggof two clauses can generate a very large number
of literals. The main problem is thatlgg produces very small generalization steps and some
heuristics are required to converge faster into a solution to achieve practical results. PAL
(i) uses a pattern–based background knowledge representation to derive a finite set of facts
and (ii) applies a novel constraint which identifies the role of the components in different
example descriptions to reduce the complexity of thelgg algorithm (these will be explained
below).

3.1. PAL

Examples in PAL are given as sets of ground atoms (e.g., descriptions of chess positions
stating the position of each piece in the board), and unlike other systems, the name and the
exact arguments involved in the target concept are not specified in advance. A chess position
can be completely described by a set of four–place atoms (contents/4) stating the side, name,
and place of each piece in the board. For instance,contents(white, rook, square(2,3), pos1)
states that a white Rook is at the second file and third rank in position 1. Other pieces in
a board position can be described in the same way. In general, other descriptions can be
used as well (see (Morales, 1992)) and we will see other example descriptions for different
domains. Each example description is added to the background knowledge from which a
finite set of facts is derived.

In the context of chess a pattern refers to a relation between pieces and places in the board.
More generally patterns arise in any domain which can be represented by states which have
an internal structure, with well defined components and relations between the components
that define the particular pattern. PAL induces pattern definitions with the following format:

Head← D1, D2, . . . , Di, F1, F2, . . .

where,

• Headis the head of the pattern definition. Instantiations of the head are regarded as the
patterns recognized by the system.

• TheDis are “input” predicates used to describe positions (i.e.,contents/4) and represent
the components which are involved in the pattern.

A PATTERN–BASED LEARNING SYSTEM 233

• TheFis are instances of definitions which are either provided as background knowledge
or learned by PAL, and represent the conditions (e.g., relations between pieces and
places) to be satisfied by the pattern.

In the context of chess, PAL can learn patterns which are associated with a particular move.
Only one move ahead is considered during the learning process; however, once a pattern is
learned, it can be used to learn other patterns as well.Makemoveis a predicate that changes
the current state of the board description. Themakemovepredicate defines 1-ply moves,2

instantiations of this predicate represent the different possible 1-ply movements. To learn
such patterns, the actual movement of a piece is performed (changing the description of the
board) and new patterns (ground atoms) are generated (deduced) after each move.

For such patterns PAL induces concepts with the following format:

Head ←
D1, D2, . . . , Dk,

F1, F2, . . . , Fm,

MV1, F1,1, F1,2, . . . , F1,n,

MV2, F2,1, F2,2, . . . , F2,p,

...

MVr, Fr,1, Fr,2, . . . , Fr,s. (3)

where,

• MVi is an instance of themakemovepredicate representing a legal move of one piece
with the opponent’s side not in check, and theFi,j ’s are instances of pattern definitions
that change as a consequence of the move. Eachmakemovepredicate can be seen as a
“what if” move, whereMVi is the actual movement and theFi,js are the consequences
that occur if that particular move is followed.

Only movements which introduce a new predicate name or remove an existing predicate
name after the move are considered. The complement3 of the new predicate is added before
the move. No equivalent definitions to themakemovepredicate have been considered in
other domains, however, in a qualitative model’s domain (see section 5) it would correspond
to a change on a qualitative state.

PAL starts with some pattern definitions in its background knowledge and use them to
learn new patterns. For instance, the definition ofbeing in checkis given to PAL as follows:

in check(Side,KPlace,OPiece,OPlace,Pos)←
contents(Side,king,KPlace,Pos),
contents(OSide,OPiece,OPlace,Pos),
otherside(Side,OSide),
piecemove(Oside,OPiece,OPlace,KPlace,Pos).

234 E. MORALES

wherecontents/4are “input” predicates (Dis) while other side/2andpiece-move/5are
background knowledge definitions (Fjs). This definition gets instantiated only with exam-
ple descriptions with a King atKPlaceand an opponent’s pieceOPieceat OPlacewhich
could be moved toKPlace.

Given an example description, PAL “collects” instantiations of its pattern–based back-
ground knowledge definitions to construct an initial hypothesis clause. The head of the
clause is initially constructed with the arguments used to describe the first example descrip-
tion. The initial head, in conjunction with the facts derived from the background knowledge
and the example description, constitutes an initial concept clause. This clause is generalized
by taking thelgg of it and clauses constructed from other example descriptions.

Even with a finite theory for chess, the large number of plausible facts derivable from
it, makes the finiteness irrelevant in practice (e.g., consider all the possible legal moves of
pieces in chess). In PAL a factF is relevantto example descriptionD if at least one of the
ground atoms ofD occurs in the derivation ofF . Since PAL constructs its clauses using
pattern–based definitions, only a finite set of relevant facts are considered4.

For instance, if we only have a white Bishop and a black Pawn in a chess position described
as follows:

contents(white,bishop,square(2,3),pos1).
contents(black,pawn,square(3,4),pos1).

and PAL’s only pattern–definition islegal move/5, then PAL produces the following clause
involving only all the legal moves of the pieces in the chess position:

tmp(white,bishop,square(2,3),black,pawn,square(3,4),pos1)←
contents(white,bishop,square(2,3),pos1),
contents(black,pawn,square(3,4),pos1),
legal move(white,bishop,square(2,3),square(1,4),pos1),
legal move(white,bishop,square(2,3),square(3,2),pos1),
legal move(white,bishop,square(2,3),square(4,1),pos1),
legal move(white,bishop,square(2,3),square(3,4),pos1),
legal move(white,bishop,square(2,3),square(1,2),pos1),
legal move(black,pawn,square(3,4),square(2,3),pos1),
legal move(black,pawn,square(3,4),square(3,3),pos1).

