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Abstract. We study task sequences that allow for speeding up the learner’s average reward intake through
appropriate shifts of inductive bias (changes of the learner’s policy). To evaluate long-term effects of bias shifts
setting the stage for later bias shifts we use the “success-story algorithm” (SSA). SSA is occasionally called at
times that may depend on the policy itself. It uses backtracking to undo those bias shifts that have not been
empirically observed to trigger long-term reward accelerations (measured up until the current SSA call). Bias
shifts that survive SSA represent a lifelong success history. Until the next SSA call, they are considered useful
and build the basis for additional bias shifts. SSA allows for plugging in a wide variety of learning algorithms.
We plug in (1) a novel, adaptive extension of Levin search and (2) a method for embedding the learner’s policy
modification strategy within the policy itself (incremental self-improvement). Our inductive transfer case studies
involve complex, partially observable environments where traditional reinforcement learning fails.
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1. Introduction / Overview

Fundamental transfer limitations. Inductive transfer of knowledge from one task so-
lution to the next (e.g., Caruana et al. 1995, Pratt and Jennings 1996) requires the so-
lutions to share mutual algorithmic information. Since almost all sequences of solutions
to well-defined problems are incompressible and have maximal Kolmogorov complexity
(Solomonoff, 1964, Kolmogorov, 1965, Chaitin, 1969, Li & Vit´anyi, 1993), arbitrary task
solutions almost never share mutual information. This implies that inductive transfer and
“generalization” are almost always impossible — see, e.g., Schmidhuber (1997a); for re-
lated results see Wolpert (1996). From a practical point of view, however, even the presence
of mutual information is no guarantee of successful transfer. This is because concepts such
as Kolmogorov complexity and algorithmic information do not take into account the time
consumed by learning algorithms computing a new task’s solution from previous ones. In
typical machine learning applications, however, it is precisely the learning time that we
want to minimize.

Reward acceleration.Given the observations above, all attempts at successful transfer
must be limited to task sequences of a particularly friendly kind. In the context of reinforce-
ment learning (RL) we will focus on task sequences that allow for speeding up the learner’s
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long-term average reward intake. Fortunately, in our own highly atypical and regular uni-
verse such task sequences abound. For instance, often we encounter situations where high
reward for some problem’s solution can be achieved more quickly by first learning easier
but related tasks yielding less reward.

Our learner’s single life lasts from time 0 to timeT (time is not reset in case of new
learning trials). Each modification of its policy corresponds to a shift of inductive bias
(Utgoff, 1986). By definition, “good” bias shifts are those that help to accelerate long-term
average reward intake. The learner’s method for generating good bias shifts must take
into account: (1) Bias shifts occurring early in the learner’s life generally influence the
probabilities of later bias shifts.(2) “Learning” (modifying the policy) and policy tests will
consume part of the learner’s limited life-time1.

Previous RL approaches.To deal with issues (1) and (2), what can we learn from tradi-
tional RL approaches? Convergence theorems for existing RL algorithms such as Q-learning
(Watkins & Dayan, 1992) require infinite sampling size as well as strong (usually Marko-
vian) assumptions about the environment, e.g., (Sutton, 1988, Watkins & Dayan, 1992,
Williams, 1992). They are of great theoretical interest but not extremely relevant to our re-
alistic limited life case. For instance, there is no proof that Q-learning will converge within
finite given time, not even in Markovian environments. Also, previous RL approaches do
not consider the computation time consumed by learning and policy tests in their objective
function. And they do not explicitly measure long-term effects of early learning on later
learning.

Basic ideas(see details in section 2). To address issues (1) and (2), we treat learning
algorithms just like other time-consuming actions. Their probabilities of being executed
at a given time may depend on the learner’s current internal state and policy. Their only
distinguishing feature is that they may alsomodify the policy. In case of policy changes
or bias shifts, information necessary to restore the old policy is pushed on a stack. At
any given time in system life there is only one single training example to estimate the
long-term usefulness of any previous bias shiftB — namely the reward per time since
then. This includes all the reward collected after later bias shifts for whichB may have
set the stage, thus providing a simple measure of earlier learning’s usefulness for later
learning. Occasionally the “success-story algorithm” (SSA) uses backtracking to undo
those policy modifications that have not been empirically observed2 to trigger long-term
reward accelerations (measured up until the current SSA call). For instance, certain bias
shifts may have been too specifically tailored to previous tasks (“overfitting”) and may be
harmful for future inductive transfer. Those bias shifts that survive SSA represent a lifelong
success history. Until the next SSA call, they will build the basis for additional bias shifts
and get another chance to justify their existence.

Due to unknown reward delays, there is noa priori good way of triggering SSA calls. In
principle, however, it is possible to build policies that canlearn to trigger SSA calls. Since
learning algorithms are actions and can be combined (according to the policy) to form more
complex learning algorithms, SSA also allows for embedding the learning strategy within
the policy itself. There is no pre-wired difference between “learning”, “metalearning”,
“metametalearning” etc.3
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Outline of remainder. Section 2 will describe the learner’s basic cycle of operations
and SSA details. It will explain how lifelong histories of reward accelerations can be
enforced despite possible interference from parallel internal or external processes. Sections
3 and 4 will present two concrete implementations and inductive transfer experiments with
complex, partially observable environments (POEs). Some of our POEs are bigger and
more complex than POEs considered in most previous POE work.

2. Basic Set-Up and SSA

Reward/Goal. Occasionally environmentE provides real-valued reward.R(t) is the
cumulative reward obtained between time 0 and timet > 0, whereR(0) = 0. At time
t the learner’s goal is to accelerate long-term reward intake: it wants to letR(T )−R(t)

T−t
exceed the current average reward intake. To compute the “current average reward intake”
a previous pointt′ < t to computeR(t)−R(t′)

t−t′ is required. How to specifyt′ in a general
yet reasonable way? For instance, if life consists of many successive “trials” with non-
deterministic outcome, how many trials must we look back in time? This question will be
addressed by the success-story algorithm (SSA) below.

Initialization. At time 0 (system birth), we initialize the learner’s variable internal state
I, a vector of variable, binary or real-valued components. Environmental inputs may be
represented by certain components ofI. We also initialize the vector-valued policyPol.
Pol’s i-th variable component is denotedPoli. There is a set of possible actions to be
selected and executed according to currentPol andI. For now, there is no need to specify
Pol — this will be done in the experimental sections (typically,Poli will be a conditional
probability distribution on the possible next actions, given currentI). We introduce an
initially empty stackS that allows for stack entries with varying sizes, and the conventional
pushandpopoperations.

Basic cycle.Between time 0 (system birth) and timeT (system death) the following basic
cycle is repeated over and over again:

1. Execute actions selected according toPol andI (this may change environment andI), until a
certainEvaluation Criterion is satisfied, or until an action is selected that willmodifyPol.

2. IF theEvaluation Criterion is satisfied,THEN call SSA, which backtracks and undoes cer-
tain previousPol-modifications if necessary (to ensure that the history of still valid modifications
corresponds to a history of reward accelerations):

SSA.1. Set variablet equal to current time.

IF there is no“tag” (a pair of time and cumulative reward until then) stored somewhere in
S,

THEN push the tag (t,R(t)) ontoS, and go to3 (this ends the current SSA call).

ELSE denote the topmost tag inS by (t′,R(t′)). Denote the one below by (t′′,R(t′′)) (if
there is not any tag below, set variablet′′ = 0 — recallR(t′′) = R(0) = 0).

