
Machine Learning, 27, 51–68 (1997)
c© 1997 Kluwer Academic Publishers. Manufactured in The Netherlands.

Predicting Nearly As Well As
the Best Pruning of a Decision Tree

DAVID P. HELMBOLD dph@cse.ucsc.edu

Computer and Information Sciences, University of California, Santa Cruz, CA 95064

ROBERT E. SCHAPIRE schapire@research.att.com

AT&T Labs, 600 Mountain Avenue, Murray Hill, NJ 07974

Editor: Philip M. Long

Abstract. Many algorithms for inferring a decision tree from data involve a two-phase process: First, a very
large decision tree is grown which typically ends up “over-fitting” the data. To reduce over-fitting, in the second
phase, the tree is pruned using one of a number of available methods. The final tree is then output and used for
classification on test data.
In this paper, we suggest an alternative approach to the pruning phase. Using a given unpruned decision tree, we
present a new method of making predictions on test data, and we prove that our algorithm’s performance will not
be “much worse” (in a precise technical sense) than the predictions made by the best reasonably small pruning
of the given decision tree. Thus, our procedure is guaranteed to be competitive (in terms of the quality of its
predictions) withanypruning algorithm. We prove that our procedure is very efficient and highly robust.
Our method can be viewed as a synthesis of two previously studied techniques. First, we apply Cesa-Bianchi et al.’s
(1993) results on predicting using “expert advice” (where we view each pruning as an “expert”) to obtain an
algorithm that has provably low prediction loss, but that is computationally infeasible. Next, we generalize and
apply a method developed by Buntine (1990, 1992) and Willems, Shtarkov and Tjalkens (1993, 1995) to derive a
very efficient implementation of this procedure.

Keywords: decision trees, pruning, prediction, on-line learning

1. Introduction

Many algorithms for inferring a decision tree from data, such as C4.5 (Quinlan, 1993),
involve a two step process: In the first step, a very large decision tree is grown to match the
data. If the training data contains noise then this large tree typically “over-fits” the data,
giving quite poor performance on the test set. Therefore, in the second phase, the tree is
pruned using one of a number of available methods. The final tree is then output and used
for classification on test data.

In this paper, we suggest an alternative approach to the pruning phase. Using a given
unpruned decision treeT , we present a new method of making predictions on test data, and
we prove that our algorithm’s performance will not be “much worse” (in a precise technical
sense) than the predictions made by the best reasonably small pruning of the given decision
tree. More precisely, we define a value metric based on the inaccuracy and size of the tree.
Our algorithm’s performance is comparable to the performance of the pruning with the
highest value. Thus, our procedure is guaranteed to be competitive (in terms of the quality
of its predictions) withanypruning algorithm.

52 D.P. HELMBOLD AND R.E. SCHAPIRE

Formally, we study this problem in the on-line learning framework introduced by Little-
stone(1988) and extended by Littlestone and Warmuth (1994) and others. In this model, at
each time stept = 1, . . . , T , the learner receives an instancext and must generate a pre-
diction ŷt ∈ [0, 1]. After an outcomeyt ∈ {0, 1} is observed (which can be thought of as
the label or correct classification of the instancext), the learner suffers loss|yt− ŷt|. Note
that ŷt can be interpreted as the bias of a binary prediction which is1 with probability ŷt,
and0 with probability1− ŷt. Then the loss|yt− ŷt| is simply the probability of the learner
making a mistake (i.e., a prediction differing from the outcomeyt). The tools developed
for this framework make it possible to prove very strong bounds on the performance of our
algorithm.

The learner computes its predictions using predictionsξtP that are generated in a natural
way by each pruningP of the given unpruned treeT . We first show how an algorithm
developed and analyzed by Cesa-Bianchi et al.(1993) can be applied immediately to obtain
a learning algorithm whose loss is bounded by a function that, forany pruningP, is
linear in the prediction loss ofP and the size ofP (roughly, the number of nodes in the
pruning). Their algorithm is closely related to work by Vovk(1990) and Littlestone and
Warmuth(1994). Note that this is a “worst-case” analysis in the sense that it does not rely
on statistical assumptions of any kind regarding the source of the data that is being observed.
Thus, the resulting algorithm is very robust.