3.2. Novel constraints

A common constraint in ILP systems, is to limit the size of the resulting generalized
clause by requiring all the variables arguments to appear at least twice in the clause (e.g.,
(De Raedt & Bruynooghe, 1988, Muggleton & Feng, 1990, Rouveurol, 1991)). In addi-
tion, PAL uses a novel constraint based on labeling the different components which are
used to describe examples to guide and constrained thelgg algorithm. Every constant oc-
curring in the atoms used to describe examples is labeled with a unique constant symbol.
For instance, in the example position given above, theBishopand thePawnare represented

A PATTERN–BASED LEARNING SYSTEM 235

as follows (for presentation purpose we have adopted the following notation: bl = black,
wh = white, and square(X,Y) = (X,Y)):

contents(wh,bishop,(2,3),pos1)−→ contents(whα,bishopβ ,(2γ ,3δ),pos1)
contents(bl,pawn,(3,4),pos1)−→ contents(blν ,pawnµ,(3λ,4ψ),pos1)

The labels are kept during the derivation process, so the system can distinguish which
component(s) is(are) “responsible” for which facts derived from the background knowledge
by following the labels. So the instances oflegal move/5which involve thebishopuse the
same labels associated with the description of thebishop, i.e.,

legal move(wh,bishop,(2,3),(4,1),pos1)−→
legal move(whα,bishopβ ,(2γ ,3δ),(4,1),pos1)

legal move(wh,bishop,(2,3),(3,4),pos1)−→
legal move(whα,bishopβ ,(2γ ,3δ),(3λ,4ψ),pos1)

...

The predicates used to describe examples are part of the pattern definitions (e.g.,contents/4).
When instantiations of these patterns are collected for each example description, PAL
identifies the instantiations of the description predicates (i.e., the components involved in
the instantiation of the pattern). Thelgg between compatible literals is guided by the
associated labels to produce a smaller number of literals, aslggs are produced only between
compatible literals with common labels (a simple matching procedure is used for this
purpose). In chess this constraint means that legal moves of non–corresponding pieces are
not considered in thelgg algorithm. Without this constraint, PAL can produce, as other
ILP systems based onlgg, very long clauses, requiring of additional constraints to achieve
practical results. This constraint has been successfully used in three different domains,
where a pattern–based approach can be used.

For instance, the above chess position has 5 legal moves for theBishopand 2 for the
Knight. A second position where the Bishop is changed to a black Pawn atsquare(4,2),
and the Pawn to a white Knight atsquare(5,4), has 1 legal move for the Pawn and 8 for the
Knight. The labels used in the first position for the first piece are associated with the first
piece of the second example. Thelgg algorithm without labels produces 63 literals for the
legal move predicate (i.e.,(5+2)× (1+8)). With labels it produces 21 (5×1+2×8). To
recognize the corresponding pieces, the example generator (described below) knows which
pieces are changed and associates their corresponding labels. Examples which are manually
provided or selected at random require that the corresponding components are presented
in the same order. This is equivalent to give the examples as sets of attribute–value pairs
and not allow to shift the values of the attributes in the description of the examples. PAL’s
learning algorithm is described in Table 2.

3.3. Automatic example generator

PAL can follow an experimentation process by automatically generating positive and neg-
ative examples (validated by the user). PAL’s example generator changes the values of the

236 E. MORALES

given:

• a logic programK
• a set of pattern definitionsP, such thatP ⊆ K
• a set of positive (E+) and negative (E−) examples each one

described as a set of ground unit clauses

selectan exampleE1 ∈ E+

construct a new clause (NC) defined as:NC≡ C1 ← E1 ∪A1,1,∪A1,2, . . . where:

• K ∧E1 ` A1,i, andA1,i is a ground instance of a pattern definition
in P
• C1 is a head clause constructed from the arguments used inE1

and a new predicate namePN

setE+ = E+ − {E1}
while E+ 6= {∅}

• selecta new example descriptionEj ∈ E+

• construct a new clause (C′j) defined as:C′j ≡ Cj ← Ej ∪Aj,1,∪Aj,2, . . .
where:
• K ∧Ej ` Aj,i, andAj,i is a ground instance of a pattern

definition inP
• Cj is a head clause constructed from the arguments used inEj

and predicate namePN
• setNC = clgg(C′j ,NC) whereclgg is anlgg between literals

with the same labels
• if NC covers an example inE−, then rejectNC, saveEj in a

disjunct listDL, andcontinue

output NC
if there are examples inDL not covered by anNC,
then setE+ = DL and start the whole process again.

Table 2.PAL’s learning algorithm

arguments involved in the example description to produce new examples. For instance, it
changes the place of a piece, its side, or changes one piece for another. Each new example
is tested against the current concept definition and only presented to the user when it is
not an instance of the current definition. PAL uses domain dependent knowledge of the
possible values of the arguments used to describe positions (e.g., possible pieces, places and
sides). If the perturbation method generates a negative example, then the system analyses
which literals failed on that example and tries to construct a new example that will succeed
on at least one of them. If a positive example is generated, then PAL constructs a clause
as defined above, and generalizes it using the constrainedlgg algorithm, with the current
concept definition. If the system cannot generate a new example (i.e., a new generalization
of the current definition will require producing an example that involves changing different
arguments), then PAL continues with a different set of arguments. PAL first considers sets
with the smallest number of arguments, e.g., it changes the position of each piece at a time,

A PATTERN–BASED LEARNING SYSTEM 237

before changing the positions of several pieces at a time. PAL stops when there are no more
sets left, or when the user decides to terminate the process (a more detailed description is
given in (Morales, 1992)).

The lgg algorithm constructs a single clause (the least general generalized clause) from
a set of clauses. In order to learn disjunctive definitions (i.e., definitions which required
more than one clause), systems which uselgg must rely on the negative examples produced
by the system and/or provided by the user. This is also true for most inductive learning
algorithms. In PAL each new definition is checked against the current negative examples.
If a definition covers a negative example, it is rejected and the example is stored. When the
perturbation process finishes or all the examples have been processed, the final definition
is checked against the stored examples. Those examples which are covered are eliminated
and those which are not covered are tried again. PAL selects the first uncovered example
and the whole process is repeated until all the positive examples have been covered without
covering any negative example (see Table 2). In this way, PAL learns disjunctive concepts
by learning each clause separately. Alternative methods for handling disjunctive concepts,
like storing intermediate hypotheses and allowing some form of backtracking, are left for
future research. As the perturbation process cannot guarantee to produce an instance of
each particular disjunct, the user must provide at least one example for each disjunct in
advance, if he wants to be sure that all the disjuncts will be learned.