SSA.2. IF

R(t)−R(t′)

t− t′ >
R(t)−R(t′′)

t− t′′
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THEN push tag (t,R(t)), and go to3. This ends the current SSA call.

ELSE pop off all stack entries above the one for tag (t′,R(t′)) (these entries will be former
policy components saved during earlier executions of step 3), and use them to restorePol
as it was be before timet′. Then also pop off the tag (t′,R(t′)). Go toSSA.1.

3. IF the most recent action selected in step1 will modify Pol, THEN push copies of thosePoli
to be modified ontoS, and execute the action.

4. IF someTermination Criterion is satisfied,THEN die. ELSE go to step1.

SSA ensures life-time success stories.At a given time in the learner’s life, define the
set of currentlyvalid times as those previous times still stored in tags somewhere inS. If
this set is not empty right before tag(t, R(t)) is pushed in stepSSA.2of the basic cycle,
then letti (i ∈ {1, 2, . . . , V (t)}) denote thei-th valid time, counted from the bottom ofS.
It is easy to show (Schmidhuber, 1994, 1996) that the current SSA call will have enforced
the following “success-story criterion” SSC (t is thet in the most recent stepSSA.2):

R(t)
t

<
R(t)−R(t1)

t− t1
<
R(t)−R(t2)

t− t2
< . . . <

R(t)−R(tV (t))
t− tV (t)

. (1)

SSC demands that each still valid time marks the beginning of a long-term reward accelera-
tion measured up to the current timet. EachPol-modification that survived SSA represents
a bias shift whose start marks a long-term reward speed-up. In this sense, the history ofstill
valid bias shifts isguaranteedto be a life-time success story (in the worst case an empty
one). No Markov-assumption is required.

SSA’s generalization assumption.Since life is one-way (time is never reset), during each
SSA call the system has to generalize from asingleexperience concerning the usefulness
of any previous policy modification: the average reward per time since then. At the end
of each SSA call, until the beginning of the next one, the only temporary generalization
assumption for inductive inference is:Pol-modifications that survived all previous SSA
calls will remain useful. In absence of empirical evidence to the contrary, each still valid
sequence ofPol-modifications is assumed to have successfully set the stage for later ones.
What has appeared useful so far will get another chance to justify itself.

When will SSC be satisfiable in a non-trivial way? In irregular and random envi-
ronments there is no way of justifying permanent policy modifications by SSC. Also,
a trivial way of satisfying SSC is to never make a modification. Let us assume, how-
ever, thatE , I, and action setA (representing the system’s initial bias) do indeed allow
for Pol-modifications triggering long-term reward accelerations. This is an instruction
set-dependent assumption much weaker than the typical Markovian assumptions made in
previous RL work, e.g., (Kumar & Varaiya, 1986, Sutton, 1988, Watkins & Dayan, 1992,
Williams, 1992). Now, if we prevent all instruction probabilities from vanishing (see con-
crete implementations in sections 3/4), then the system will executePol-modifications
occasionally, and keep those consistent with SSC. In this sense, it cannot help getting
better. Essentially, the system keeps generating and undoing policy modifications until it
discovers some that indeed fit its generalization assumption.

Greediness?SSA’s strategy appears greedy. It always keeps the policy that was observed
to outperform all previous policies in terms of long-term reward/time ratios. To deal with
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unknown reward delays, however, the degree of greediness is learnable — SSA calls may
be triggered or delayed according to the modifiable policy itself.

Actions can be almost anything. For instance, an action executed in step 3 may be
a neural net algorithm. Or it may be a Bayesian analysis of previous events. While this
analysis is running, time is running, too. Thus, the complexity of the Bayesian approach is
automatically taken into account. In section 3 we will actually plug in an adaptive Levin
search extension. Similarly, actions may be calls of a Q-learning variant — see experiments
in (Schmidhuber et al., 1996). Plugging Q into SSA makes sense in situations where Q by
itself is questionable because the environment might not satisfy the preconditions that would
make Q sound. SSA will ensure, however, that at least each policy change in the history of all
still valid policy changes will represent a long-term improvement, even in non-Markovian
settings.

Limitations. (1) In general environments neither SSA nor any other scheme is guaranteed
to continually increase reward intake perfixedtime interval, or to find the policy that will
lead to maximal cumulative reward. (2) No reasonable statements can be made about
improvement speed which indeed highly depends on the nature of the environment and
the choice of initial, “primitive” actions (including learning algorithms) to be combined
according to the policy. This lack of quantitative convergence results is shared by many
other, less general RL schemes though (recall that Q-learning is not guaranteed to converge
in finite time).

Outline of remainder. Most of our paper will be about plugging various policy-modifying
algorithms into the basic cycle. Despite possible implementation-specific complexities the
overall concept is very simple. Sections 3 and 4 will describe two concrete implementations.
The first implementation’s action set consists of a single but “strong” policy-modifying ac-
tion (a call of a Levin search extension). The second implementation uses many different,
less “powerful” actions. They resemble assembler-like instructions from which many dif-
ferent policies can be built (the system’s modifiable learning strategy is able to modify
itself). Experimental case studies will involve complex environments where standard RL
algorithms fail. Section 5 will conclude.

3. Implementation 1: Plugging LS into SSA

Overview. In this section we introduce an adaptive extension of Levin search (LS)
(Levin, 1973, Levin, 1984) as only learning action to be plugged into the basic cycle.
We apply it to partially observable environments (POEs) which recently received a lot
of attention in the RL community, e.g., (Whitehead & Ballard, 1990, Schmidhuber, 1991,
Chrisman, 1992, Lin, 1993, Littman, 1994, Cliff & Ross, 1994, Ring, 1994, Jaakkola et
al., 1995, Kaelbling et al., 1995, McCallum , 1995). We first show that LS by itself can
solve partially observable mazes (POMs) involving many more states and obstacles than
those solved by various previous authors (we will also see that LS can easily outperform
Q-learning). We then extend LS to combine it with SSA. In an experimental case study
we show dramatic search time reduction for sequences of more and more complex POEs
(“inductive transfer”).
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3.1. Levin Search (LS)

Unbeknownst to many machine learning researchers, there exists a search algorithm with
amazing theoretical properties: for a broad class of search problems, Levin search (LS)
(Levin, 1973, Levin, 1984) has the optimal order of computational complexity. See
(Li & Vit´anyi, 1993) for an overview. See (Schmidhuber 1995, 1997a) for recent imple-
mentations/applications.

Basic concepts.LS requires a set ofnops primitive, prewired instructionsb1, ..., bnops
that can be composed to form arbitrary sequential programs. Essentially, LS generates and
tests solution candidatess (program outputs represented as strings over a finite alphabet)
in order of their Levin complexitiesKt(s) = minq{−logDP (q) + log t(q, s)}, whereq
stands for a program that computess in t(q, s) time steps, andDP (q) is the probability of
guessingq according to afixedSolomonoff-Levin distribution (Li & Vitányi, 1993) on the
set of possible programs (in section 3.2, however, we will make the distribution variable).

Optimality. Given primitives representing a universal programming language, for a
broad class of problems LS can be shown to be optimal with respect to total expected
search time, leaving aside a constant factor independent of the problem size (Levin, 1973,
Levin, 1984, Li & Vitányi, 1993). More formally: a problem is a symbol string that conveys
all information about another symbol string called its solution, where the solution can be
extracted by some (search) algorithm, given the problem. Suppose there is an algorithm
that solves certain time-limited optimization problems or inversion problems inO(f(n))
steps, wheref is a total recursive function andn is a positive integer representing problem
size. Then universal LS will solve the same problems in at mostO(f(n)) steps (although
a large constant may be buried in theO() notation). Despite this strong result, until
recently LS has not received much attention except in purely theoretical studies — see, e.g.,
(Watanabe, 1992).