A naive implementation of this procedure would require computation time linear in the
number of prunings ofT ; obviously, this is infeasible. However, we show how techniques
used by Buntine(1990, 1992) and Willems, Shtarkov and Tjalkens(1993, 1995) can be
generalized and applied to our setting, yielding a very efficient implementation requiring
computation time at each trialt that is linear in the length of the path defined by the instance
xt in the treeT (and therefore is bounded by the depth ofT).

Various authors have presented techniques for averaging a family of decision trees (Hastie
& Pregibon, 1990, Kwok & Carter, 1990, Oliver & Hand, 1994). In particular, using a
Bayesian formulation, Buntine(1990, 1992) gave a method called Bayesian smoothing for
averaging the class-probability predictions of all possible prunings of a given decision tree.
Although our method is very similar to Buntine’s, his is designed for use on a batch of
examples, while ours uses efficient incremental updates of the data structure in an on-line
setting.

Willems, Shtarkov and Tjalkens (1993, 1995) presented their technique in a much nar-
rower context in which the decision trees considered were assumed to have a very particular
form, and the goal was data compression rather than prediction.

A primary contribution of the current paper is the distillation of key elements of these
previously known methods, and synthesis with other learning-theory results leading to
broader learning applications.

In independent work, Oliver and Hand(1995) have experimented with averaging over
different prunings of decision trees. Their results show that in some cases averaging out-
performs the prunings generated by C4.5. Oliver and Hand weight the prunings by their
performance on the training set, while our methods provide an efficient way to update the
weights as new data is seen. In addition to prunings of the full decision tree, Oliver and
Hand also included subtrees resulting from those splits that were considered but rejected

PREDICTING NEARLY AS WELL AS THE BEST PRUNING 53

when the decision tree was grown. This can be modeled in our setting by storing multiple
prediction rules (one for each rejected split) at the nodes (see Section 5).

According to Breiman et al.(1984, pages 87–92), predicting with the leaves of a decision
tree will often have error at most twice that of the best pruning. They argue why this is
likely when the structure of the decision tree is created from a training set independent of the
test set (but drawn from the same distribution). In contrast, our main result is a very robust
worst-case guarantee: the loss of our algorithm will be within a small constant factor of
the loss of the best pruning of the decision tree on the test set, even if the training set (from
which the decision tree is grown) and the test set are produced by different distributions, or
the test set is chosen by an adversary.

In summary, the main result of this paper is a highly efficient and robust algorithm which
provably predicts nearly as well as the best pruning of a given decision tree. We also describe
how our method can be applied to the problem of predicting a sequence of symbols using
variable memory length prediction models, and mention extensions to other loss functions.

2. Preliminaries

Let Σ be a finite alphabet of|Σ| symbols. Atemplate treeT overΣ is a rooted,|Σ|-ary
tree where every internal node ofT has one child for each symbol inΣ. Thus we can (and
will) identify each node inT with the path (sequence of symbols inΣ) that leads from the
root to that node.

We assume that there is a function which maps every instancex of the domainX to a path
through the template treeT starting at the root and ending at a leaf. Typically, this path
will be defined by a sequence of tests at the nodes ofT , each test resulting in the selection
of one symbol inΣ which specifies the next child to visit. Although the template tree may
be infinite, we require that each of the paths associated with an element ofX be finite.

Figure 1 shows an example template tree over the alphabetΣ = {T, F}. The instance
spaceX consists of all possible assignments to six boolean attributes,b1 throughb6. Each
internal node ofT tests a single bit of the instancex = (b1, b2, b3, b4, b5, b6) and branches
left (T) if the bit is a one and branches right (F) if the bit is a zero.