4. Learning patterns in chess

In order to learn patterns in chess, PAL was provided with the following pattern–based
background vocabulary:

contents(Side,Piece,Place,Pos):
Describes the position of each piece.

other side(Side1,Side2):
Side1 is the opponent side of Side2.

sliding piece(Piece,Place,Pos):
Piece is Bishop, Rook or Queen.

in check(Side,Place,OPiece,OPlace,Pos):
King in Place is in check by OPiece in OPlace.

checkmate(Side,Place,Pos):
Side with King in Place is check mated.

legal move(Side,Piece,Place,NPlace,Pos):
Piece in Place can move to NPlace.

stale(Side,Piece,Place,Pos):
Piece in Place cannot move.

makemove(Side,Piece,Place,NPlace,Pos1,Pos2):
Piece in Place moves to NPlace.

The domains of the arguments used to describe chess positions and a representative example
for each concept were also given.

238 E. MORALES

domain(piece,[pawn,knight,bishop,rook,queen,king]).
domain(side,[black,white]).
domain(place,[square(1,1),square(1,2),...,square(8,8)]).

With the above information PAL was used to learn several chess concepts. For instance
the following is a specialization of the concept offork learned by PAL. Its interpretation is
that a piece (P3) threatens another piece (P2) and checks the King at the same time:

fork(S1,king,(X1,Y1),S1,P2,(X2,Y2),S2,P3,(X3,Y3),Pos)←
contents(S1,king,(X1,Y1),Pos),
contents(S1,P2,(X2,Y2),Pos),
contents(S2,P3,(X3,Y3),Pos),
otherside(S2,S1),
in check(S1,(X1,Y1),P3,(X3,Y3),Pos),
legal move(S2,P3,(X3,Y3),(X2,Y2),Pos).

An example of a pattern involving a 1–ply movement (discovery check) is given below. A
check by piece (P2) can be “discovered” after moving another piece (P1) to (X4,Y4).

disc check(S1,P1,(X1,Y1),S1,P2,(X2,Y2),S2,king,(X3,Y3), (X4,Y4),Pos1)←
contents(S1,P1,(X1,Y1),Pos1),
contents(S1,P2,(X2,Y2),Pos1),
contents(S2,king,(X3,Y3),Pos1),
otherside(S1,S2),
sliding piece(P1,(X1,Y1),Pos1),
legal move(S1,P2,(X2,Y2),(X4,Y4),Pos1,Pos2),
¬ in check(S2,(X3,Y3),P1,(X1,Y1),Pos1),
makemove(S1,P2,(X2,Y2),(X4,Y4),Pos1,Pos2),
in check(S2,(X3,Y3),P1,(X1,Y1),Pos2).

Table 3 lists some of the concepts learned by PAL. The concepts name and their arity are
given on the first column. The number of examples produced by the example generator
(second column) is compared with those produced by PAL when additional knowledge
about symmetries is taken into account (third column) and with those produced by a user
(fourth column). The number of examples that PAL presents to the user can be reduced
by taking advantage of the symmetric properties of the board. In particular, some concepts
in chess do not depend on any particular orientation of the board, and for each example 7
equivalent examples can be generated, considering reflections along the horizontal, vertical
and diagonal axes. PAL can take advantage of this knowledge to produce further gener-
alizations between all the “symmetric” examples before presenting the user with a new
example (the exceptions being with concepts involving Pawns orcastlings). The user can
inform the system which axes of symmetry to consider. The minimum number of examples
that a trained user (the author) needed to produce the same definitions was also recorded.
The additional background knowledge that is used to learn some concepts is given in the
last column.

A PATTERN–BASED LEARNING SYSTEM 239

Table 3.Table of results for chess concepts

Concept Generated G.E. G.E. Add. Back.
Examples Symm. User Knowledge

threat/7 23 + 8− 10 + 7− 2 + —
fork/10 22 + 67− 9 + 16− 3 + —
cancheck/8 20 + 18− 2 + 1− 2 + —
can threat/8 23 + 7− 6 + 9− 3 + threat
can fork/11 34 + 29− 3 + 0− 3 + fork
disc check/11 17 + 44− 5 + 6− 4 + —
disc threat/11 26 + 48− 4 + 2− 3 + threat
pin/10 22 + 42− 4 + 3− 3 + threat
skewer/11 19 + 55− 4 + 22− 3 + threat

Average (Tot) 58.22 12.55 2.88

The number of examples generated by PAL compares very favorably with the size of
example space (e.g., the example space for 3 pieces is approximately≈ 108 examples).
Using additional knowledge about the symmetric properties of the board, can reduce the
number of examples presented to the user to almost one fifth in average. In general, at least
for the chess concepts that we are interested in learning, there is a very small proportion
of positive examples in the example space. The greater proportion in Table 2 occurs in a
concept likethreatwhere it is roughly 1/6 (one positive for every six negative examples).
For a concept likefork involving three pieces is about 1/(6 * 64).

To test if the patterns learned by PAL could be used for designing a playing strategy,
PAL was used to learn patterns for the King and Rook against King endgame. The patterns
learned by PAL were used in the designed of a correct playing strategy for this endgame, in
the sense that regardless of the movements of the side with only a King, the side with the
Rook will always checkmate (see (Morales, 1994) for more details).

