
Machine Learning, 27, 173–200 (1997)
c© 1997 Kluwer Academic Publishers. Manufactured in The Netherlands.

Representing Probabilistic Rules with Networks of
Gaussian Basis Functions

VOLKER TRESP volker.tresp@mchp.siemens.de
Siemens AG, Central Research, 81730 München, Germany
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Abstract. There is great interest in understanding the intrinsic knowledge neural networks have acquired during
training. Most work in this direction is focussed on the multi-layer perceptron architecture. The topic of this paper
is networks of Gaussian basis functions which are used extensively as learning systems in neural computation.
We show that networks of Gaussian basis functions can be generated from simple probabilistic rules. Also,
if appropriate learning rules are used, probabilistic rules can be extracted from trained networks. We present
methods for the reduction of network complexity with the goal of obtaining concise and meaningful rules. We
show how prior knowledge can be refined or supplemented using data by employing either a Bayesian approach,
by a weighted combination of knowledge bases, or by generating artificial training data representing the prior
knowledge. We validate our approach using a standard statistical data set.
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1. Introduction

Many systems which were developed in the field of machine learning are rule-based, i.e.,
they provide an explicit representation of the acquired knowledge in the form of a set
of rules. A rule-based representation has a number of advantages: rules are compact,
modular, and explicit, plus they can be analyzed by domain experts and can be checked
for plausibility. If it is felt that the represented knowledge is incomplete, informative
additional experiments can be designed by carefully analyzing the available rule base. Over
the last decade, neural networks (more precisely, artificial neural networks) are being used
increasingly as learning systems (Rumelhart & McClelland, 1986; Hertz, Krogh, & Palmer,
1991). In neural networks, the acquired knowledge is only implicitly represented in the
network architecture and weight values. It is therefore in general difficult to obtain explicit
understanding of what the neural network has learned which in many cases might be highly
desirably. Consider the rather spectacular case of Tesauro’s TD-Gammon network (1992).
TD-Gammon is a neural network that learned to play championship-level Backgammon by
playing against itself without a supervisor. TD-Gammon’s weights contain a tremendous
amount of useful information. Currently there are basically only two ways to understand the
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functionality of the network: by plotting patterns of weight values or by gathering statistics
of the network output through extensive play. The former method provides no more than
a general impression; the latter forces the human to redo the entire learning process. It
would be extremely helpful if it was possible to automatically construct readable higher
level descriptions of the stored network knowledge.

So far we only discussed theextractionof learned knowledge from a neural network.
For many reasons the“reverse” process, by which we mean the incorporation of prior high-
level rule-based knowledge into the structuring and training of a neural network, is of great
importance as well. First, a network that has been pre-initialized with domain knowledge —
even if it is approximate knowledge— may learn faster (i.e., converge in fewer learning steps
to an acceptable solution) than a network learning from scratch (Shavlik & Towell, 1989;
Gallant, 1988). A second reason is that in many domains it is difficult to get a significant
number of training examples. In this case we clearly want to utilize any prior knowledge we
may possess about the domain. A third reason is that the data distribution over input space
is often highly nonuniform. Thus even if we have access to a large training corpus, it may
contain very few, if any, examples in some regions of input space. However the system’s
response to those areas may be critical. As an example consider the diagnosis of rare fatal
diseases. In such situations, even though the training set may contain few examples of the
disease, a domain theory may exist and it is desirable to exploit this knowledge.

The topic of this paper is the two-way relationship — i.e., the extraction of learned knowl-
edge from a trained neural network and the inclusion of prior rule-based knowledge into the
structuring and training of neural networks — between network-based representations and
higher level, rule-based representations. Previous work in this area has concentrated on the
popular multi-layer perceptron architecture either for incorporating rule-based knowledge
into network training (Fu, 1989; Towell & Shavlik, 1994) or for extracting knowledge out
of a trained network (Fu, 1991; Towell & Shavlik, 1993; Thrun, 1995). In this paper we
consider normalized Gaussian basis function (NGBF) networks which represent another
commonly used learning system in the neural network community. In Tresp, Hollatz and
Ahmad (1993) it was shown that there is a certain equivalence between NGBF-networks
and probabilistic rules if appropriate learning rules for the NGBF-networks are used. This
approach will be explored in detail in this paper. We will demonstrate that the probabilistic
setting has unique advantages. In particular, it is straightforward to calculate inverse models,
conditional probability densities, and optimal responses with missing or noisy features. In a
non-probabilistic setting these calculations are either impossible or involve either complex
numerical integrations or heuristic solutions.

The models described in this paper are based on the mixtures of Gaussians which are
commonly used as probability density estimators (Duda & Hart, 1973). Cheesemanet al.
(1988) use mixtures of Gaussians in their AutoClass system to discover unlabeled classes
or clusters in data sets which can be considered as a form of data analysis. The novel aspect
of this paper is to develop and exploit the three-way relationship between probabilistic
rule-bases, networks of Gaussian basis functions which are commonly used in the neural
network community, and statistical Gaussian mixtures models.

Section 2 introduces networks of normalized Gaussian basis functions (NGBFs). Sec-
tion 3 shows how networks of NGBFs can be constructed using a set of probabilistic rules
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and demonstrates how they can be used for inference in classification and regression. Sec-
tion 4 shows how a rule base can be generated from data by training an NGBF-network
using appropriate learning rules and by extracting rules after training. Section 5 shows how
prior rule-based knowledge can be combined with learning from training data. In Section 6
we present experimental results using a widely used statistical data set and describe meth-
ods for optimizing the network structure. Section 7 presents modifications and discusses
related work and in Section 8 we present conclusions.

2. Gaussian Basis Function Networks

In this section we introduce Gaussian basis function (GBF) networks and networks of
normalized Gaussian basis functions (NGBFs), then discuss the most common algorithms
to train NGBF-networks.

Gaussian basis function (GBF) networks are commonly used as predictors and classifiers
in the neural network community (Moody & Darken, 1989; Poggio & Girosi, 1990). The
output of a GBF-network is the weighted superposition of the responses ofN Gaussian
basis functions

y = GBF (x) =
N∑
i=1

wi exp[−1
2

M∑
j=1

(xj − cij)2
σ2
ij

]

with x = (x1, x2, . . . , xM )′ ∈ <M andy ∈ <; the prime()′ indicates the transpose of
a vector or matrix. The GBFs are parameterized by the locations of their centersci =
(ci1, . . . , ciM )′, and the vectors of scaling parametersσi = (σi1, . . . , σiM )′ whereσij is a
measure of the width of theith Gaussian in thejth dimension. Additional parameters are the
output weightsw = (w1, . . . , wN )′. Moody and Darken (1989) also introduced networks
of normalized Gaussian basis functions (NGBFs) whose responses are mathematically
described as1

y = NGBF (x) =
∑N
i=1 wibi(x)∑N
k=1 bk(x)

=
N∑
i=1

wini(x) (1)

with

bi(x) = κi exp[−1
2

M∑
j=1

(xj − cij)2
σ2
ij

] and ni(x) =
bi(x)∑N
k=1 bk(x)

.