Of course, LS and any other algorithm will fail to quickly solve problems whose solutions
all have high algorithmic complexity. Unfortunately, almost all possible problems are of this
kind (Kolmogorov, 1965, Chaitin, 1969, Solomonoff, 1964). In fact, the realm of practical
computer science is limited to solving the comparatively few tasks with low-complexity
solutions. Fortunately such tasks are rather common in our regular universe.

Practical implementation. In our practical LS version there is an upper boundm on
program length (due to obvious storage limitations).ai denotes the address of thei-th
instruction. Each program is generated incrementally: first we select an instruction fora1,
then fora2, etc.DP is given by a matrixP , wherePij (i ∈ {1, ...,m}, j ∈ {1, ..., nops})
denotes the probability of selectingbj as the instruction at addressai, given that the first
i− 1 instructions have already been selected. The probability of a program is the product
of the probabilities of its constituents.

LS’ arguments areP and the representation of a problem denoted byN . LS’ output
is a program that computes a solution to the problem if it found any. In this section, all
Pij = 1

nops
will remain fixed. LS is implemented as a sequence of longer and longer phases:

Levin search(problemN , probability matrix P )

(1) SetPhase, the number of the current phase, equal to 1. In what follows, let
φ(Phase) denote the set ofnot yet executedprogramsq satisfyingDP (q)≥ 1

Phase .



SHIFTING BIAS WITH SUCCESS-STORY ALGORITHM 111

(2) Repeat

(2.1) While φ(Phase) 6= {} and no solution founddo: Generate a pro-
gram q ∈ φ(Phase), and runq until it either halts or until it used up
DP (q)∗Phase

c steps. Ifq computed a solution forN , returnq and exit.

(2.2) SetPhase := 2Phase

until solution found orPhase ≥ PhaseMAX .
Return empty program{}.

Herec andPhaseMAX are prespecified constants. The procedure above is essentially the
same (has the same order of complexity) as the one described in the second paragraph of
this section — see, e.g., (Solomonoff, 1986, Li & Vit´anyi, 1993).

3.2. Adaptive Levin Search (ALS)

LS is not necessarily optimal for “incremental” learning problems where experience with
previous problems may help to reduce future search costs. To make an incremental search
method out of non-incremental LS, we introduce a simple, heuristic, adaptive LS extension
(ALS) that uses experience with previous problems to adaptively modify LS’ underlying
probability distribution. ALS essentially works as follows: whenever LS found a program
q that computed a solution for the current problem, the probabilities ofq’s instructions
q1, q2, . . . , ql(q) are increased (hereqi ∈ {b1, . . . , bnops} denotesq’s i-th instruction, and
l(q) denotesq’s length — if LS did not find a solution (q is the empty program), thenl(q) is
defined to be 0). This will increase the probability of the entire program. The probability
adjustment is controlled by a learning rateγ (0 < γ < 1). ALS is related to the linear
reward-inaction algorithm, e.g., (Narendra & Thathatchar, 1974, Kaelbling, 1993) — the
main difference is: ALS uses LS to search throughprogram spaceas opposed to single
action space. As in the previous section, the probability distributionDP is determined by
P . Initially, all Pij = 1

nops
. However, given a sequence of problems(N1, N2, ..., Nr), the

Pij may undergo changes caused by ALS:
ALS (problems(N1, N2, ..., Nr), variable matrixP )

for i := 1 to r do:
q := Levin search(Ni, P ); Adapt(q, P ).

where the procedureAdapt works as follows:
Adapt(programq, variable matrixP )

for i := 1 to l(q), j := 1 to nops do:
if (qi = bj) then Pij := Pij + γ(1− Pij)
elsePij := (1− γ)Pij
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3.3. Plugging ALS into the Basic SSA Cycle

Critique of adaptive LS. Although ALS seems a reasonable first step towards making LS
adaptive (and actually leads to very nice experimental results — see section 3.5), there is no
proof that it will generate only probability modifications that will speed up the process of
finding solutions to new tasks. Likeany learning algorithm, ALS may sometimes produce
harmful instead of beneficial bias shifts, depending on the environment. To address this
issue, we simply plug ALS into the basic cycle from section 2. SSA ensures that the system
will keep only probability modifications representing a lifelong history of performance
improvements.

ALS as primitive for SSA cycle. At a given time, the learner’s current policy is the
variable matrixP above. To plug ALS into SSA, we replace steps 1 and 3 in section 2’s
basic cycle by:

1. If the current basic cycle’s problem isNi, then setq := Levin search(Ni, P ). If a solution was
found, generate reward of+1.0. SetEvaluation Criterion = TRUE. The next action
will be a call ofAdapt, which will change the policyP .

3. Push copies of thosePi (thei-th column of matrixP ) to be modified byAdapt ontoS, and call
Adapt(q, P ).

Each call ofAdapt causes a bias shift for future learning. In between two calls ofAdapt,
a certain amount of time will be consumed byLevin search (details about how time is
measured will follow in the section on experiments). As always, the goal is to receive
as much reward as quickly as possible, by generating policy changes that minimize the
computation time required byfuturecalls ofLevin searchandAdapt.

Partially observable maze problems.The next subsections will describe experiments
validating the usefulness of LS, ALS, and SSA. To begin with, in an illustrative application
with a partially observable maze that has more states and obstacles than those presented
in other POE work (see, e.g., (Cliff & Ross, 1994)), we will show how LS by itself can
solve POEs with large state spaces but low-complexity solutions (Q-learning variants fail
to solve these tasks). Then we will present experimental case studies with multiple, more
and more difficult tasks (inductive transfer). ALS can use previous experience to speed-up
the process of finding new solutions, and ALS plugged into the SSA cycle (SSA+ALS for
short) always outperforms ALS by itself.

3.4. Experiment 1: A Big Partially Observable Maze (POM)

The current section is a prelude to section 3.5 which will address inductive transfer issues.
Here we will only show that LS by itself can be useful for POE problems. See also
(Wiering & Schmidhuber, 1996).

Task. Figure 1 shows a39 × 38-maze with 952 free fields, a single start position (S)
and a single goal position (G). The maze has more fields and obstacles than mazes used
by previous authors working on POMs — for instance, McCallum’s maze has only 23 free
fields (McCallum, 1995). The goal is to find a program that makes an agent move from S
to G.
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S

G

Figure 1. An apparently complex, partially observable39 × 38-maze with a low-complexity shortest path from
start S to goal G involving 127 steps. Despite the relatively large state space, the agent can implicitly perceive
only one of three highly ambiguous types of input, namely “front is blocked or not”, “left field is free or not”,
“right field is free or not” (compare list of primitives). Hence, from the agent’s perspective, the task is a difficult
POE problem. TheS and the arrow indicate the agent’s initial position and rotation.