4.1. Discussion

Most machine learning approaches have been used in chess. Quinlan used it as a test
domain for his ID3 algorithm (Quinlan, 1983). In a domain like chess, a well defined
set of attributes is hard to specify even for experts. Quinlan reports 2 man–months
work required to define the 3–ply attributes for the King–Rook vs. King–Knight endgame
(Quinlan, 1983). Shapiro reports an estimated 6 man weeks effort for the King–Pawn vs.
King endgame (Shapiro, 1987). Explanation–based learning (de Jong & Mooney, 1986,
Mitchell, Keller & Kedar-Cabelli, 1986) has also been used in this domain (e.g., (Flann &
Dietterich, 1989, Tadepalli, 1989, Minton, 1984)). EBL offers the advantage of allowing the
system to use as much knowledge as possible from the domain. Its disadvantages include
the potentially high cost of generating proofs, the difficulty in having a complete domain
theory, and the likelihood that the domain theory will contain errors. Perhaps the most
successful EBL/G system for learning concepts in chess has been Flann’s Induction–Over–
Explanation (IOE) (Flann & Dietterich, 1989). The obvious objection to this approach is

240 E. MORALES

that it must start with a stronger domain theory with at least a general (and very close) defi-
nition of the target concept definitions that we want to learn in the first place. Levinson and
Snyder (Levinson & Synder, 1991) report a parameter–adjustment system, Morph, which
learns weighted patterns, consisting of networks of connections, from traces of games.
Morph is limited to learn patterns which express attack/defend relations. For instance, it is
unable to learn if two Rooks are in diagonal or if a Rook is in a border. All the patterns in
Morph are constructed from a fixed set of relations (links). Once a new pattern is learned,
it cannot be used to construct other patterns (i.e., to be used as another link). This however
is compensated by a mechanism able to learn from traces of games.

We have shown how PAL can learn several chess concepts from simple example descrip-
tions and general purpose chess knowledge. The patterns learned by PAL can be used
for designing playing strategies. In the sections to follow, we will show how the same
pattern–based approach can be used in other domains.

5. Learning qualitative models

In a recent paper, Bratko et al. (Bratko, Muggleton & Varsek, 1992) report how Golem
(another ILP system), was used to learn a qualitative model of a simple dynamic system
(the U–tube). QSIM (Kuipers, 1986), a qualitative formalism used for simulating dynamic
models, was taken as the basis for the experiments with Golem. In QSIM, a qualitative
simulation of a system starts with a description of the physical parameters (or qualitative
variables), a set of constraints describing how those parameters are related to each other
and an initial state, and produces possible future states of the system. The constraints
are designed to permit a large class of differential equations to be mapped into qualitative
constraint equations. In the QSIM formalism, six constraints are allowed:add (i.e.,X +
Y = Z), mult (i.e.,X × Y = Z), minus(i.e.,X = −Y), m plus(i.e.,X = M+(Y), that
is, X monotonically increases withY), m minus(i.e.,X = M−(Y), X monotonically
decreases withY), andderiv (i.e., dX/dt = Y). Each qualitative variable has a set of
landmark values. The qualitative state of a variable consists of its value or range of values
and its direction of change, i.e.,inc (increasing),std (steady) ordec(decreasing).

Following (Bratko, Muggleton & Varsek, 1992), the learning task is: given general con-
straints such asderiv or add as background knowledge and some qualitative states of a
system (examples), induce its model. This can be expressed as follows:

QSIM-Theory∧ Qual-Model` Example-Behaviors

The target concept consists of defining a predicateq modelin the form:

q model(. . .) :–
constraint1(. . .),
constraint2(. . .),
. . .

whereconstrainti is one ofadd, mult, minus, m plus, m minus, or deriv.

A PATTERN–BASED LEARNING SYSTEM 241

5.1. Learning the U-tube

Figure 2. The U-tube

The U–tube (illustrated in Figure 2) consists of two containers,A andB, connected with a
pipe and filled with water to their corresponding levelsLa andLb. The standard qualitative
model used in (Bratko, Muggleton & Varsek, 1992) for the U-tube can be written in Horn
clause notation as follows:

legalstate(La,Lb,Fab)←
add(Lb,Diff,La, [c(lb0,diff0,la0)]),

m plus(Diff, Fab, [c(0,0), c(diff0,fab0)]),

minus(Fab, Fba, [c(fab0,fba0)]),

deriv(La, Fba),

deriv(Lb, Fab). (4)

where [c(...), c(...), ...] represent a list of corresponding values. In theaddconstraint they
say that wheneverLb = lb0 andDiff (difference between levels) =diff0, La = la0 (i.e.,
lb0 + diff0 = la0). Theminusconstraint says that the flow fromA toB (Fab) is minus the
flow fromB toA (Fba).

In PAL, the qualitative states (examples) are described by two–place atoms:
qvar(Name:Value/Deriv,State). For instance, a qualitative behavior (at time = t0) can be
described as follows:

qvar(la:la0/dec,t0).
qvar(lb:lb0/inc,t0).
qvar(fab:fab0/dec,t0).
qvar(fba:fba0/inc,t0).
qvar(diff:diff0/dec,t0).

The background knowledge for PAL consisted of definitions for the qualitative constraints:
deriv, add, minus, m minus, andm plus (roughly 100 lines of Prolog code). They were
taken from the original Prolog code used by Bratko et at. to generate the background facts
for Golem5. As in Golem, the corresponding values for the constraints were ignored.

242 E. MORALES

A modification was made to the main predicates (i.e., the constraints) to transform them
into pattern definitions suitable for PAL. For instance, in the following definition for the
constraintadd, theqvar/2 predicates (i.e., the “input” predicates) were added (indicated by
the comment “New”) to change it into a pattern definition.

add(F1:M1/D1,F2:M2/D2,F3:M3/D3,State) :–
qvar(F1:M1/D1,State), % New
qvar(F2:M2/D2,State), % New
qvar(F3:M3/D3,State), % New
verify add inf consistence(M1, M2, M3),
verify addmag(F1, F2, F3, M1, M2, M3),
verify addder(D1, D2, D3).

The same change was made to the other qualitative constraints predicates (i.e., the pattern–
based background knowledge), while the rest of the code remained unchanged.

The same positive examples that were provided to Golem were manually given to PAL.
With them, PAL obtains the following definition6:

legalstate(la:A/B,lb:C/D,fab:E/B,fba:F/D,S) :–
qvar(la:A/B,S),
qvar(lb:C/D,S),
qvar(fab:E/B,S),
qvar(fba:F/D,S),
deriv(la:A/B,fba:F/D,S),
deriv(lb:C/D,fab:E/B,S),
deriv(fab:E/B,fba:F/D,S),
deriv(fba:F/D,fab:E/B,S),
m minus(la:A/B,lb:C/D,S),
m minus(la:A/B,fba:F/D,S),
m minus(lb:C/D,fab:E/B,S),
m minus(fab:E/B,fba:F/D,S),
m plus(lb:C/D,fba:F/D,S),
m plus(la:A/B,fab:E/B,S),
minus(fab:E/B,fba:F/D,S),
add(lb:C/D,fab:E/B,la:A/B,S),
add(la:A/B,fba:F/D,lb:C/D,S).