In this paper, we are only concerned with NGBF-networks.
Typically, network parameters are determined using a training data set{(xk, yk)}Kk=1. A

number of training methods for NGBF-networks were suggested in the literature. In the
method proposed by Moody and Darken, the centersci are cluster centers obtained usingN -
means clustering of the input data distribution. The scaling parametersσij are determined
using a heuristic, typically they are set to a constant multiple of the average distance between
cluster centers. In the soft-clustering algorithm introduced by Nowlan (1991), a Gaussian
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mixture2 model of the input data is formed and the centers and standard deviations of the
Gaussian mixtures are used for the centers and scale parameters in the NGBF-networks. If a
Gaussian unit is placed on each each data point, we obtain architectures proposed by Specht
(1990, 1991) and Smyth (1994). The parametersκi in the NBGF-network determine the
overall weight of a Gaussian in the network response (Tresp, Hollatz, & Ahmad, 1993) and
are often set to one.

With centers and scaling parameters fixed, the output weightswwhich minimize the mean
squared error of the NGBF-network on the training data can be determined using

wls = (n′n)−1 n′ ty (2)

wherety = (y1, . . . , yK)′ is the vector of targets andn is anK ×N matrix with elements
(n)ki = ni(xk) (Sen & Srivastava, 1990).

In the learning algorithms just described, centers and widths of the GBFs are determined
solely based on the input data and only the output weights are determined using information
about the targetsyk. Alternatively, all parameters can be adjusted to minimize the training
error defined as

K∑
k=1

(NGBF (xk)− yk)2 (3)

using an optimization routine such as gradient descent (R¨oscheisen, Hofmann, & Tresp,
1992; Wettscherek & Dietterich, 1992).

In particular in classification problems, it often makes sense to also work with multi-
dimensional outputsy = (y1, . . . , yl, . . . , yC)′, with

yl =
N∑
i=1

wil ni(x) (4)

and whereC denotes the number of classes. In classification,xk corresponds to the feature
vector of thek−th training pattern and

ykl =
{

1 if j = l
0 otherwise

indicates that thej-th class is the correct class for thek-th training pattern. During recall, a
pattern is assigned to that class whose corresponding network output has maximum activity.

The responses of the Gaussian basis functions tend to have a local character in the sense
that each basis function contributes to the response of the network in only a local region of
the input space close to its center. The extend of this region of influence is determined by
the scaling parameters. This indicates that we might be able to formulate approximate rules
of the form: Ifx ≈ ci THENy ≈ wi. Figure 1 shows that this rule is much more consistent
with the response of the NGBF-network than with the response of the GBF-network. The
reason is that in the calculation of the response of the GBF-network, the contributions of
the individual basis functions are additive. The total response of the network of NGBF-
functions on the other hand is a weighted average of the responses of the individual units,
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Figure 1. The figure compares the response of a network of Gaussian basis functions (GBFs, left) with the
response of a network of normalized Gaussian basis functions (NGBFs, right). On the left, we see two Gaussian
basis functions (dotted). The network response (continuous line) is a superposition of the two Gaussians weighted
by the output weights 1.0 (for the left GBF) and 2.0 (for the right Gaussian). The right graph displays the responses
of two normalized Gaussian basis functions with identical output weights (1.0, 2.0). Shown are also the two basis
functions (dotted) and the normalized Gaussian basis functions (dashed). We usedκ1 = κ2 = 1. It is apparent
that the network response of the NGBF-network corresponds to the intuitive notion that close to the center of the
left Gaussian the output should be close to the output weight of the left Gaussian (i.e., 1.0) and close to the center
of the right Gaussian, the output should be close to the output weight of the right Gaussian (i.e., 2.0).

where the weighting function of each individual basis function is proportional to the activity
of the corresponding Gaussian. This averaging results in a compromise between the output
weights of the active Gaussians. In the following sections we pursue this observation further.
We will show that by formulating probabilistic rules we can construct NGBF-networks and
that probabilistic rules can be extracted from NGBF-networks trained on data. In addition,
we will show how rule-based knowledge can be used in several ways in combination with
trained NGBF-networks.

3. Constructing NGBF-networks from Rules

In this section we show how simple probabilistic rules can be used to incorporate prior
knowledge of a domain expert. Then we show that if we perform inference using those
probabilistic rules we obtain an NGBF-architecture. The premises of the rules make state-
ments about the state of a discrete variable. In classification applications that variable
typically has a real world meaning (i.e., the class). We show that this need not be the case
and one novel aspect of this paper is to demonstrate how rules with premises which have
no obvious real world meaning can be used to generate rule bases which are particularly
useful for making inferences about continuous quantities.
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Figure 2. Shown are the distributions of the features (body temperature, blood pressure) for a healthy patient (1,
o), for a patient with disease A (2, +), for a patient with disease B (3, x) and for a patient with both diseases (4,
*). The ovals indicate the extend of Gaussians modeling the respective data distributions and the symbols o, +, x,
and * indicate samples.

3.1. Classifiers

Classification can be considered as the problem of estimating the state of a discreteC-state
random variables (i.e., the class) given a feature vectorx = (x1, . . . , xM )′ whereC is the
number of classes and, in general,xi ∈ <. Given the feature vector we can calculate the
posterior probability of a class using Bayes’ rule as

P (s = i|x) =
P (x|s = i)P (s = i)∑C
j=1 P (x|s = j)P (s = j)

. (5)

Here,P (s = i) is the prior probability of classi andP (x|s = i) is the probability density of
feature vectorx given classi. A simple example is shown in Figure 2. The different classes
represent a healthy patient, a patient with disease A, a patient with disease B and a patient
with both diseases. The two features arex1 = body temperature andx2 = blood pressure.
We assume that the conditional densities of the features given the classes can be represented
by normal densities

P (x|s = i) = G(x; ci, σi) =
1

(2π)M/2
∏M
j=1 σij

exp[−1
2

M∑
j=1

(xj − cij)2
σ2
ij

]. (6)

Here, only axis-parallel Gaussians (i.e., with diagonal covariance matrices) are used which
means that the individual features are independent if the true class is known. Note that
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G(x; ci, σi) is our notation for a normal density centered atci and with a vector of scaling
parametersσi. If the patient is healthy, which is true with probabilityP (s = 1), body
temperature and blood pressure are in a normal range. Similarly, the second Gaussian
models disease A which results in high blood pressure and normal body temperature, the
third Gaussian models disease B which results in high body temperature and normal blood
pressure and the fourth Gaussian models patients with both diseases which results in high
blood pressure and high body temperature. In terms of probabilistic networks (Figure 3A)
(Pearl, 1988), the variables which hasC different states can be considered a parent node
and thexi are children which are independent if the state ofs is known.