For simplicity, we assume that all instancesx ∈ X are represented in a canonical form
relative to the template tree. More specifically, we assume that each instancex is repre-
sented by the string inΣ∗ defined by the path inT associated with the instance. Such
a representation allows us to ignore the underlying tests at the nodes ofT . We identify
instances with their canonical representations. Thus each instancex can be viewed as either
an instance or a string inΣ∗.

For instance, in Figure 1, the canonical representation of the instance (0, 1, 0, 1, 0, 0) is
“FF”, and the canonical representation of the instance (0, 1, 1, 0, 0, 1) is “FTFFTT”. Note
that in both casesb1 is 0, sob3 is the second bit tested.

We use|x| to denote the number of symbols in the canonical representation ofx; thus,
|x| is the length of the path induced byx in T . Also, since both instances and nodes are
identified by strings inΣ∗, it is clear that a nodeu is a prefix of instancex (writtenu < x)
if and only if nodeu is on the path inT associated withx.

54 D.P. HELMBOLD AND R.E. SCHAPIRE

��
��

��
��

��
��

��
��

��
��

��
��

��
��

�
�

@
@

�
�

A
A

�
�

�
�

A
A

�
�

QQQ

QQQ

BB

BB

b1

b2 b3

b5

b6

b4

b2

T F

T F

T F

T F

T F

T

T F

F

Figure 1. An example template tree.

A pruningP of the treeT is a tree induced by replacing zero or more of the internal nodes
(and associated subtrees) ofT by leaves. Thus prunings also have the property that every
node has either zero or|Σ| children. When an instancex is evaluated inP, it follows the
same path it would have followed inT , stopping when a leaf ofP is reached. The leaf that
is so reached is denoted byleafP(x). The set of all leaves ofP is written leaves(P), and
the set of all nodes (including both leaves and internal nodes) is writtennodes(P). (Recall
that both the leaves and internal nodes ofP are represented by strings inΣ∗.) Thesizeof
pruningP, written |P|, is the number of internal nodes and leaves inP minusthe number
of leaves inP that are also leaves ofT . Not counting the leaves ofT in the size ofP allows
us to use the identity

∑
P 2−|P| = 1 to simplify our later calculations. Figure 2 shows

two possible prunings of the template tree shown in Figure 1, both having size4.

In order to use these prunings for classification and prediction, we associate with each
leaf of a pruningP a prediction rule to be used on those instances reaching that leaf inP.
We assume that the predictions made by a leaf inP are “inherited” from the associated
node inT . That is, we think of there being a dynamic “mini-expert” at each node ofT ; the
prediction of a pruningP is then the same as the prediction of the “mini-expert” at the leaf
of P reached by the instance. Thus, if some nodeu is a prefix of a particular instance and

PREDICTING NEARLY AS WELL AS THE BEST PRUNING 55

u is a leaf in two different prunings, then both prunings will generate the same prediction
for the instance.

For example, in Figure 2, we have indicated the predictions associated with the leaves
of the two prunings. These predictions are real numbers in[0, 1], whose interpretation is
discussed further below. Note that, since both prunings contain the leaves FT and FF, both
prunings give the same prediction whenever an instance reaches one of these leaves.

Although most decision-tree algorithms come up with a fixed prediction for each leaf,
we allow more general mini-experts. The predictions of the mini-experts can be arbitrary
functions of the current instance and/or previously seen instances. Our main results (Theo-
rems 1 and 2) assume that each mini-expert’s prediction can be computed in constant time
and that all effects of a new instance on all of the various mini-experts can be recorded in
O(|x|) time.

��
��

��
��

��
�� ��

��

��
���

�
@
@

�
�

A
A

�
�

@
@

A
A

�
�

A
A

�
�

b1

b2 b3

0.9 0.2

b1

b3

P P ′

T F T F

F T F T F

0.80.8

T

0.2

0.6

0.2

Figure 2. Two sample prunings of the template tree in Figure 1.