This model, has the principal components of the model for the U-tube. In general terms, a
U-tube model must show thatFab ∝ (La − Lb) (shown by the last twoadd literals) and
thatdLa/dt = −Fab (first deriv literal) or thatdLb/dt = Fab (secondderiv literal). The
other twoderivs (i.e.,deriv(fba:F/D,fab:E/B,S), andderiv(fab:E/B,fba:F/D),S)), say that
when the change inFab is negative then the flowFba is negative and vice versa. The rest
of the constraints follow directly from the physics of the modeled system.

Running PAL with the same examples but only described with the first three variables
(i.e.,La, Lb, Fab) produces the following definition:

A PATTERN–BASED LEARNING SYSTEM 243

legalstate(la:A/B,lb:C/D,fab:E/B,S) :–
qvar(lb:C/D,S),
qvar(la:A/B,S),
qvar(fab:E/B,S),
deriv(lb:C/D,fab:E/B,S),
m minus(la:A/B,lb:C/D,S),
m minus(lb:C/D,fab:E/B,S),
m plus(la:A/B,fab:E/B,S),
add(fab:E/B,lb:C/D,la:A/B,S).

which again captures the essential features of a model for the U-tube.

5.2. Discussion

The models induced by Golem and PAL were compared against the standard model by
evaluating the models on possible states of the U-tube. Golem’s model is equivalent to
the standard model only in a dynamic sense. From some initial states, the Golem model
produces the same behavior as the standard model. The model induced by Golem fails in
states where all the water is in one of the containers. It is of interest to note that the models
induced by PAL (with three and four variables) accept all the legal states for the U-tube
and that PAL can learn a specialization (w.r.t.θ-subsumption) of the standard model if the
qualitative variablediff is provided (Morales, 1992).

Following (Bratko, Muggleton & Varsek, 1992), other authors have worked on this prob-
lem. Although the U-tube looks relatively simple, Bratko et al. (Bratko, Muggleton &
Varsek, 1992) and Dzeroski (Dzeroski & Bratko, 1992) report how ILP systems like Foil
(Quinlan, 1990) and Linus (Lavrac, Dzeroski & Grobelnik, 1991) are not suited to the task.
Each variable has 4 landmark values and 3 time intervals, which gives 7 possible qualitative
values for each variable. Combining these with the three possible directions of change give
21 possible qualitative values for each variable. With three variables, the total number of
states for the U-tube is213 = 9,261. An additional problem for ILP systems that search
heuristically in a general–to–specific way, is that they tend to have problems in learning
clauses involving a large number of literals. As in the chess domain, some more interesting
qualitative models will tend to have large definitions.

Perhaps the best results for learning qualitative model have been obtained by Coiera with
a system called Genmodel (Coiera, 1989). Genmodel is specifically designed for learning
qualitative models and has learned, among others, a model for the U-tube. Genmodel has
the advantage of using the full power of QSIM by considering the corresponding values to
filter out a larger number of constraints. Although PAL was not originately designed to this
domain, it is interesting to note that it can achieved an equivalent performance to Genmodel
for the U–tube.

We have demonstrated that the learning mechanism employed by PAL generalizes to this
qualitative physics domain, and that the results are comparable with those of Golem in
terms of quality, and that in some respects PAL’s performance is superior.

244 E. MORALES

6. Learning counterpoint rules

The concept of musical counterpoint emerge in the 14th. century and evolve up toGradus
ad Parnassumby Johann Joseph Fux published in 1725 (Man, 1971). This is the first book
which synthesize in form of rules the art of polyphony considered to be correct by that time.
Those rules can be considered as the culmination of musical analysis from the 14th. until
18th. century.

Counterpoint rules can be classified between two voices (sequences of notes) into several
species, according to the number of notes involved at the same time on each voice:

• 1st: one note on one voice against one note on the other

• 2nd: two notes on one voice against one note on the other

• 3rd: four notes on one voice against one note on the other

• 4th: a whole note (of four times) on one voice against half notes (of two times) on the
other

• 5th or florid: three or more notes in combination with the previous species

Our goal is to obtain similar rules as those described by Fux from examples of counterpoint
musical pieces and basic musical knowledge from traditional music. This can be expressed
as follows:

Music-Theory∧ Counterpoint-Rules̀ Counterpoint-pieces

Musical knowledge includes the classification of intervals (distances in height between two
notes) into:consonancesanddissonances. Unison, fifthandoctaveareperfect consonances
while third (major and minor) andsixth (major and minor) areimperfect consonances.
Second(major and minor),fourth, augmented fourth, diminished fifthandseventh(major
and minor) aredissonances.

These are the elements which account for all harmony in music. The purpose of harmony
is to give pleasure by variety of sounds through progressions from one interval to another.
Progression is achieved by motion, denoting the distance covered in passing from one
interval to another in either direction, up or down. This can occur in three ways: direct,
contrary or oblique:

• direct motion: results when two or more parts ascend or descend in the same direction

• contrary motion: results when one part ascends and the other descends, or vice versa.

• oblique motion: results when one part moves while the other remains stationary

With these concepts the counterpoint rules of the 1st. species are defined as follows:

First rule: from one perfect consonance to perfect consonance one must proceed in con-
trary or oblique motion

A PATTERN–BASED LEARNING SYSTEM 245

Second rule: from a perfect consonance to an imperfect consonance one may proceed in
any of the three motions

Third rule: from an imperfect consonance to a perfect consonance one must proceed in
contrary or oblique motion

Fourth rule: from one imperfect consonance to another imperfect consonance one may
proceed in any of the three motions

re do

re fa

voice1

voice2

Figure 3. An example of the first rule

la la la si

voice1

voice2

re fa re sol

Figure 4. An example of the second rule

In the case of music, a musical score can be completely described by the tone and height
of each note involved, its time interval and the voice where it belongs. For counterpoint
rules of the first species, time intervals can be ignored7 and the examples were described
by two–place atoms (note/2) stating the tone and height of each note and its voice. For
instance,note(c/4, voice1)states that a “c” note in the center of the piano scale (4) belongs
to voice one. Other notes of the same or different voices can be described in the same way.