For easier interpretation, the human expert might find it convenient to put his or her
knowledge in form of probabilistic rules (Table 1).

Table 1.A classification rule. For each classi define:

IF: classi is true (which is the case with prior probabilityP (s = i))
THEN: (the features are independently Gaussian distributed and)

the expected value ofx1 is ci1 and the standard deviation ofx1 is σi1
AND the expected value ofx2 is ci2 and the standard deviation ofx2 is σi2
. . .
AND the expected value ofxM is ciM and the standard deviation ofxM is σiM .

Since the discrete variables appears in the premise of the rules we will denotes in the
following as the premise variable. The (typically real-valued) variables{xj}Mj=1 will be
denoted interchangeably as conclusion variables or feature variables. If the expert defines a
set of rules in this form we can use Equation 5 to perform inference, i.e., to classify a novel
pattern. But note that if we use centersci and scaling parametersσi from the rule base, and
set

κi = P (s = i)× 1

(2π)M/2
∏M
j=1 σij

andwil = 1 if the i-th Gaussian is assigned to classl andwij = 0 otherwise we obtain an
NGBF-classifier (Equation 4).

In the way just described we can build or prestructure an NGBF-classifier using a set of
probabilistic rules.

3.2. More Complex Classifiers

If there are correlations between the features for each class or, more general, ifP (x|s = i)
cannot be described by a single Gaussian, the classifier which was described in the last
section is too simplistic. There are two obvious ways more complex classifiers can be built.
As described by Ghahramani and Jordan (1993), linear correlations between features can be
modeled by Gaussians with full covariance matrices. Alternatively, we can allow for more
than one Gaussian to approximate the class conditional density. LetN be the total number
of Gaussians and letI(i) denote the set of indices of the Gaussians which are assigned to
classi. Then
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Figure 3. A: The dependency structure of a classification problem. The directed arcs indicate that the featuresx1

andx2 are independent if the state ofs is known. B: As in A, with the internal states ofs shown, indicating that
there are three classes. C: Dependency structure of a hierarchical system. D: As in C, with the internal states ofs
ands∗ shown. The arrows between the states ofs ands∗ indicate that pairs of Gaussians model the class-specific
feature distributions.

P (x|s = i) =
∑
j∈I(i)

P (s∗ = j|s = i) G(x; cj , σj) (7)

where the state ofs ∈ {1, . . . , C} indicates the class and the state ofs∗ ∈ {1, . . . , N}
indicates the Gaussian unit with the constraint that

∑
j∈I(i) P (s∗ = j|s = i) = 1 and with

P (s∗ = j|s = i) = 0 if j 6∈ I(i).
If we substitute Equation 7 into Equation 5 we obtain again an NGBF-classifier

P (s = i|x) =
P (s = i)

∑
j∈I(i) P (s∗ = j|s = i) G(x; cj , σj)∑C

k=1 P (s = k)
∑
j∈I(k) P (s∗ = j|s = k) G(x; cj , σj)

. (8)

In Figure 3 on the left, we indicate graphically the relationship betweens (with 3 states)
and the featuresx1 andx2 of the simple classifier described in the last section. On the right
side we show the structure of a classifier where each class-conditional density is modeled
by more than one Gaussian. In some cases the states ofs∗ might also have a real world
meaning.

The corresponding rule-based formulation is shown in Table 2. Here, the expert also has
to specifyP (s∗ = j|s = i) for all classesi and Gaussiansj. Note, that the hierarchy can
be extended to an arbitrary number of layers.3



REPRESENTING PROBABILISTIC RULES WITH NETWORKS OF GBFS 181

Table 2.A hierarchical rule-base. For each classi and each unitj ∈ I(i), define:

IF: classi is true (which is the case with prior probabilityP (s = i))
THEN: s∗ = j is true with probabilityP (s∗ = j|s = i).

IF: s∗ = j is true
THEN the expected value ofx1 is cj1 and the standard deviation ofx1 is σj1

AND the expected value ofx2 is cj2 and the standard deviation ofx2 is σj2
. . .
AND the expected value ofxM is cjM and the standard deviation ofxM is σjM .

3.3. Modeling the Relationship between Continuous Variables

In many applications we are interested in making inference about a continuous quantity. It
is not obvious how a discrete set of rules can be used to describe the structure in continuous
variables. The basic idea presented here is to interpret the premise variables as a hidden
variable with no obvious real-world meaning. Consider Figure 4. Here we plot a (made up)
distribution of the height and weight of a population. We cannot really claim that weight
is the cause for height or vice versa. Also there are no obvious underlying causes (genetic
factors, race, gender: we do not really know) which explain the data. Rather, to explain the
data we “invent” hidden causes which are represented by the state of the discrete hidden
variables. In this example, there are only two hidden statess = 1 ands = 2 and a domain
expert might specify rules as in Table 3.

Table 3.A modeling rule. For each hidden statei:

IF: s = i (which is the case with prior probabilityP (s = i))
THEN: the expected value ofx1 is ci1 and the standard deviation ofx1 is σi1

AND the expected value ofx2 is ci2 and the standard deviation ofx2 is σi2

The use of hidden random variables (in our sense variables without a real-world meaning)
has a long tradition both in neural networks and probability theory (consider, for example,
hidden Markov models in speech recognition and the hidden states in Boltzmann machines).
Pearl (1988) argues that humans have a strong desire to “invent” hidden causes to explain
observations. They are simply convenient vehicles for describing the observed world. The
advantage is, as demonstrated, that a complex uncertain relationship between variables
can be concisely summarized using a small number of simple rules. As in classification
(Section 3.2) we can introduce hierarchies which enables us to describe the relationship
between the variables at difference scales of resolution. In the next section, we will describe
how this model can be used for prediction.

3.4. Inference and Prediction

A rule base might contain a mixture of rules with premises with or without a real-world
meaning. In this section we show how we can use such a rule base to infer the states of
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Figure 4. The graph shows two Gaussians (ovals) which model the joint distribution between two features (height,
weight). Samples are indicated by small circles.

variables based on knowledge about the states of some other set of variables. We will
show that inference rules can be realized by NGBF-networks. We already presented two
inference rules: Equations 5 and 8 showed how we can infer the state of premise variable
s if the feature vector is complete (i.e., all the states ofx are known) for a simple classifier
and for a hierarchical classifier. Here, we show how inference is performed if the feature
vector is incomplete (we only have partial knowledge) or if we want to infer the state of
one of the real-valued components of the feature vector.