Instructions. Programs can be composed from 9 primitive instructions. These instruc-
tions represent theinitial bias provided by the programmer (in what follows, superscripts
will indicate instruction numbers). The first 8 instructions have the following syntax : RE-
PEAT step forward UNTIL conditionCond, THEN rotate towards directionDir.
Instruction 1 :Cond = front is blocked,Dir = left.
Instruction 2 :Cond = front is blocked,Dir = right.
Instruction 3 :Cond = left field is free,Dir = left.
Instruction 4 :Cond = left field is free,Dir = right.
Instruction 5 :Cond = left field is free,Dir = none.
Instruction 6 :Cond = right field is free,Dir = left.
Instruction 7 :Cond = right field is free,Dir = right.
Instruction 8 :Cond = right field is free,Dir = none.
Instruction 9 is: Jump(address, nr-times). It has two parameters:nr-times ∈
{1, 2, . . . ,MAXR} (with the constant MAXR representing the maximum number of rep-
etitions), andaddress ∈ {1, 2, . . . , top}, wheretop is the highest address in the current
program. Jump uses an additional hidden variablenr-times-to-go which is initially
set tonr-times. The semantics are: Ifnr-times-to-go > 0, continue execution at
addressaddress. If 0 < nr-times-to-go < MAXR, decrementnr-times-to-go.
If nr-times-to-go = 0, setnr-times-to-go to nr-times. Note thatnr-times =
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MAXRmay cause an infinite loop. TheJump instruction is essential for exploiting the pos-
sibility that solutions may consist ofrepeatableaction sequences and “subprograms”, thus
having low algorithmic complexity (Kolmogorov, 1965, Chaitin, 1969, Solomonoff, 1964).
LS’ incrementally growing time limit automatically deals with those programs that do not
halt, by preventing them from consuming too much time.

As mentioned in section 3.1, the probability of a program is the product of the probabilities
of its constituents. To deal with probabilities of the twoJump parameters, we introduce two
additional variable matrices,̄P andP̂ . For a program withl ≤ k instructions, to specify
the conditional probabilityP̄ij of a jump to addressaj , given that the instruction at address
ai is Jump (i ∈ {1, ..., l}, j ∈ {1, ..., l}), we first normalize the entries̄Pi1, P̄i2, ..., P̄il
(this ensures that the relevant entries sum up to 1). Provided the instruction at address
ai is Jump, for i ∈ {1, ..., k}, j ∈ {1, ...,MAXR}, P̂ij specifies the probability of the
nr-times parameter being set toj. BothP̄ andP̂ are initialized uniformly and are adapted
by ALS just likeP itself.

Restricted LS-variant. Note that the instructions above are not sufficient to build a
universal programming language — the experiments in this paper are confined to arestricted
version of LS. From the instructions above, however, one can build programs for solving
any maze in which it is not necessary to completely reverse the direction of movement
(rotation by 180 degrees) in a corridor. Note that it is mainly theJump instruction that
allows for composing low-complexity solutions from “subprograms” (LS provides a sound
way for dealing with infinite loops).

Rules. Before LS generates, runs and tests a new program, the agent is reset to its start
position. Collisions with walls halt the program — this makes the problem hard. A path
generated by a program that makes the agent hit the goal is called a solution. The agent is
not required to stop at the goal — there are no explicit halt instructions.

Why is this a POE problem? Because the instructions above are not sufficient to tell the
agent exactly where it is: at any given time, the agent can perceive only one of three highly
ambiguous types of input (by executing the appropriate primitive): “front is blocked or not”,
“left field is free or not”, “right field is free or not” (compare list of primitives at the beginning
of this section). Some sort of memory is required to disambiguate apparently equal situations
encountered on the way to the goal. Q-learning, for instance, is not guaranteed to solve
POEs. Our agent, however, can use memory implicit in the state of the execution of its
current program to disambiguate ambiguous situations.

Measuring time. The computational cost of a singleLevin searchcall in between two
Adapt calls is essentially the sum of the costs of all the programs it tests. To measure the
cost of a single program, we simply count the total number of forward steps and rotations
during program execution (this number is of the order of total computation time). Note that
instructions often cost more than 1 step. To detect infinite loops, LS also measures the time
consumed byJump instructions (one time step per executedJump). In a realistic application,
however, the time consumed by a robot move would by far exceed the time consumed by a
Jump instruction — we omit this (negligible) cost in the experimental results.

Comparison. We compare LS to three variants of Q-learning (Watkins & Dayan, 1992)
and random search. Random search repeatedly and randomly selects and executes one of
the instructions (1-8) until the goal is hit (like with Levin search, the agent is reset to its start
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position whenever it hits the wall). Since random search (unlike LS) does not have a time
limit for testing, it may not use the jump – this is to prevent it from wandering into infinite
loops. The first Q-variant uses the same 8 instructions, but has the advantage that it can
distinguish all possible states (952 possible inputs — but this actually makes the task much
easier, because it is no POE problem any more). The first Q-variant was just tested to see
how much more difficult the problem becomes in the POE setting. The second Q-variant can
only observe whether the four surrounding fields are blocked or not (16 possible inputs), and
the third Q-variant receives as input a unique representation of the five most recent executed
instructions (37449 possible inputs — this requires a gigantic Q-table!). Actually, after a
few initial experiments with the second Q-variant, we noticed that it could not use its input
for preventing collisions (the agent always walks for a while and then rotates; in front of a
wall, every instruction will cause a collision — compare instruction list at the beginning of
this section). To improve the second Q-variant’s performance, we appropriately altered the
instructions: each instruction consists of one of the 3 types of rotations followed by one of
the 3 types of forward walks (thus the total number of instructions is 9 — for the same reason
as with random search, the jump instruction cannot be used). Q-learning’s reward is 1.0
for finding the goal and -0.01 for each collision. The parameters of the Q-learning variants
were first coarsely optimized on a number of smaller mazes which they were able to solve.
We setc = 0.005, which means that in the first phase (Phase = 1 in the LS procedure) a
program may execute up to 200 steps before being stopped. We setMAXR = 6.

Typical result. In theeasy, totally observablecase, Q-learning took on average 694,933
steps (10 simulations were conducted) to solve the maze in Figure 1. However, as expected,
in thedifficult, partially observablecases, neither the two Q-learning variants nor random
search were ever able to solve the maze within 1,000,000,000 steps (5 simulations were
conducted). In contrast, LS was indeed able to solve the POE: LS required 97,395,311
steps to find a programq computing a 127-step shortest path to the goal in Figure 1. LS’
low-complexity solutionq involves two nested loops:

1) REPEAT step forward UNTIL left field is free<5>

2) Jump (1 , 3)<9>

3) REPEAT step forward UNTIL left field is free, rotate left<3>

4) Jump (1 , 5)<9>

In words: Repeat the following action sequence 6 times: go forward until you see the
fifth consecutive opening to the left; then rotate left. We haveDP (q) = 1

9
1
9

1
4

1
6

1
9

1
9

1
4

1
6 =

2.65 ∗ 10−7.
Similar results were obtained with many other mazes having non-trivial solutions with

low algorithmic complexity. Such experiments illustrate that smart search through pro-
gram space can be beneficial in cases where the task appears complex but actually has
low-complexity solutions. Since LS has a principled way of dealing with non-halting
programs and time-limits (unlike, e.g., “Genetic Programming”(GP)), LS may also be of
interest for researchers working in GP (Cramer, 1985, Dickmanns et al., 1987, Koza, 1992,
Fogel et al., 1966).

ALS: single tasks versus multiple tasks.If we use the adaptive LS extension (ALS) for
a single task as the one above (by repeatedly applying LS to the same problem and changing
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the underlying probability distribution in between successive calls according to section 3.2),
then the probability matrix rapidly converges such that late LS calls find the solution almost
immediately. This is not very interesting, however — once the solution to a single problem
is found (and there are no additional problems), there is no point in investing additional
efforts into probability updates (unless such updates lead to an improved solution — this
would be relevant in case we do not stop LS after the first solution has been found). ALS
is more interesting in cases where there are multiple tasks, and where the solution to one
task conveys some but not all information helpful for solving additional tasks (inductive
transfer). This is what the next section is about.