246 E. MORALES

si do la la

voice1

voice2

sol fa fa re

Figure 5. An example of the third rule

Figure 6. An example of the fourth rule

6.1. Experiments and results

The following musical knowledge was provided to PAL8:

• inter class1(Note1,Note2,Valid): describes if two notes from the same voice have a
valid/invalid interval. Where valid intervals can be consonances or dissonances which
follow the same modality9 of the cantus firmus(sequence of single notes to which
counterpoint rules are applied to generate harmonic notes).

• inter class2(Note1,Note2,Conso): describes if two notes of different voices form a
perfect or imperfect consonance or a dissonance.

As in the qualitative model domain, the original musical knowledge was adapted to follow
a pattern–based formalism. For instance, the definition ofinter class2/3was given to PAL
as follows:

inter class2(Note1,Note2,Type)←
note(Note1/, Voice1),
note(Note2/, Voice2),
interval(Inter,Note1,Note2),
int class(Valid,Inter,Type).

A PATTERN–BASED LEARNING SYSTEM 247

whereinterval/3andint class/3are background knowledge definitions that return the mu-
sical interval between two notes, and if the interval is valid/invalid with its type (perf cons,
imperf cons, diss).

PAL was given manually the examples for each rule10. The number of examples required
to learn each rule is given below:

Rules Rule1 Rule2 Rule3 Rule4

Number of 6 4 5 5
examples

The first rule induced by PAL is shown below (the other three rules are very similar
changing only in the different combinations ofperf consandimperf cons).

rule(Note1/Height1, Note2/Height1, voice1, Note3/Height2,
Note4/Height2, voice2) :–

note(Note1/Height1, voice1),
note(Note2/Height1, voice1),
note(Note3/Height2, voice2),
note(Note4/Height2, voice2),
inter class1(Note1, Note2, valid),
inter class1(Note3, Note4, valid),
inter class2(Note1, Note3, perfcons),
inter class2(Note2, Note4, perfcons).

The rules learned by PAL were tested for analysis on simple counterpoint pieces. We add
an extra argument to each rule to distinguished them from the rest. The analysis was made
with the following program:

analysis([N1,N2|RVoice1],[N3,N4|RVoice2],[NumRule|Rules])←
rule(N1, N2, voice1, N3, N4, voice2, NumRule),
analysis([N2|RVoice1],[N4|RVoice2],Rules).

analysis([],[],[]).

For instance, for the piece below (figure 7), we obtained the following analysis:

?- analysis([d/4,f/4,e/4,d/4,g/4,f/4,a/4,g/4,f/4,e/4,d/4],
[a/4,a/4,g/4,a/4,b/4,c/5,c/5,b/4,d/5,cs/5,d/5],
Rules).

Rules = [r1,r4,r3,r2,r3,r2,r4,r4,r4,r2].

The same program can be used for musical generation. For example in figure 8, given the
cantus firmus(the first voice), we can generate the required counterpoint notes (the second
voice):
?- analysis(Notes,[d/4,f/4,e/4,d/4,g/4,a/4,g/4,f/4,e/4,d/4],[r1,r3,r3,...]).

Notes = [d/3,d/3,a/3,f/3,e/3,d/3,f/3,c/4,d/4,cs/4,d/4].

248 E. MORALES

Figure 7. An example of counterpoint analysis

Figure 8. An example of counterpoint generation

6.2. Discussion

In (Widmer, 1992), Widmer describes a system capable of learning counterpoint rules
using an Explanation–based learning approach (de Jong & Mooney, 1986). Unlike PAL, a
generalization of the target counterpoint rules is required as background knowledge, from
which the more specific counterpoint rules are derived. By contrast, PAL uses a much
simpler background knowledge to induce equivalent rules.

It is shown in this section how PAL can effectively learn simple counterpoint rules from
general purpose musical knowledge and simple example descriptions. The learned rules
can be used for musical analysis and generation.

7. Comparison with other related work

To achieve efficiency some ILP systems (such as Golem(Muggleton & Feng, 1990) or Foil
(Quinlan, 1990)) have used a set of ground atoms as background knowledge. These systems,
however, suffer from the problem of preparing such background facts. Defining background
facts for some concepts is a time consuming and difficult process. Specially since it is
sometimes unworkable for the systems to include all the background facts, even if they are
finite (e.g., the concept of legal moves in chess, or the concept of addition of qualitative
variables). In such cases, appropriate subsets need to be selected to maintain efficiency,
which requires a prior knowledge of the training example set. In particular, Golem required
to simplified the definition ofadd into three more “economical” predicates to reduce the
number of tabulated facts and learned a model for the U–tube11. These systems cannot be

A PATTERN–BASED LEARNING SYSTEM 249

used in an incremental way, which means that once a concept is learned, ground facts need
to be selected again if it is going to be used in the induction of a new concept.

ILP systems which use non–ground clauses as background knowledge, such as ITOU
(Rouveurol, 1991) or Clint (De Raedt & Bruynooghe, 1988, De Raedt & Bruynooghe), have
been applied to very limited domains (e.g., family relations, the concept of “arch”, etc) de-
spite the use of several constraints. In particular, CLINT can use integrity constraints to
specify properties about the target concept and reduce the search space. ITOU uses partial
graphs to represent saturated examples and guide the generalization process.

There have been other recent systems that impose a particular structure to the learned
clauses. For instance, GRENDEL (Cohen, 1992) limits the hypothesis space by requiring
all the hypotheses to be sentences of a particular grammar called Antecedent Description
Grammar. GRENDEL starts with the start symbol of the grammar and repeatedly specializes
it by applying rewrite rules of the grammar and using Foil’s information–gain metric to guide
this process.