Let us assume that only some of the components of the feature vectorx are known.
In classification we are then faced with the problem of estimating the correct class from
incomplete features. Or, as in the example depicted in Figure 4, we might be interested
in predictingx2 (i.e., the weight which is unknown or missing) fromx1 (i.e., the height
which can be measured) or vice versa. Letxm ⊂ {x1, . . . , xM} denote the known feature
variables, letxu = {x1, . . . , xM} \ xmdenote the unknown feature variables, and letcmi
andσmi consist of the components ofci andσi in the dimensions ofxm. The probability
of s = i givenxm can be easily calculated as

P (s = i|xm) =
P (xm|s = i) P (s = i)∑N
j=1 P (xm|s = j) P (s = j)

(9)

where,

P (xm|s = i) =
∫
G(x; ci, σi) dxu = G(xm; cmi , σ

m
i ). (10)

The last equality demonstrates that the marginal distribution of a Gaussian is again a Gaus-
sian: it is simply the projection of the Gaussian onto the dimensions ofxm. This is the
reason why our model handles missing variables so easily (see also Ahmad & Tresp, 1993).
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We can also predict any of the unknown feature variablesy ∈ xu from the known feature
variablesxm. Let cyi andσyi denote center and width of thei-th Gaussian iny-dimension.
The conditional density ofy is

P (y|xm) =
∑N
i=1G(y; cyi , σ

y
i ) G(xm; cmi , σ

m
i ) P (s = i)∑N

j=1G(xm; cmj , σ
m
j ) P (s = j)

. (11)

For prediction we are typically interested in the expected value4 of y givenxm, which can
also be easily be calculated

E(y|xm) =
∑N
i=1 wi G(xm; cmi , σ

m
i )P (s = i)∑N

j=1G(xm; cmj , σ
m
j ) P (s = j)

(12)

wherewi = cyi . Note that that last equation can be realized by an NGBF-network (Equa-
tion 1). This means that NGBF-networks for estimating continuous variables can be con-
structed from probabilistic rules in a similar way as NGBF-networks for classification.

We want to emphasize again, that by using a probabilistic model, we can predictany
feature variabley ∈ {x1, . . . , xM} from any set of measured feature variablesxm ⊂
{x1, . . . , xM}. 5

In Section 3.2 we showed how the class can be estimated in hierarchical models (Equa-
tion 8). Here, we derive Equations for estimating an unknown feature variable in a hierar-
chical model. For the expected value of an unknown variabley, we obtain using Bayes’
rule

E(y|xm) =

∑C
i=1 P (s = i)

∑
j∈I(i) wj P (s∗ = j|s = i) G(xm; cmj , σ

m
j )∑C

i=1 P (s = i)
∑
j∈I(i) P (s∗ = j|s = i) G(xm; cmj , σ

m
j )

(13)

with wj = cuj . This can also be written as

E(y|xm) =
C∑
i=1

[gi(xm)
∑
j∈I(i)

wj g
∗
j (x

m)] (14)

where

gi(xm) = P (s = i|xm) =
P (s = i)

∑
j∈I(i) P (s∗ = j|s = i)G(xm; cmj , σ

m
j )∑C

i=1 P (s = i)
∑
j∈I(i) P (s∗ = j|s = i)G(xm; cmj , σ

m
j )

and

g∗j (x
m) = P (s∗ = j|xm, s = i) =

P (s∗ = j|s = i)G(xm; cmj , σ
m
j )∑

j∈I(i) P (s∗ = j|s = i)G(xm; cmj , σ
m
j )

Note that Equation 14 describes a hierarchical mixture of expert model (Jordan & Jacobs,
1993) with gating networksgi(xm) andg∗j (x

m) and simple expert networks with constants
outputswi (see discussion in Section 7).
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4. Learning: Generating Rules out of a Data Set

So far we only considered that NGBF-networks are constructed based on probabilistic rules
defined by a domain expert. In this section we show how we cangeneraterules from data
by first training NGBF-networks with the appropriate probabilistic learning rule and by
then extracting probabilistic rules to be analyzed by an expert.

We assume that the network structure is given, i.e., we know how many Gaussian basis
functions are required for modeling in Section 3.3 or for approximating the class-specific
density in Section 3.2. Model selection is discussed in Section 6.

We present learning rules for the simple non-hierarchical model; the learning rules for
the hierarchical model can be found in Appendix A. We assume that we haveK training
data{xk, sk}Kk=1. First we consider the case that the state ofsk is unknown. In this case
the log-likelihood function of the model6 is

L =
K∑
k=1

log[
N∑
i=1

P̂ (s = i) G(xk; ĉi, σ̂i)].

This is simply the log-likelihood of the Gaussian mixture model and we can use the well-
known EM (expectation maximization) algorithm for learning (Dempster, Laird, & Rubin,
1977) which converges to a local maximum of the log-likelihood function. The EM algo-
rithm consists of the repeated application of the E-step and the M-step. In the E-step, we
estimate the states of the missing variables using our current parameter estimates. More
precisely, the E-step estimates the probability thatxk was generated by components = i

P̂ (s = i|xk) =
P̂ (s = i) G(xk; ĉi, σ̂i)∑N
l=1 P̂ (s = l) G(xk; ĉl, σ̂l)

.

The M-step updates the parameter estimates based on the estimateP̂ (s = i|xk)

P̂ (s = i) =
1
K

K∑
k=1

P̂ (s = i|xk), (15)

ĉij =

∑K
k=1 P̂ (s = i|xk) xkj∑K
k=1 P̂ (s = i|xk)

, (16)

σ̂2
ij =

∑K
k=1 P̂ (s = i|xk) (ĉij − xkj )2∑K

k=1 P̂ (s = i|xk)
. (17)

The EM algorithm is used off-line although approximate on-line versions also exist (Nowlan,
1990; Neal & Hinton, 1993; Ghahramani & Jordan, 1993). The EM algorithm can also be
used if some of the features inxk are unknown or uncertain as shown in Tresp, Ahmad and
Neuneier (1994) and Ghahramani and Jordan (1993).

Alternatively, we can use a number of unsupervised learning rules, out of the extensive
literature on that topic, to determine the parameters in the Gaussian mixture network such
as learning vector quantization, Kohonen feature maps, or adaptive resonance theory (see
Hertz, Krogh, & Palmer, 1991). We prefer the EM learning rules mainly because they have
a sound statistical foundation by optimizing the log-likelihood function.
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Figure 5. The left part of the model (s∗ ∈ {1, 2, 3}) is trained on data and the right part (s∗ ∈ {4, 5, 6}) is
constructed from rules defined by a domain expert.

5. Combining Knowledge Bases

In Section 3 we constructed networks of Gaussian basis functions using prior knowledge
and in the last section we trained mixture models from data to generate NGBF-networks.
In many applications we might have both training data and domain expert knowledge
available and in this section we will show how both can be combined (i.e., how the rule-
based knowledge can be refined).