3.5. Experiment 2: Incremental Learning / Inductive Transfer

1 

3

4

5

6

7

2

Figure 2. A23× 23 labyrinth. The arrow indicates the agent’s initial position and direction. Numbers indicate
goal positions. The higher the number, the more difficult the goal. The agent’s task is to find all goal positions in
a given “goalset”. Goalsets change over time.

This section will show that ALS can use experience to significantly reduce average search
time consumed by successive LS calls in cases where there are more and more complex
tasks to solve (inductive transfer), and that ALS can be further improved by plugging it into
SSA.

Task. Figure 2 shows a23 × 23 maze and 7 different goal positions marked 1,2,...,7.
With a given goal, the task is to reach it from the start state. Each goal is further away
from start than goals with lower numbers. We create 4 different “goalsets”G1, G2, G3,
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G4. Gi contains goals 1, 2, ..., 3 + i. One simulation consists of 40 “epochs”E1, E2, ...
E40. During epochsE10(i−1)+1 to E10i, all goals inGi (i = 1, 2, 3, 4) have to be found
in order of their distances to the start. Finding a goal yields reward 1.0 divided by solution
path length (short paths preferred). There is no negative reward for collisions. During each
epoch, we update the probability matricesP , P̄ andP̂ whenever a goal is found (for all
epochs dealing with goalsetGn there aren+ 3 updates). For each epoch we store the total
number of steps required to find all goals in the corresponding goalset. We compare two
variants of incremental learning, METHOD 1 and METHOD 2:

METHO D 1 — inter-goalset resets.Whenever the goalset changes (at epochsE11,
E21,E31), we uniformly initialize probability matricesP , P̄ andP̂ . Inductive transfer
can occur only within goalsets. We compare METHOD 1 to simulations in which only
the most difficult task of each epoch has to be solved.
METHOD 2 — no inter-goalset resets.We do not resetP , P̄ andP̂ in case of goalset
changes. We have both intra-goalset and inter-goalset inductive transfer. We compare
METHOD 2 to METHOD 1, to measure benefits of inter-goalset transfer for solving
goalsets with an additional, more difficult goal.

Comparison. We compare LS by itself, ALS by itself, and SSA+ALS, for both METH-
ODs 1 and 2.

LS results. Usingc = 0.005 andMAXR = 15, LS needed17.3 ∗ 106 time steps to find
goal 7 (without any kind of incremental learning or inductive transfer).

Learning rate influence. To find optimal learning rates minimizing the total number
of steps during simulations of ALS and SSA+ALS, we tried all learning ratesγ in {0.01,
0.02,..., 0.95}. We found that SSA+ALS is fairly learning rate independent: it solvesall
tasks withall learning rates in acceptable time (108 time steps), whereas for ALS without
SSA (and METHOD 2) only small learning rates are feasible – large learning rate subspaces
do not work for many goals. Thus, the first type of SSA-generated speed-up lies in the lower
expected search time for appropriate learning rates.

With METHOD 1, ALS performs best with a fixed learning rateγ = 0.32, and SSA+ALS
performs best withγ = 0.45, with additional uniform noise in[−0.05, 0.05] (noise tends
to improve SSA+ALS’s performance a little bit, but worsens ALS’ performance). With
METHOD 2, ALS performs best withγ = 0.05, and SSA+ALS performs best withγ = 0.2
and added noise in[−0.05, 0.05].

For METHODs 1 and 2 and all goalsetsGi (i = 1, 2, 3, 4), Table 1 lists the numbers of
steps required by LS, ALS, SSA+ALS to find all ofGi’s goals during epochE(i−1)∗10+1,
in which the agent encounters the goal positions in the goalset for the first time.

ALS versus LS.ALS performs much better than LS on goalsetsG2, G3, G4. ALS does
not help to to improve performance onG1’s goalset, though (epochE1), because there are
many easily discoverable programs solving the first few goals.

SSA+ALS versus ALS.SSA+ALS always outperforms ALS by itself. For optimal
learning rates, the speed-up factor for METHOD 1 ranges from 6 % to 67 %. Thespeed-up
factor for METHOD 2 ranges from 13 % to 26 %. Recall, however, that there are many
learning rates where ALS by itself completely fails, while SSA+ALS does not. SSA+ALS
is more robust.
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Table 1. For METHODs 1 and 2, we list the number of steps (in
thousands) required by LS, ALS, SSA+ALS to find all goals in a specific
goalset during the goalset’s first epoch (for optimal learning rates). The
probability matrices are adapted each time a goal is found. The topmost
LS row refers only to the most difficult goals in each goalset (those with
maximal numbers). ALS outperforms LS on all goalsets but the first, and
SSA+ALS achieves additional speed-ups. SSA+ALS works well for all
learning rates, ALS by itself does not. Also, all our incremental learning
procedures clearly outperform LS by itself.

Algorithm METHOD SET 1 SET 2 SET 3 SET 4
LS last goal 4.3 1,014 9,505 17,295
LS 8.7 1,024 10,530 27,820
ALS 1 12.9 382 553 650
SSA + ALS 1 12.2 237 331 405
ALS 2 13.0 487 192 289
SSA + ALS 2 11.5 345 85 230

Example of bias shifts undone.For optimal learning rates, the biggest speed-up occurs
for G3. Here SSA decreases search costs dramatically: after goal 5 is found, the pol-
icy “overfits” in the sense that it is too much biased towards problem 5’s optimal (lowest
complexity) solution:(1) Repeat step forward until blocked, rotate left. (2) Jump (1,11).
(3) Repeat step forward until blocked, rotate right. (4) Repeat step forward until blocked,
rotate right. Problem 6’s optimal solution can be obtained from this by replacing the final
instruction by(4) Jump (3,3). This represents a significant change though (3 probability
distributions) and requires time. Problem 5, however, can also be solved by replacing its
lowest complexity solution’s final instruction by(4) Jump (3,1). This increases complexity
but makes learning problem 6 easier, because less change is required. After problem 5 has
been solved using the lowest complexity solution, SSA eventually suspects “overfitting”
because too much computation time goes by without sufficient new rewards. Before dis-
covering goal 6, SSA undoes apparently harmful probability shifts until SSC is satisfied
again. This makesJumpinstructions more likely and speeds up the search for a solution to
problem 6.

METHOD 1 versus METHOD 2. METHOD 2 works much better than METHOD 1
onG3 andG4, but not as well onG2 (for G1 both methods are equal — differences in
performance can be explained by different learning rates which were optimized for the total
task). Why? Optimizing a policy for goals 1—4 will not necessarily help to speed up
discovery of goal 5, but instead cause a harmful bias shift by overtraining the probability
matrices. METHOD 1, however, can extract enough useful knowledge from the first 4 goals
to decrease search costs for goal 5.

More SSA benefits.Table 2 lists the number of steps consumed during the final epoch
E10i of each goalsetGi (the results of LS by itself are identical to those in table 1). Using
SSA typically improves the final result, and never worsens it. Speed-up factors range from
0 to 560 %.