The goal of our learning algorithm is to compete against the performance of the best,
reasonably small such pruning by combining the predictions of all of the prunings. We
study learning in the on-line prediction model used by Littlestone and Warmuth (1994) and
others. In this model, learning takes place in a sequence of trialst = 1, . . . , T . At each time
stept, an instancext is observed, and each pruningP generates a predictionξtP ∈ [0, 1].
The master algorithm combines these predictions to produce its own predictionŷt ∈ [0, 1].
Finally, feedbackyt ∈ {0, 1} is observed. For example, if the path for instancext starts
with TT then the prunings in Figure 2 make the predictions0.9 and0.6. In the next section
we describe how the master algorithm produces its predictionŷt from these values and the
predictions of the other prunings.

As discussed above, the predictionξtP of the pruningP is given, intuitively, by a mini-
expert at the leaf reached byP. That is, we assume formally that each1 nodeu of T
generates a predictionpred

t(u) ∈ [0, 1] for instancext, and furthermore, that

ξtP = pred
t(leafP(xt)) (1)

56 D.P. HELMBOLD AND R.E. SCHAPIRE

for all P.
The loss of the master algorithm at timet is |ŷt − yt|. We can interpret the prediction

ŷt ∈ [0, 1] as the bias of a probabilistic prediction in{0, 1} which is 1 with probability
ŷt, and0 with probability1 − ŷt. Then the loss suffered|ŷt − yt| is exactly the expected
probability of the probabilistically predicted bit differing from the true outcomeyt.

The cumulative loss of the master algorithm is the sum of the losses incurred at all the
trials:

LA =
T∑
t=1

|ŷt − yt|

and, analogously, the cumulative loss of each pruningP is

LP =
T∑
t=1

|ξtP − yt|.

3. An inefficient master algorithm

In this section, we describe a master algorithm whose loss cannot be “much worse” than
that of any “reasonably small” pruning. For the moment, we assume that computation time
is not a consideration.

In this case, we can use the algorithm described by Cesa-Bianchi et al. (1993), which
is an extension of Littlestone and Warmuth’s randomized weighted majority algorithm
(Littlestone & Warmuth, 1994), and is related to Vovk’s aggregating strategies (Vovk, 1990).
This algorithm was calledP (β) in Cesa-Bianchi et al.’s notation, but we refer to it simply
as the “master algorithm.” The algorithm maintains a weightwtP > 0 for each pruningP.
Thus the master algorithm of this section keeps a single explicit weight for each pruned
tree. Initially,∑

P
w1
P = 1, (2)

where the sum is over all possible prunings ofT .
The initial weightsw1

P can be viewed as a “prior” over the set of experts. Since our
bounds are strongest for those strategies receiving the greatest initial weight, we want to
choose initial weights that favor those strategies which we expect are most likely to perform
the best. A reasonable choice is

w1
P = 2−|P| (3)

where |P| is the size measure defined in the previous section. This prior favors those
prunings which are small and thus unlikely to reflect noise in the training set. (In small
prunings, each leaf’s prediction will tend to be based on more examples; see the discussion of
bias versus variance in Breiman et al.(1984, pages 87–92).) Although the master algorithm

PREDICTING NEARLY AS WELL AS THE BEST PRUNING 57

can run with any prior on the prunings, this2−|P| prior enables us to efficiently implement
the master algorithm as described in Section 4.

At each time step, the learner computes its prediction as

ŷt = Fβ(rt)

whereβ ∈ [0, 1] is a parameter of the algorithm, andrt is a weighted average2 of the
predictions of the experts:

rt =
∑
Pw

t
Pξ

t
P∑

Pw
t
P

. (4)

The functionFβ need only be bounded

1 +
ln((1− r)β + r)

2 ln(2
1+β)

≤ Fβ(r) ≤
− ln(1− r + rβ)

2 ln(2
1+β)

,

for all 0 ≤ r ≤ 1. Cesa-Bianchi et al.(1992) give several suitableFβ functions.
After feedbackyt is received, the weights are updated by the rule

wt+1
P = wtP · Uβ(|ξtP − yt|) (5)

whereUβ can be any function satisfying

βr ≤ Uβ(r) ≤ 1− (1− β)r

for r ∈ [0, 1].
Cesa-Bianchi et al. show that the master algorithm suffers loss at most

inf
P

LP ln(1/β) + ln(1/w1
P)

2 ln(2/(1 + β))
.