5.1. Incremental Mixture Density Models

The simple idea pursued in this section is to build one probabilistic model using the rules
defined by the domain expert and to build a second model using the training data set
and then to combine the two models to form a combined model containing both sub-
models. Let’s consider the example shown in Figure 5. The left part of the model
(s∗ ∈ {1, 2, 3}) is trained on data yieldingP (s∗ = 1|s = 1), P (s∗ = 3|s = 1), P (s∗ =
3|s = 1), G(x; c1, σ1), G(x; c2, σ2), andG(x; c3, σ3). The right portion (s∗ ∈ {4, 5, 6})
is constructed from rules defined by a domain expert yieldingP (s∗ = 4|s = 2), P (s∗ =
5|s = 2), P (s∗ = 6|s = 2), G(x; c4, σ4), G(x; c5, σ5), andG(x; c6, σ6). The domain ex-
pert also has to defineKE which defines the equivalent number of training data the expert
knowledge is worth, i.e., the certainty of the expert knowledge. IfK is the number of data
used for training we obtainP (s = 1) = K/(K +KE) andP (s = 2) = KE/(K +KE).
For inference, we can then use Equations 8 and 13. If we obtain more data or more rules
we can add models in an obvious way and build up our knowledge base incrementally.

We have obtained a way of combining different knowledge bases or experts which forms
a solution by “voting” or “mixing,” which is distinct from standard Bayesian approaches
to learning where prior knowledge is incorporated in priors on network parameters and
network complexity (see the next section).



186 V. TRESP, J. HOLLATZ AND S. AHMAD

In analogy to Bayesian learning, we can add a default expert to the model who represents
our knowledge prior to the availability of a domain expert and prior to the availability of
data. Such a default expert might consist of one rule represented by a Gaussian centered
at cd = 0. Thea priori weight of the default expert represented byKd should be a small
number. If later other experts are added they will dominate the prediction of the system
where they are certain. In regions where no other expert is “active” the default expert will
dominate.

5.2. Fine-Tuning: Bayesian Learning

As in the last section, we assume that a network was constructed from the probabilistic
rules defined by a domain expert. If only a relatively small number of training samples are
available, adding another network might add too much variance to the model and one might
get better results by simply fine-tuning the network built from the domain expert. This
is the basic idea in a Bayesian approach (Bernardo & Smith, 1993; Buntine & Weigend,
1991; MacKay, 1992). LetPMW (x) denote a model of the probability density ofx with
parameter vectorW (i.e.,{ci, σi, P (s = i)}Ni=1). In an Bayesian approach the expert has
to defineP (W ) which is the prior distribution of the parameters. The predictive posterior
probability is then

PM (x|Data) =
∫
PM (x|W )PM (W |Data) dW (18)

with

PM (W |Data) =
PM (Data|W )PM (W )

PM (Data)
.

Here,PM (Data|W ) =
∏K
k=1 P

M (xk|W ) is the likelihood of the model. A commonly
used approximation is

PM (x|Data) ≈ PM (x|WMAP )

where

WMAP = arg max
W

PM (Data|W )PM (W )

i.e., one substitutes the parameters with the maximum a posterior (MAP) probability.
In a Bayesian approach the expert has to specify an a priori parameterdistribution

PM (W ). When the expert can formulate her or his knowledge in terms ofconjugate
priors the EM update rules can be modified to converge to the MAP parameter estimates
(Buntine, 1994; Ormoneit & Tresp, 1996).

A similar combination of prior knowledge and learning can be achieved by a procedure
which is known asearly stoppingin the neural network literature (Bishop, 1995). Early
stopping refers to a procedure where training is terminated before the minimum of the cost
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function is reached to obtain a regularized solution. We can use early stopping here in the
following way. First, we build a network using prior rules. This network is used as the
initialization for learning (using EM). If we train to convergence we completely eliminate
the initialization (although we still influence which local optimum of the log-likelihood
function is found) and if we do not train at all we ignore the data. If we train only a
few iterations (early stopping) the resulting network will still contain a bias towards the
initialization i.e., the prior knowledge.

5.3. Teacher-Provided Examples

Finally, we would like to present a third alternative. This approach is particularly interesting
when it is not possible to formulate the domain knowledge in the form of probabilistic rules,
but a domain expert is available who can be queried to provide typical examples. We want
to penalize a model if the examples provided by the domain expert{xt,l}Ll=1 are not well
represented by the model with parameter vectorW . This can be put into a Bayesian
framework if we define

PM (W ) ∝
L∏
l=1

PM (xt,l|W ).

The MAP estimate then maximizes

PM (W |Data) ∝
L∏
l=1

PM (xt,l|W )
K∏
k=1

PM (xk|W ).

Since the prior has the same form as the likelihood, the examples provided by the expert
can be treated as additional data (see R¨oscheisen, Hofmann, & Tresp, 1992). The extended
data set is now{xk}Kk=1 ∪ {xt,l}Ll=1.

6. Network Optimization and Experiments

6.1. The Test Bed

As a test bed we used the Boston housing data. The data set consists of 506 samples with
14 variables. The variables are the median value of homes in Boston neighborhoods and
13 variables which potentially influence the housing prices (Harrison & Rubinfeld, 1978).
The variables are described in Appendix B. We selected this data set because all variables
have an easily understandable real-world meaning. All variables were normalized to zero
mean and a standard deviation of one. Unless stated otherwise we divided the data into 10
equally sized sets. Ten times we trained on nine of the sets and tested on the left out set. The
performance on the test sets was used to derive error bars for the generalization performance
(Figures 6, 7 and 8) and for the two-tailed paired t-test in Section 6.3’s Figure 9. The nine
sets used for training are each equally divided into a training set and a validation set. The
training set is used for learning the parameters in the networks and the validation set is used
for determining optimal network structures in the following experiments.



188 V. TRESP, J. HOLLATZ AND S. AHMAD

training set  

validation set

test set      

0 5 10 15 20 25 30
0

2

4

6

8

10

12

14

16

18

20

number of Gaussian units

ne
ga

tiv
e 

av
er

ag
e 

lo
g−

lik
el

ih
oo

d

Figure 6. The graph shows the negative average log-likelihood for training set, validation set and test set as a
function of the number of Gaussian units. Displayed are averages over ten experiments with different separations
into training set, validation set and test set. The error bars indicate the variation in performance on the test set.

6.2. Network Optimization and Rule-extraction

Our first goal is to extract meaningful rules out of the data set. In this data set it is not
known a priori how many Gaussians units are required to model the data. Our strategy
is to start with a network with a rather large number of units and then to remove units by
observing the network performance on the validation data set.7 After a Gaussian is removed
the network is retrained using the EM learning rules of Section 4. To select good candidate
units to be pruned one might want to select a unit with a small probability of being chosen,
i.e., with a smallP (s = i). But this unit might represent data points far away from the
centers of the remaining Gaussians and those data points would then be represented badly
by the remaining network after that unit is eliminated. A better way to prune is therefore
to tentatively remove a unit and then recalculate the likelihood of the model on the training
data set (without retraining), finally, pruning units whose removal decreases the likelihood
the least (pruning procedure 1). In some cases this procedure might be too expensive (e.g.
if there are too many training data or units) or the data set might not be available any more
(as in on-line learning). In those cases we might decide to remove a unit which is well
represented by the other units. Consider that we want to estimate the effect of the removal
of the j-th unit. After removal, the data which were modeled by thej-th unit are now
modeled by the remaining Gaussian units. The contribution of these data points to the
log-likelihood function after removal of thej-th unit can be estimated as

L(j) ≈ K × P (s = j) log
∑
i,i 6=j

P (s = i)P (cj |s = i). (19)
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K ×P (s = j) is an estimate of the number of data points modeled by thej-th unit and the
sum in the logarithm is equal to the probability density atx = cj after the removal of unit
j. The procedure consists of removing the unit with smallestL(j) (pruning procedure 2).
Our experiments showed that both pruning procedure 1 and pruning procedure 2 almost
always decide on the same order of units to prune.