For all goalsets Table 3 lists the total number of steps consumed during all epochs of one
simulation, the total number of all steps for those epochs (E1,E11,E21,E31) in which new
goalsets are introduced, and the total number of steps required for the final epochs (E10,
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Table 2. For all goalsets we list numbers of steps consumed by ALS and
SSA+ALS to find all goals of goalsetGi during the final epochE10i.

Algorithm METHOD SET 1 SET 2 SET 3 SET 4
ALS 2 675 9,442 10,220 9,321
SSA + ALS 2 442 1,431 3,321 4,728
ALS 1 379 1,125 2,050 3,356
SSA + ALS 1 379 1,125 2,050 2,673

Table 3. The total number of steps (in thousands) consumed by LS, ALS,
SSA+ALS (1) during one entire simulation, (2) during all the first epochs of all
goalsets, (3) during all the final epochs of all goalsets.

Algorithm METHOD TOTAL TOTAL FIRST TOTAL LAST
LS 39,385
ALS 2 1,820 980 29.7
ALS 1 1,670 1,600 6.91
SSA + ALS 1 1,050 984 6.23
SSA + ALS 2 873 671 9.92

E20,E30,E40). SSA always improves the results. For the total number of steps — which is
an almost linear function of the time consumed during the simulation — the SSA-generated
speed-up is 60% for METHOD 1 and 108 % for METHOD 2 (the “fully incremental”
method). Although METHOD 2 speeds up performance during each goalset’s first epoch
(ignoring the costs that occurred before introduction of this goalset), final results are better
without inter-goalset learning. This is not so surprising: by using policiesoptimizedfor
previous goalsets, we generate bias shifts for speeding up discovery of new, acceptable
solutions, without necessarily makingoptimalsolutions of future tasks more likely (due to
“evolutionary ballast” from previous solutions).

LS by itself needs27.8 ∗ 106 steps for findingall goals inG4. Recall that17.3 ∗ 106

of them are spent for finding only goal 7. Using inductive transfer, however, we obtain
large speed-up factors. METHOD 1 with SSA+ALS improves performance by a factor
in excess of 40 (see results of SSA+ALS on the first epoch ofG4). Figure 3(A) plots
performance against epoch numbers. Each time the goalset changes, initial search costs are
large (reflected by sharp peaks). Soon, however, both methods incorporate experience into
the policy. We see that SSA keeps initial search costs significantly lower.

The safety net effect.Figure 3(B) plots epoch numbers against average probability of
programs computing solutions. With METHOD 1, SSA+ALS tends to keep the probabilities
lower than ALS by itself: high program probabilities are not always beneficial. With
METHOD 2, SSA undoes many policy modifications when goalsets change, thus keeping
the policy flexible and reducing initial search costs.

Effectively, SSA is controlling the prior on the search space such that overall average
search time is reduced, given a particular task sequence. For METHOD 1, afterE40 the
number of still valid modifications of policy components (probability distributions) is 377
for ALS, but only 61 for SSA+ALS (therefore, 61 is SSA+ALS’s total final stack size).
For METHOD 2, the corresponding numbers are 996 and 63. We see that SSA keeps only
about 16% respectively 6% of all modifications. The remaining modifications are deemed
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Figure 3. (A) Average number of steps per epoch required to find all of the current goalset’s goals, plotted against
epoch numbers. Peaks reflect goalset changes. (B) Average probability of programs computing solutions (before
solutions are actually found).

unworthy because they have not been observed to trigger lifelong reward speed-ups. Clearly,
SSA prevents ALS from overdoing its policy modifications (“safety net effect”). This is
SSA’s simple, basic purpose: undo certain learning algorithms’ policy changes and bias
shifts once they start looking harmful in terms of long-term reward/time ratios.

It should be clear that the SSA+ALS implementation is just one of many possible SSA
applications — we may plug many alternative learning algorithms into the basic cycle.

4. Implementation 2: Incremental Self-Improvement (IS)

The previous section used a single, complex, powerful, primitive learning action (adaptive
Levin Search). The current section exploits the fact that it is also possible to use many,
much simpler actions that can be combined to form more complex learning strategies, or
metalearning strategies (Schmidhuber, 1994, 1997b; Zhao & Schmidhuber, 1996).

Overview. We will use a simple, assembler-like programming language which allows
for writing many kinds of (learning) algorithms. Effectively, we embed the way the system
modifies its policy and triggers backtracking within the self-modifying policy itself. SSA
is used to keep only those self-modifications followed by reward speed-ups, in particular
those leading to “better” future self-modifications, recursively. We call this “incremental
self-improvement” (IS).

Outline of section. Subsection 4.1 will describe how the policy is represented as a set
of variable probability distributions on a set of assembler-like instructions, how the policy
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builds the basis for generating and executing a lifelong instruction sequence, how the system
can modify itself executing special self-modification instructions, and how SSA keeps only
the “good” policy modifications. Subsection 4.2 will describe an experimental inductive
transfer case study where we apply IS to a sequence of more and more difficult function
approximation tasks. Subsection 4.3 will mention additional IS experiments involving
complex POEs and interacting learning agents that influence each other’s task difficulties.

4.1. Policy and Program Execution

Storage / Instructions. The learner makes use of an assembler-like programming language
similar to but not quite as general as the one in (Schmidhuber, 1995). It hasn addressable
work cellswith addresses ranging from 0 ton − 1. The variable, real-valued contents
of the work cell with addressk are denotedck. Processes in the external environment
occasionally write inputs into certain work cells. There also arem addressableprogram
cellswith addresses ranging from 0 tom− 1. The variable, integer-valued contents of the
program cell with addressi are denoteddi. An internal variableInstruction Pointer(IP)
with range{0, . . . ,m − 1} always points to one of the program cells (initially to the first
one). There also is a fixed setI of nops integer values{0, . . . , nops− 1}, which sometimes
represent instructions, and sometimes represent arguments, depending on the position ofIP.
IP and work cells together represent the system’s internal stateI (see section 2). For each
valuej in I, there is an assembler-like instructionbj with nj integer-valued parameters.
In the following incomplete list of instructions (b0, . . . , b3) to be used in experiment 3, the
symbolsw1, w2, w3 stand for parameters that may take on integer values between0 and
n− 1 (later we will encounter additional instructions):

b0: Add(w1, w2, w3) : cw3 ← cw1 + cw2 (add the contents of work cellw1 and work cell
w2, write the result into work cellw3 ).

b1: Sub(w1, w2, w3) : cw3 ← cw1 − cw2 .

b2: Mul(w1, w2, w3) : cw3 ← cw1 ∗ cw2 .

b3: Mov(w1, w2) : cw2 ← cw1 .

b4: JumpHome: IP← 0 (jump back to 1st program cell).

Instruction probabilities / Current policy. For each program celli there is a variable
probability distributionPi on I. For every possiblej ∈ I, (0 ≤ j ≤ nops − 1), Pij
specifies for celli the conditional probability that, when pointed to byIP, its contents will
be set toj. The set of all currentPij-values defines a probability matrixP with columnsPi
(0 ≤ i ≤ m− 1). P is called the learner’scurrent policy. In the beginning of the learner’s
life, all Pij are equal (maximum entropy initialization). IfIP = i, the contents ofi, namely
di, will be interpreted as instructionbdi (such asAddor Mul), and the contents of cells that
immediately followi will be interpreted asbdi ’s arguments, to be selected according to the
correspondingP -values. See Figure 4.
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Figure 4. Snapshot of parts of policy and storage. IP currently points to program cell 28. The integer sequence 1
4 2 6 (generated according to the policy’s current probability distributions) will be interpreted asSub(4, 2, 6)—
subtract the contents of work cell 4 from the contents of work cell 4 and put the result into work cell 6.