Progol (Muggleton, 1995) is a most recent ILP system which uses mode declaration
and depth–bounded resolution steps to construct a most–specific clause. It then uses a
refinement operator, similar to MIS (Shapiro, 1983), to construct its hypotheses considering
the predicates used in the most–specific clause to focus its search.

PAL can learn relatively long clauses in the presence of large amounts of background
knowledge12 which are difficult to learn by systems which heuristically search in a general
to specific way. Additionally, PAL’s learning task is non standard, in the sense that the
name and the number of arguments of the target concept are not explicitly stated in the
examples. The introduction of a pattern–based background knowledge representation and
the introduction of a novel constraint based on labels have allow PAL to learn concepts which
are beyond the existing capabilities of current inductive systems, despite its simplicity. On
the other hand, PAL is unable to learn concepts which do not follow a pattern–based format.

8. Conclusions and future work

Pattern–based reasoning has been used by several computer systems to guide their reasoning
strategies13. For chess, in particular, a pattern–based approach has been used with relative
success in simple end–games (Bramer, 1977, Bratko, 1982, Huberman, 1968) and tactically
sharp middle games (Berliner, 1977, Pitrat, 1977, Wilkins, 1979). Our aim has been to learn
chess patterns from simple example descriptions together with the rules of the game. To
achieve this goal, we have used an Inductive Logic Programming (ILP) framework as it
provides an adequate hypothesis language and mechanism where patterns and examples can
be simply expressed and, in principle, learned in the presence of background knowledge.
The limitations of current ILP systems are more clearly exposed in domains like chess,
where a large number of background definitions can be required, it is common to have non–
deterministic concepts, some background knowledge definitions can cover a very large
number of facts all of which are required, and concepts can be several literals long. The
same restrictions appear in other domains, like qualitative modeling. In PAL, examples are
given as descriptions of states of a system (e.g., a description of the pieces in a chess board)
and instances of patterns definitions are derived from such descriptions. Together they are

250 E. MORALES

used to construct new pattern definitions, which can then be used in new examples. In
order to ‘recognize’ instances of patterns from such state descriptions, we have introduced
a pattern–based knowledge representation. This approach makes a more selective use of
the background knowledge by considering only those definitions which apply to the current
example description, reducing most of the problems encountered by other ILP systems. The
approach has been successfully applied in chess, qualitative reasoning, and music, and it is
suspected to be useful to other domains where a pattern–based approach can be applied. A
novel mechanism for labeling the arguments of the components used in the state descriptions
and the atoms which are derived from the background knowledge have been used for two
main purposes. On one hand it guides and constraints the generalization process as only
compatible literals of the same components are considered. On the other hand, it is used to
construct the example space and guide the example generator by indicating which literals
are affected by which arguments.

8.1. Future work

There are several research areas which are being considered at the moment. In particular,
we would like to extend the expressiveness of our pattern definitions (e.g., allow recursive
patterns). We have not dealt with noisy examples and/or incomplete knowledge. One
important question is how much starting knowledge to include in order to learn a wide range
of concepts. In the presence of noise in the training examples, the generated hypotheses
must be allowed to accept some negative examples and/or to reject some positive examples.
If both noise and incomplete knowledge are considered, a balance between them must
be established. That is, recognize when the induced concept is incorrect due to noisy
information or because the lack of knowledge.

The lgg of clauses is limited to learning single clauses (i.e., it cannot learn disjunctive
definitions), cannot include negation of literals, and cannot introduce new terms. PAL can
learn disjunctive definitions using negative examples to check for over–generalizations and
by providing an instance of each disjunct. With insufficient or unrepresentative negative
examples, PAL can produce over–generalizations and does not have an adequate mechanism
to recover from them. Similarly, it cannot detect if insufficient knowledge is provided.

The strategy followed by PAL has been to do ‘simple’ perturbations first. Additional
improvements in the learning rate can be obtained by including domain dependent knowl-
edge to the example generator (e.g., symmetries, shifts of positions, etc.). Although not
implemented, the invariance of a clause with respect to an axis of symmetry or to shifted
positions could be deduced from the concept definitions after seeing several examples.

Acknowledgments

This research was partly supported by a grant from CONACyT (M´exico). I would like to
thank Tim Niblett for all his insightful comments in the development of this work, Roberto
Morales who provided me with all the musical knowledge, and the anonymous reviewers
for their helpfull comments on an earlier version of this paper.

A PATTERN–BASED LEARNING SYSTEM 251

Notes

1. Clauses whose literals are not completely determined by instantiations of the head.

2. A single white or black piece is legally moved from one square to another.

3. The complement ofP is¬P and vice versa.

4. Background definitions given as ground unit clauses are also considered as relevant.

5. I am grateful to Saso Dzeroski for providing me with the code.

6. Redundant literals produced by symmetry and associativity of the constraints (e.g.,m plus(A,B) andm plus(B,A),
andadd(A,B,C) andadd(B,A,C)), were removed from the definition.

7. We are beginning to investigate how to include time intervals in the descriptions of scores.

8. I am grateful to Roberto Morales who provided all the musical background knowledge.

9. The same musical scale.

10. The examples were suggested by Roberto Morales without knowing the exact functioning of the system.

11. For this domain, theaddconstraint requires several thousand facts for each triple of variables.

12. Both the chess and the qualitative model domains include several pages of Prolog code as background
knowledge.

13. In particular, the conditions used in the production rules used in most expert systems can be regarded as
particular patterns to match.

References

Berliner, H.J. (1977). “A representation and some mechanisms for a problem-solving chess program”. In
M.R.B. Clarke (Eds.),Advances in Computer Chess 1, Edinburgh: Edinburgh University Press.

Bramer, M. A. (1977). “Representation of knowledge for chess endgames: Towards a self–improving system”.
PhD ThesisOpen University, Milton Keynes.

Bratko, I. (1982). “Knowledge-based problem-solving in AL3”. In J.E. Hayes, D. Michie, & Y.H. Pao (Eds.),
Machine Intelligence 10, Horwood.

Bratko, I., Muggleton, S., & Varsek, A. (1992). “Learning qualitative models of dynamic systems”. In S.
Muggleton (Eds.),Inductive Logic Programming, London: Academic Press.