In the experiments we started with 30 units and trained a Gaussian mixture model using the
EM algorithm (Section 4). We then proceeded to prune units following pruning procedure 2.
Each time a unit was removed, the network was retrained (using the EM algorithm).

In Figure 6 we plot the negative average log-likelihood as a function of the number of
units in the network for the training data set, for the validation set and for the test data set.
A good model has a small negative average log-likelihood. The large difference between
test set and training set with a large number of units can be explained by the large variance
in the network due to the large number of units. Based on the performance on the validation
set we can conclude that between 8 and 10 units are necessary for a good model. In the
following experiments we used networks with three units since three units are sufficient for
acceptable performance (Figure 6) and the extracted rules are easily interpretable (see the
following section). If more units are used the performance is better but the larger number
of rules is more difficult to interpret.

6.2.1. Simplifying Conclusions

We can attempt to further simplify the model. To motivate this step, consider an example
from medical diagnosis. To diagnose diseases we might consider 100 features or symptoms.
Certainly, all symptoms are important but in most cases the diagnosis of a disease is only
dependent on a small number of features and ignores the remaining ones. Therefore, rules
of the form: IF the patient has disease ATHEN feature one (fever) is high but all other
features (here: 99) are normalseems reasonable. In this spirit, we bias the model to set as
many of the conclusions as possible to “normal” to obtain very parsimonious rules.

In this medical example it might be cleara priori or from the data set what exactly a
“normal” feature distribution means. In our data set this is not so obvious. Therefore, we
simply calculate meanmeanj and standard deviationstdj of each variablexj in the network
and define a normal featurej as one which is distributed asP (xj) ≈ G(xj ;meanj , stdj).
Remember that in our modelG(xj ; cij , σij) represents thej-th conclusion of thei-th rule.
In the first step we find conclusions which are close to “normal” which means that

G(xj ; cij , σij) ≈ G(xj ;meanj , stdj)

holds. A useful measure for the difference between two distributions is the Kullback-
Leibler distance (Cover & Thomas, 1991). The Kullback-Leibler distance between the two
continuous probability densitiesP1(x), P2(x) is defined as

KL(P1(x), P2(x)) =
∫
P1(x) log[

P1(x)
P2(x)

] dx.

Applied to our problem, and exploiting the assumption that features are Gaussian distributed
we obtain
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Figure 7. The graph shows the negative average log-likelihood of for training set, validation set and test set as a
function of the number of unconstrained conclusions using a network with three Gaussian units. Displayed are
averages over ten experiments with different separations into training set, validation set and test set. The error
bars indicate the variation in performance on the test set.

KL(G(xj ; cij , σij), G(xj ;meanj , stdj)) (20)

= log[
σij
stdj

]− 1
2

+
std2

j + (cij −meanj)2

2σ2
ij

.

In the experiments we rank each conclusion of each Gaussian according to the distance
measure in Equation 20. Assuming that for thej-th conclusion of thei-th Gaussian the
Kullback-Leibler distance in Equation 20 is smallest, we then setcij → meanj andσij →
stdj . Figure 7 shows the negative average log-likelihood for training set, validation set and
test set as a function of the number of conclusions which are not set to “normal” using a
system with three units. We see that approximately 10 features can be set to normal without
any significant reduction in performance (leaving 32 unconstraint conclusions). Tables 4
and 5 summarize an example of a resulting network.

The first rule or Gaussian unit (i = 1), for example, can be interpreted as a rule which
is associated with a high housing price (feature 14). It translates into the rule shown in
Table 6. According to the rule a low crime rate (feature 1) and a low percentage of lower
status population (feature 13) are associated with a high house price. Similarly, Gaussian
unit (i = 2) can be interpreted as a rule which is associated with a low housing price and
Gaussian unit (i = 3) can be interpreted as a rule which is associated with an average
housing price.
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Table 4.Centers and scaling parameters in the trained network with three Gaussian units.

feature (j) cij σij
i = 1 i = 2 i = 3 i = 1 i = 2 i = 3

1 -0.40 1.20 -0.28 0.20 1.76 0.20
2 normal -0.49 -0.41 normal 0.20 0.33
3 -0.84 1.02 0.61 0.41 0.20 0.94
4 -0.25 -0.27 0.62 0.31 0.20 1.65
5 -0.69 1.02 normal 0.52 0.50 normal
6 normal normal normal normal normal normal
7 -0.65 0.75 0.63 0.90 0.46 0.61
8 0.66 -0.83 -0.58 0.96 0.28 0.49
9 -0.59 1.66 -0.42 0.20 0.20 0.57
10 -0.68 1.53 -0.10 0.33 0.20 0.70
11 normal 0.81 normal normal 0.20 normal
12 0.37 -0.83 normal 0.20 1.63 normal
13 -0.62 0.94 normal 0.54 0.90 normal
14 0.47 -0.82 normal 0.92 0.71 normal

Table 5.Prior probabilities for the units (P (s = i)) of the trained network with three Gaussian units.

i: 1 2 3
P (s = i) : 0.48 0.25 0.27

Table 6.Extracted rule fori = 1.

IF: s = 1 (which is the case with prior probability 0.48)
THEN: the expected value ofcrime is−0.40 and the standard deviation of

crime is 0.20
AND zn is normal
. . .
AND the expected value ofmv is 0.47 and the standard deviation ofmv is 0.92

6.2.2. Removing Variables (Input Pruning)

The Gaussian units model the relationship among the 14 variables. More precisely, they
model their joint probability density which allows the calculation of many quantities of
interest such as conditional densities and expected values (i.e., inference, Equation 11
and 12). As a drawback, the Gaussian mixture model does not provide any information
about independencies between variables as, for example, Bayesian networks are capable of
doing (Pearl, 1988; Heckerman, 1995; Heckerman, Geiger, & Chickering, 1995; Buntine,
1994; Hofmann & Tresp, 1996). Here, we want to address the simpler question of which
variables are required to predict one particular variable. It is well known that the removal
of variables which are not relevant for the prediction often improves the performance of
a predictor. Variables can be removed if they are either completely independent of the
variable to be predicted or if the information which is contained in a variable is already
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Figure 8. The graph shows the negative averageconditional log-likelihood of validation set and test set as a
function of the number of input variables using a network with three Gaussian units. Displayed are averages over
ten experiments with different separations into training set, validation set and test set. The error bars indicate the
variation in performance on the test set.

represented in the remaining variables: as an example consider that an input variable is a
linear or a nonlinear function of the remaining input variables.