Self-modifications. To obtain a learner that can explicitly modify its own policy (by
running its own learning strategies), we introduce a special self-modification instruction
IncProbnot yet mentioned above:

b5: IncProb(w1, w2, w3) : IncreasePij by γ percent, wherei = w1 ∗ nops + w2 and
j = w3 (this construction allows for addressing a broad range of program cells), and
renormalizePi (but prevent P-values from falling below a minimal valueε, to avoid
near-determinism). Parametersw1, w2, w3 may take on integer values between0 and
nops − 1. In the experiments, we will useγ = 15, ε = 0.001.

In conjunction with other primitives,IncProb may be used in instruction sequences
that compute directed policy modifications. Calls ofIncProb represent theonly way of
modifying the policy.

Self-delimiting self-modification sequences (SMSs).SMSs are subsequences of the
lifelong action sequence. The firstIncProb after the learner’s “birth” or after each SSA
call (see section 2) begins an SMS. The SMS ends by executing another yet unmentioned
primitive:

b6: EndSelfMod(w1). Temporarily disableIncProb, by preventing futureIncProb in-
structions from causing any probability modifications, untilw1 (1 ≤ w1 ≤ nops − 1)
additional non-zero reward signals have been received — this will satisfy theEvalu-

ation Criterion in the basic cycle (section 2).
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Some of the (initially highly random) action subsequences executed during system life will
indeed be SMSs. Depending on the nature of the other instructions, SMSs can compute
almost arbitrary sequences of modifications ofPij values. This may result in almost
arbitrary modifications of context-dependent probabilities of future action subsequences,
including future SMSs.Policy changes can be generated only by SMSs.SMSs build the
basis for “metalearning”: SMSs are generated according to the policy, and may change the
policy. Hence, the policy can essentially change itself, and also the way it changes itself,
etc.

SMSs can influence the timing of backtracking processes, because they can influence the
times at which theEvaluation Criterion will be met. Thus SMSs can temporarily
protect the learner from performance evaluations and policy restaurations.

Plugging SMSs into SSA.We replace step 1 in the basic cycle (see section 2) by the
following procedure:

1. REPEAT the following UNTIL the Evaluation Criterion is satisfied or the
Boolean variableModification-Criterion (initially FALSE) is TRUE:

1.1. Randomly generate an integerj ∈ I according to matrix columnPIP (the dis-
tribution of the program cell pointed to byIP , initially 0 at system birth). Set
program cell contentsdIP := j. Translatej into the corresponding current in-
structionbj . Look up the numbernj of cells required to storebj ’s parameters.
If IP> m − nj − 2, resetIP to 0, go to step 1. Otherwise generate instruction
arguments for thenj cells immediately followingIP according to their probability
distributionsPIP+1, ...,PIP+nj , and setIP to IP + nj + 1.

1.2. IFbj is a learning instruction and not currently disabled by a previousEndSelfMod
instruction,THEN setModification-Criterion = TRUE, exit the current
REPEAT loop, and go to step2 of the basic cycle.

1.3. Executebj . IF bj isEndSelfModand the topmost entry in the stackS is not a “tag”,
THEN set the integer variablenNZR equal to the first parameter ofbj plus one
(this will influence the time at whichEvaluation Criterion will be reached).

1.4. IF there is a new environmental input,THEN let it modify I.

1.5. IF nNZR > 0 and non-zero reward occurred during the current cycle,THEN
decrementnNZR. IF nNZR is zero,THEN setEvaluation Criterion =
TRUE.

We also change step 3 in the SSA cycle as follows:

3. IF Modification-Criterion = TRUE, THEN push copies of thosePoli to be
modified bybj (from step 1.2) ontoS, and executebj .

4.2. Experiment 3: Function Approximation / Inductive Transfer

This experimental case study will demonstrate that IS can successfully learn in a chang-
ing environment where the tasks to be solved become more and more difficult over time
(inductive transfer).
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Task sequence.Our system is exposed to a sequence of more and more complex function
approximation problems. The functions to be learned aref1(x, y) = x+ y; f2(x, y, z) =
x+y−z; f3(x, y, z) = (x+y−z)2; f4(x, y, z) = (x+y−z)4; f5(x, y, z) = (x+y−z)8.

Trials. The system’s single life is decomposable inton successive trialsA1, A2, ...,An
(but the learner has noa priori concept of a trial). Thei-th trial lasts from discrete time
stepti+1 until discrete time stepti+1, wheret1 = 0 (system birth) andtn+1 = T (system
death). In a given trialAi we first select a functiongi ∈ {f1, . . . , f5}. As the trial number
increases, so does the probability of selecting a more complex function. In early trials the
focus is onf1. In late trials the focus is onf5. In between there is a gradual shift in task
difficulty: using a function pointerptr (initially 1) and an integer counterc (initially 100),
in trial Ai we selectgi := fptr with probability c

100 , andgi := fptr+1 with probability
1 − c

100 . If the reward acceleration during the most recent two trials exceeds a certain
threshold (0.05), thenc is decreased by 1. Ifc becomes 0 thenfptr is increased by 1, andc
is reset to 100. This is repeated untilfptr := f5. From then on,f5 is always selected.

Oncegi is selected, randomly generated real valuesx, y andz are put into work cells 0,
1, 2, respectively. The contents of an arbitrarily chosen work cell (we always use cell 6) are
interpreted as the system’s response. Ifc6 fulfills the condition|gi(x, y, z)− c6| < 0.0001,
then the trial ends and the current reward becomes1.0; otherwise the current reward is 0.0.

Instructions. Instruction sequences can be composed from the following primitive in-
structions (compare section 4.1):
Add(w1, w2, w3), Sub(w1, w2, w3), Mul(w1, w2, w3), Mov(w1, w2), IncProb(w1, w2, w3),
EndSelfMod(w1), JumpHome(). Each instruction occupies 4 successive program cells
(some of them unused if the instruction has less than 3 parameters). We usem = 50, n = 7.

Evaluation Condition. SSA is called after each 5th consecutive non-zero reward signal
after the end of each SMS, i.e., we setnNZR = 5.

Huge search space.Given the primitives above, random search would require about
1017 trials on average to find a solution forf5 — the search space is huge. The gradual
shift in task complexity, however, helps IS to learnf5 much faster, as will be seen below.

Results. After about9.4 × 108 instruction cycles (ca.108 trials), the system is able to
computef5 almost perfectly, given arbitrary real-valued inputs. The corresponding speed-
up factor over (infeasible) random or exhaustive search is about109 — compare paragraph
“Huge search space” above. The solution (see Figure 5) involves 21 strongly modified
probability distributions of the policy (after learning, the correct instructions had extreme
probability values). At the end, the most probable code is given by the following integer
sequence:

1 2 1 61 0 6 62 6 6 62 6 6 62 6 6 64 ∗ ∗ ∗...
The corresponding “program” and the (very high) probabilities of its instructions and

parameters are shown in Table 4.
Evolution of self-modification frequencies.During its life the system generates a lot of

self-modifications to compute the strongly modified policy. This includes changes of the
probabilities of self-modifications. It is quite interesting (and also quite difficult) to find
out to which extent the system uses self-modifying instructions to learn how to use self-
modifying instructions. Figure 6 gives a vague idea of what is going on by showing a typical
plot of the frequency ofIncProbinstructions during system life (sampled at intervals of106
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Figure 5. The final state of the probability matrix for the function learning problem. Grey scales indicate
the magnitude of probabilities of instructions and parameters. The matrix was computed by self-modification
sequences generated according to the matrix itself (initially, all probability distributions were maximum entropy
distributions).