Buntine, W. (1988). “Generalized subsumption and its applications to induction and redundancy”,Artificial
Intelligence, 36(2), 149–176.

Campbell, D. T. (1966).Pattern Matching as an Essential in Distal Knowing, New York: Holt, Rinehart and
Winston.

Charness, N. (1977). “Chess skill in man and machine”, In P.W. Frey (Eds.),Human chess skill, Springer-Verlag.
Cohen, W. (1992) “Compiling prior knowledge into an explicit bias”,Proceedings of the Eighth International

Workshop on Machine Learning(pp. 485–489). San Mateo: CA: Morgan Kaufman.
Coiera, E. (1989) “Generating qualitative models from example behaviors”,DCS Report No. 8901, School of

Electrical Engineering and Computer Science, University of New South Wales, Sydney, Australia.
de Groot, A. (1965).Thought and Choice in Chess, The Hague: Mouton.
de Jong, G. & Mooney, R. (1986). “Explanation-based learning: an alternative view”,Machine Learning, 1(2),

145–176.
de Raedt, L. & Bruynooghe, M. (1988). “On interactive concept-learning and assimilation”,Proceedings of the

Third European Working Session on Learning, (167–176), London: Pitman.
de Raedt, L. & Bruynooghe, M. (1990). “Indirect relevance and bias in inductive concept-learning”,Knowledge

Acquisition, 2(4), 365–390.
Dzeroski, S. & Bratko, I. (1992). “Handling noise in inductive logic programming”,Proceedings of the Seciond

International Workshop on Inductive Progamming, (pp. XX-YY), Tokyo, Japan, ICOT TM-1181, Institute for
New Generation Computer Technology.

Flann, N. S. & Dietterich, T. G. (1989). “A study of explanation-based methods for inductive learning”,Machine
Learning, 4(2), 187–226.

252 E. MORALES

Huberman, B. J. (1968). “A program to play chess end games”,CS-106, Computer Science Department, Stanford
University, Stanford, CA.

Kuipers, B. (1986). “Qualitative simulation”,Artificial Intelligence, 29 (3), 289–338.
Lavrac, N., Dzeroski, S., & Grobelnik, M. (1991). “Learning nonrecursive definitions of relations with linus”,

Proceedings of the European Working Session on Learning, (265–281), Berlin: Springer-Verlag.
Levinson, R. & Snyder, R. (1991) “Adaptive Pattern-Oriented Chess”,Proceedings of the Ninth National Confer-

ence on Artifical Intelligence, (601–606), Boston: AAAI Press - The MIT Press,
Lorenz, K. (1973)Behind the Mirror, New York: Harcourt Brace Jovanovich.
Man, A. (1971)The study of counterpoint from Johann Joseph Fux’s Gradus ad Parnassum, W.W. Norton &

Company.
Minton, S. (1984). “Constraint–based generalization: learning game–playing plans from single examples”,

Proceedings of the National Conference on Artificial Intelligence, (251–254), Menlo Park, CA: Kaufmann.
Mitchell, T. M., Keller, R. M. & Kedar-Cabelli, S. T. (1986). “Explanation–based generalization: a unifying

view”, Machine Learning, 1(1), 47–80.
Morales, E. (1992) “First order induction of patterns in Chess”,PhD Thesis, The Turing Institute - University of

Strathclyde, Glasgow.
Morales, E. (1994). “Learning patterns for playing strategies”,ICCA Journal, 17(1), 15–26.
Muggleton, S. (1995)New Generation Computing Journal13: 245–286.
Muggleton, S. (1992)Inductive Logic Programming, London: Academic Press.
Muggleton, S. & Feng, C. (1990). “Efficient Induction of Logic Programs”, In S. Muggleton (Eds.),Inductive

Logic Programming, London: Academic Press.
Niblett, T. (1988). “A study of generalisation in logic programs”,Proceedings of the Third European Working

Session on Learning, (131–138), London: Pitman.
Pitrat, J. (1977). “A chess combination program which uses plans”,Artificial Intelligence, 8, 275–321.
Plotkin, G. D. (1969). “A note on inductive generalization”, In B. Meltzer & D. Michie (Eds.),Machine Intelligence

5, Edinburgh: Edinburgh University Press.
Plotkin, G. D. (1971a). “A further note of inductive generalization”, In B. Meltzer & D. Michie (Eds.),Machine

Intelligence 6, Edinburgh: Edinburgh University Press.
Plotkin, G. D. (1971b). “Automatic methods of inductive inference”,PhD Thesis, University of Edinburgh,

Edinburgh.
Quinlan, J. R. (1983). “Learning efficient classification procedures and their application to chess end games”, In

R.S. Michalski, J.G. Carbonell, & T.M. Mitchell (Eds.),Machine Learning: an artificial intelligence approach,
Palo Alto, CA: Tioga.

Quinlan, J. R. (1990). “Learning logical definitions from relations”,Machine Learning, 5(3), 239–266.
Rouveurol, C. (1991) “ITOU: Induction of first order theories”, In S. Muggleton (Eds.),Proceedings of the

International Workshop of Logic Programming, Viana de Castelo, Portugal.
Shapiro, E.Y. (1983)Algorithmic program debugging. MIT Press.
Shapiro, A. D. (1987)Structured induction in expert systems, Wokingham: Turing Institute Press in association

with Addison-Wesley.
Tadepalli, P. (1989) “Planning in games using approximately learned macros”, In B. Spatz (Eds.),Proceedings of

the Sixth International Workshop on Machine Learning, (221–223), San Mateo, CA: Morgan Kaufmann.
Widmer, G. (1992). “The importance of basic musical knowledge for effective learning”, In M. Balaban, J. Ebcio˘glu

& O. Laske (Eds.),Understandig Musica with AI: Perspectives on Music Cognition, Cambridge - Menlo Park:
AAAI Press/MIT Press.

Wilkins, D. E. (1979) “Using patterns and plans to solve problems and control search”,(AIM-329 ; STAN-CS-79-
747), Stanford University, Artificial Intelligence Laboratory, Stanford, CA.

Received September 1995
Accepted June 1996
Final Manuscript January 1997