Let y be the variable to be predicted;y is independent of an input variable, sayxj ,
conditioned that we know the remaining variables if

P (y|{x1, . . . , xM}) = P (y|{x1, . . . , xM} \ xj).

Since the true underlying model is unknown we have to base our decision on the available
data. We evaluate the conditional log-likelihood which is defined as

LC =
K∑
k=1

logPM (yk|xk1 , . . . , xkM ) (21)

wherePM (.) is calculated according to the model (Equation 11).
Our procedure consists of removing one variable and by calculating the conditional log-

likelihood with that variable removed. We remove that variable for which the conditional
log-likelihood decreased the least. We selected the housing price as the variable to be
predicted. Figure 8 shows the negative average conditional log-likelihood for the validation
set and the test set as a function of the number of (input) variables. At approximately three
variables, the conditional likelihood is optimal. We can conclude that for the prediction of
the housing price the information in the removed variables is either redundant or already
contained in these three variables. Table 7 shows the order in which variables are pruned.

From our model (with three inputs and one output) we can now predict the housing price
using Equation 12.
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Table 7.The order of removal of variables.

no: 1 2 3 4 5 6 7 8 9 10 11 12 13
variable: chas rad dis crim indus nox age tax p/t zn b rm lstat

6.3. Experiments with Rule-based Bias

In our second set of experiments we compared the various approaches for combining prior
knowledge and learning from data. We designed our own “naive” rule base. The rule base
consists of three rules. In rule 1 we tried to capture the concept of a normal neighborhood.
Here we set the centers to the mean of the features, i.e., 0. In the second rule we tried to
capture the properties of a wealthy neighborhood. To indicate a high value for featurexj
we set the center in that dimension to the standard deviations of the features+stdj , i.e.,1,
and to indicate a low value we set the corresponding value to−stdj , i.e.,−1. Our third
rule captures the properties of a poor neighborhood which contains conclusions opposite to
rule 2. The scaling parameters of all rules are set to+stdj . Table 8 summarizes the three
rules. The network generated out of these rules is the expert network.

Table 8. Prior rules. The scaling parameters are always equal to one. A plus (+) indicates that the Gaussian of
the conclusion is centered at+stdj , a minus (−) indicates that the conclusion is centered at−stdj and a zero (0)
indicates that the conclusion is centered at0. The prior probabilities of each rulei is set toP (s = i) = 1/3.

j : 1 2 3 4 5 6 7 8 9 10 11 12 13 14

i = 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
i = 2 - + - + - + - + - + - - - +
i = 3 + - + - + - + - + - + + + -

In the first experiment, we trained a second network (the data network) to model the data
using EM. We trained the data network using a varying number of training data randomly
drawn out of the training data set. If more than 10 samples were used for training, the network
consisted of ten units. If less than ten samples were available, the network consisted of
as many units as samples. The dotted line in Figure 9 (top) shows the negative average
log-likelihood as a function of the number of training data.

In the second experiment we investigated theincremental mixture density approachof
Section 5.1. We setKprior = 50 which indicates that our prior knowledge is worth 50
data points. We used the data network of the previous experiment in combination with the
expert network as described in Section 5.1. The dashed line in Figure 9 (top) shows the
negative average log-likelihood as a function of the number of training data.

In the third experiment we studied the Bayesian approach. We designed a network in
which each rule in Table 8 is represented 3 times (so we obtain 9 rules). In this way we
give the network sufficient resources to form a good model (with 9 instead of 3 units). We
then fine-tuned the rules using EM update rules to find the MAP weights (Section 5.2). The
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Figure 9. Top: The graph shows the negative average log-likelihood of the test set as a function of the number
of training samples. Displayed are averages over ten experiments with different separations into training set,
validation set, and test set. The dotted line shows the performance of a network trained only with training data.
The dashed line shows the performance of the network using the incremental mixture density model (Section 5.1),
the continuous line shows the performance of the fine-tuned network (Section 5.2), and the dotted-dashes line
shows the performance of a network trained with a mixture of training data and data supplied by the domain
expert (Section 5.3). Bottom: Shown are the test statistics for matched pairs between the network trained only
on data and the approaches using prior knowledge (two-tailed paired t-test, Mendenhall & Sincich, 1992) based
on the performance on the ten test sets. The null hypothesis is that there is no difference in performance between
the network trained only on data and the approaches using prior knowledge. Outside of the dotted region, the
null hypothesis is rejected (based on a 95% confidence interval). The incremental mixture density model and the
fine-tuned network are significantly better than the network trained only on data up to approximately 70 training
samples. The network trained with a mixture of training data and data supplied by the domain expert is only
significantly better up to approximately 19 training samples.
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continuous line in Figure 9 (top) shows the negative average log-likelihood of the fine-tuned
network as a function of the number of training data.

In the final experiment we usedteacher-provided examples, Section 5.3, by generating
100 samples according to the network defined by the expert following the probabilistic
model. These data were supplemented by real training data and a network of 10 units
was trained using EM. The dash-dotted line in Figure 9 (top) shows the negative average
log-likelihood as a function of the number of training data.

Figure 9 (bottom) shows the test statistics for the two-tailed paired t-test to decide if
including prior knowledge is helpful. Outside of the region defined by the two dotted lines,
the methods including prior knowledge are significantly better than the network trained only
on data. The results indicate clearly that with only a small number of training data available,
prior knowledge can be very beneficial. The Bayesian approach and the incremental mixture
density approach consistently outperforms the network which was trained solely on data up
to a training set of up to approximately 70 samples. This indicates that the network structures
defined by the rules are appropriate for this problem. The approach using teacher-provided
examples is only better in comparison to the network which was trained solely on data up
to a training set size of up to approximately 19 samples. The reason for the relatively bad
performance of the latter approach is that only 100 artificial samples were generated and
these cover only a small region of interest in the input space. To obtain better performance,
many more teacher-supplied examples need to be used.

7. Modifications and Related Work

7.1. Mixtures of Experts

There is a strong connection of our approach with the mixtures of experts networks and
their variations (Hampshire & Waibel, 1989; Jacobset al., 1991; Jordan & Jacobs, 1993).
The output of a mixtures of experts network is

y(x) =
∑
i

gi(x) oi(x), (22)

whereoi(x) is the output of theith expert network, typically a feedforward neural network.
gi(x) = P (i|x), theith output of the gating network, stands for the probability of choosing
experti given the inputx. The similarity to our approach becomes apparent if we identify
gi asni andoi aswi in Equation 1. In this interpretation each component in our model (i.e.,
Equation 1) is a — pretty boring — expert who always concludeswi. On a further note,
our incremental mixture model resembles the hierarchies of experts networks of Jordan and
Jacobs (1993). The output of that model is

y(x) =
∑
m

[gm(x)
∑
i

gim(x) oim(x)].