Table 4.The final, most probable “program” and the corresponding probabilities.

Probabilities Instruction Parameters Semantics
1. (0.994, 0.975, 0.991, 0.994) Sub ( 2, 1, 6) (z − y) =⇒ c6
2. (0.994, 0.981, 0.994, 0.994) Sub ( 0, 6, 6) (x− (z − y)) =⇒ c6
3. (0.994, 0.994, 0.994, 0.994) Mul ( 6, 6, 6) (x+ y − z)2 =⇒ c6
4. (0.994, 0.994, 0.994, 0.994) Mul ( 6, 6, 6) (x+ y − z)4 =⇒ c6
5. (0.869, 0.976, 0.994, 0.994) Mul ( 6, 6, 6) (x+ y − z)8 =⇒ c6
6. (0.848, —, —, — ) JumpHome (–, –, –,) 0 =⇒ IP

basic cycles). Soon after its birth, the system found it useful to dramatically increase the
frequency ofIncProb; near its death (when there was nothing more to learn) it significantly
reduced this frequency. This is reminiscent of Schwefel’s work (1974) on self-adjusting
mutation rates. One major novelty is the adaptive, highly non-uniform distribution of
self-modifications on “promising” individual policy components.

Stack evolution.The temporary ups and downs of the stack reflect that as the tasks change,
the system selectively keeps still useful old modifications (corresponding to information
conveyed by previous tasks that is still valuable for solving the current task), but deletes
modifications that are too much tailored to previous tasks. In the end, there are only about
200 stack entries corresponding to only 200valid probability modifications – this is a small
number compared to the about5 ∗ 105 self-modifications executed during system life.
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Figure 6. Numbers of executed self-modifying instructions plotted against time, sampled at intervals of106

instruction cycles. The graph reflects that the system soon uses self-modifying instructions to increase the frequency
of self-modifying instructions. Near system death the system learns that there is not much to learn any more, and
decreases this frequency.

4.3. Other Experiments with IS: Overview

In the previous experiments the learner’s environment changed because of externally in-
duced task changes. We also did experimental case studies where the tasks change in a less
obvious way because of other changing learners.

A complex POE.Schmidhuber et al. (1996) describe two agents A and B living in a
partially observable600 × 500 pixel environment with obstacles. They learn to solve a
complex task that could not be solved by various TD(λ) Q-learning variants (Lin, 1993).
The task requires (1) agent A to find and take a key “key A”; (2) agent A go to a door
“door A” and open it for agent B; (3) agent B to enter through “door A”, find and take
another key “key B”; (4) agent B to go to another door “door B” to open it (to free the way
to the goal); (5) one of the agents to reach the goal. Both agents share the same design.
Each is equipped with limited “active” sight: by executing certain instructions, it can sense
obstacles, its own key, the corresponding door, or the goal, within up to 50 pixels in front of
it. The agent can also move forward, turn around, turn relative to its key or its door or the
goal. It can use memory (embodied by itsIP) to disambiguate inputs (unlike Jaakkola et
al.’s method (1995), ours is not limited to finding suboptimal stochastic policies for POEs
with an optimal solution). Reward is provided only if one of the agents touches the goal.
This agent’s reward is 5.0; the other’s is 3.0 (for its cooperation — note that asymmetric
reward introduces competition).

In the beginning, the goal is found only every 300,000 basic cycles. Through self-
modifications and SSA, however, within 130,000 trials (109 basic cycles) the average trial
length decreases by a factor of 60 (mean of 4 simulations). Both agents learn to cooperate
to accelerate reward intake. See (Schmidhuber et al., 1996) for details.

Zero sum games.Even certain zero sum reward tasks allow for achieving success stories.
This has been shown in an experiment with three IS-based agents (Zhao & Schmidhuber, 1996):
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each agent is both predator and prey; it receives reward 1 for catching its prey and reward
-1 for being caught. Since all agents learn each agent’s task gets more and more difficult
over time. How can it then create a non-trivial history of policy modifications, each cor-
responding to a lifelong reward acceleration? The answer is: each agent collects a lot of
negative reward during its life, and actually comes up with a history of policy modifications
causing less and less negative cumulative long-term rewards. The stacks of all agents tend
to grow continually as they discover better and better pursuit-evasion strategies.

5. Conclusion

SSA collects more information than previous RL schemes about long-term effects of policy
changes and shifts of inductive bias. In contrast to traditional RL approaches, time is not
reset at trial boundaries. Instead we measure the total reward received and the total time
consumed by learning and policy tests during all trials following some bias shift: bias shifts
are evaluated by measuring their long-term effects on later learning. Bias shifts are undone
once there is empirical evidence that they have not set the stage for long-term performance
improvement. No bias shift is safe forever, but in many regular environments the survival
probabilities of useful bias shifts will approach unity if they can justify themselves by
contributing to long-term reward accelerations.

Limitations. (1) Like any approach to inductive transfer ours suffers from the fundamen-
tal limitations mentioned in the first paragraph of this paper. (2) Especially in the beginning
of the training phase ALS may suffer from a possibly large constant buried in theO() nota-
tion used to describe LS’ optimal order of complexity. (3) We do not gain much by applying
our methods to, say, simple “Markovian” mazes for which there already are efficient RL
methods based on dynamic programming (our methods are of interest, however, in certain
more realistic situations where standard RL methods fail). (4) SSA does not make much
sense in “unfriendly” environments in which reward constantly decreases no matter what
the learner does. In such environments SSC will be satisfiable only in a trivial way. True
success stories will be possible only in “friendly”, regular environments that do allow for
long-term reward speed-ups (this does include certain zero sum reward games though).

Outlook. Despite these limitations we feel that we have barely scratched SSA’s potential
for solving realistic RL problems involving inductive transfer. In future work we intend to
plug a whole variety of well-known algorithms into SSA, and let it pick and combine the
best, problem-specific ones.
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Notes

1. Most previous work on limited resource scenarios focuses on bandit problems, e.g., Berry and Fristedt (1985),
Gittins (1989), and references therein: you have got a limited amount of money; how do you use it to figure
out the expected return of certain simple gambling automata and exploit this knowledge to maximize your
reward? See also (Russell & Wefald, 1991, Boddy & Dean, 1994, Greiner, 1996) for limited resource studies
in planning contexts. Unfortunately the corresponding theorems are not applicable to our more general lifelong
learning scenario.

2. This may be termed “metalearning” or “learning to learn”. In the spirit of the first author’s earlier work
(e.g., 1987, 1993, 1994) we will use the expressions “metalearning” and “learning to learn” to characterize
learners that (1) can evaluate and compare learning methods, (2) measure the benefits of early learning on
subsequent learning, (3) use such evaluations to reason about learning strategies and to select “useful” ones
while discarding others. An algorithm is not considered to have learned to learn if it improves merely by luck,
if it does not measure the effects of early learning on later learning, or if it has no explicit method designed to
translate such measurements into useful learning strategies.

3. For alternative views of metalearning see, e.g., Lenat (1983), Rosenbloom et al. (1993). For instance, Lenat’s
approach requires occasional human interaction defining the “interestingness” of concepts to be explored. No
previous approach, however, attempts to evaluate policy changes by measuring their long-term effects on later
learning in terms of reward intake speed.
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