The relationship to Equation 14 is apparent. The main difference between the mixture
of experts model and our approach is that we model the joint distribution of all variables
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whereas the mixture of experts model models the conditional distribution of the output
variable given the input variables.

In this context we can interpret the learning rules in Appendix A to be a way of training
hierarchical mixtures of experts using EM where both the E-step and the M-step can be
calculated in closed form.

7.2. Discrete Variables

So far we only considered continuous features and Gaussian densities. As pointed out by
Ghahramani and Jordan (1993) the mixture formalism as well as the efficient EM update
algorithm extends readily to any component density from the exponential family. In par-
ticular for discrete features, binomial and multinomial distributions are more appropriate
than Gaussian densities. For more detail, see Ghahramani and Jordan (1993) and Bernardo
and Smith (1993).

7.3. Supervised Training of the Network

In many applications it is known a priori which variables are the input variables and which
variable is the output variable and instead of training the model to predict the distribution
of the joint input/output space using a mixture of Gaussian model we can directly train it
to predict the conditional expected valueE(y|x). This can be achieved by optimizing all
network parameters to minimize the mean squared training error Equation 3 as indicated
in Section 2 (supervised learning). It is often advantageous to initialize the network to
form a probabilistic model of the joint density and only perform supervised learning as
post-processing: The probabilistic model gives useful initial values for the parameters in
supervised learning. If we adapt all network parameters to minimize the prediction error,
we cannot interpretbi(x) in Equation 1 as a conditional input density; we might rather
think of bi(x) as the weight (or the certainty) of the conclusionwi given the input.8 During
supervised training, the centers and output weights — unless special care is taken — wander
outside of the range covered by the data and it becomes more difficult to extract meaningful
rules. In Tresp, Hollatz and Ahmad (1993) rule-extraction and rule-prestructuring for
networks trained with supervised learning are described.

8. Conclusions

The presented work is based on the three-way relationship between networks of NGBFs,
Gaussian mixture models, and simple probabilistic rules. We discussed four aspects. First
we showed how probabilistic rules can be used for describing structure between variables.
If we perform inference using those rules we obtain a networks of NGBFs. Second, we
showed that it is possible to extract probabilistic rules out of a networks of NGBFs which
were trained on data using the EM algorithm. Third, we presented ways to optimize the
network architecture, i.e., the number of Gaussian units and we presented ways to constrain
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the number of free parameters of the network. Finally we described several ways prior
knowledge, formulated in probabilistic rules, can be combined with learning from data.
The experiments show that with only few or no training data available prior knowledge can
be used efficiently by the proposed methods. In particular, theincremental mixture density
approachand the Bayesian approach gave good results. One of the main advantages of our
approach is that it is based on probabilistic models. This allows us to obtain insight into
the structure of the data by being able to extract probabilistically correct rules. Also, in
our approach the joint probability distribution of all variables involved are modeled which
provides much more information than is available in standard supervised learning. For
example, we can handle missing data very elegantly and also can produce inverse models
without any difficulty, which is not possible in networks trained using supervised learning
algorithms.
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Appendix A

Learning Rules for the Hierarchical Model

We derive learning rules for the hierarchical model. We assume that we haveK training
data{xk}Kk=1. We consider the incomplete data case in which neithersk or s∗k are known.
In this case the log-likelihood function is

L =
K∑
k=1

log[
C∑
l=1

P̂ (s = l)
N∑
m=1

P̂ (s∗ = m|s = l)G(xk; ĉm, σ̂m)].

The EM algorithm consists of the repeated application of the E-step and the M-step. In the
E-step, we estimate the states of the missing variables using our current parameter estimates.
More precisely, the E-step estimates the probability thatxk was generated by component
s∗ = j. Assuming thatj ∈ I(i)

P̂ (s∗ = j|xk) =
P̂ (s = i) P̂ (s∗ = j|s = i) G(xk; ĉj , σ̂j)∑C

l=1 P̂ (s = l)
∑N
m=1 P̂ (s∗ = m|s = l)G(xk; ĉm, σ̂m)

.

Note that for complete patterns,̂P (s∗ = j|xk) is equal to one ifs∗k = j and is equal to
zero otherwise.

The M-step updates the parameter estimates based on the estimateP̂ (s∗ = j|xk)

P̂ (s = i) =
1
K

K∑
k=1

∑
j∈I(i)

P̂ (s∗ = j|xk), (A.1)
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P̂ (s∗ = j|s = i) =
1
K

K∑
k=1

P̂ (s∗ = j|xk)∑
m∈I(i) P̂ (s∗ = m|xk)

, (∀j ∈ I(i)), (A.2)

ĉjl =
∑K
k=1 P̂ (s∗ = j|xk) xkl∑K
k=1 P̂ (s∗ = j|xk)

, (A.3)

σ̂2
jl =

∑K
k=1 P̂ (s∗ = j|xk) (ĉjl − xkl )2∑K

k=1 P̂ (s∗ = j|xk)
. (A.4)

Appendix B

Boston housing data

Table B.1 describes the features in the Boston housing data set.

Table B.1.The variables and their abbreviations.

1 crime rate crim
2 percent land zoned for lots zn
3 percent nonretail business indus
4 1 if on Charles river, 0 otherwise chas
5 nitrogen oxide concentration, pphm nox
6 average number of rooms rm
7 percent built before 1940 age
8 weighted distance to employment center dis
9 accessibility to radial highways rad
10 tax rate tax
11 pupil/teacher ratio p/t
12 percent black b
13 percent lower-status population lstat
14 median value of homes in thousands of dollars mv

Notes

1. The Gaussian basis function weightsκi were not used by Moody and Darken.

2. Gaussian mixtures are introduced in Sections 3 and 4.

3. Note that the first level of hierarchy has the flavor of a disjunction of the form: IFs = i THEN s∗ = j1, or
s∗ = j2, . . . (with the appropriate probabilities). Since the second level implements a conjunction we obtain
disjunctions of conjunctions.

4. We useE() to indicate the expected value.

5. Often a subset of the components ofx is considered to describe input variables and the remaining components
are output variables. This result indicates that “inverse” models in which one of the input variable is estimated
from knowledge about the states of output variables and other input variables can be calculated as easily as
forward models.
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6. The likelihood of a sample ofK observations is the joint probability density function of the observations
given the model and model parameters. The maximum likelihood parameter estimator is the set of parameters
which maximize the likelihood. Since the logarithm is a monotonic function we can alternatively maximize
the log-likelihood which is in general computationally simpler. Note, that the hat (ˆ) indicates an estimated
quantity.

7. Bayesian approaches to model selection are used in the AutoClass system by Cheesemanet al. (1988).

8. Under certain restrictions, fuzzy inference systems can be mapped onto a network of normalized basis functions
as described by Wang and Mendel (1992) and Hollatz (1993).
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