Using the choice forw1
P given in equation (3), this bound shows that the loss of the master

algorithm is linear inLP and|P|, for everypruningP.
This bound is derived from the following two observations. First, any time the master

algorithm incurs some loss̀, the sum of the updated weights is at most(1+β
2)2` times

the sum of the weights used to predict. Thus if the master algorithm’s total loss isLA
then the sum of the weights is reduced to(1+β

2)2LA or less. Second, ifLP is the loss of
some pruningP then the weight ofP, and thus the sum of the weights, is always at least
wtP(β)LP . Solving these constraints on the sum of the weights forLA yields the above
bound. Cesa-Bianchi et al. also discuss in detail how to choose the parameterβ.

Since the preceding bound depends both on the pruning’s loss and its size, the infimum
might not be achieved by the pruning with the smallest loss, especially if this best pruning
contains many nodes. However, the losses of the prunings are likely to grow with the
number of predictions made, while the sizes of the prunings remain constant. In this case,
the master algorithm’s predictions will converge to those of the best pruning.

When only a few predictions are made, the loss of our algorithm is always less than (a
constant times) the loss plus the size of each pruning. Thus, if there is some pruningP
that is reasonably “small” and whose lossLP is also reasonable then the loss of the master
algorithm will also be small.

58 D.P. HELMBOLD AND R.E. SCHAPIRE

4. An efficient implementation

Unfortunately, the running time of this procedure is linear in the number of experts (i.e.,
prunings), which in this case is enormous (possibly even infinite). Obviously, we cannot
efficiently maintain all of the weightswtP explicitly since there are far too many prunings
to consider. Instead, we use a more subtle data structure, similar to the ones used by
Buntine(1990, 1992) and Willems, Shtarkov and Tjalkens(1993, 1995), that can be used
to compute the prediction̂yt of the master algorithm. The size of this data structure is
proportional to the number of nodes inT (or, more accurately, to the number of nodes that
have actually been visited). Further, the time needed to compute the predictionŷt from the
ξtP ’s and to update the data structure is proportional, at each time stept, to |xt| (recall that
|xt|, in our canonical representation, is the length of the path defined byxt in T).

The basic idea is to maintain weights at the nodes that implicitly encode the weights of
the various prunings. In particular, the weight of pruningP is represented as2−|P| times
the product of the weights stored at the leaves ofP. Initially, weight

1(u) = 1 for each
nodeu, and these values are only changed ifu is a prefix of some instancext. Thus even
these node weights need only be stored explicitly for those nodes ofT that have actually
been visited. This allows us to apply this procedure efficiently even ifT is extremely large,
or even infinite (so long as every instancex defines a finite path through the tree).

The first main idea of this method is to show how to efficiently compute sums of the form∑
P

2−|P|
∏

s∈leaves(P)

g(s) (6)

where the first sum is over all prunings ofT andg is any easily computed function of the
nodes. The second part of the method is to show thatrt (equation (4)) is the ratio of two
sums, both of which can be written in this form.

Fix a template treeT . For each nodeu in T , letTu be the subtree ofT rooted atu. Note
that each node inTu is now associated with two strings:s for the path to the node inT ,
ands′ for the path to the node inTu (beginning at the rootu of the subtree). Clearly, these
are related by the identitys = us′, the concatenation ofu ands′.

For example, consider the tree in Figure 3. Nodeu is associated with the path10. We
useu to represent both the node in the tree and the string “10”. Nodes is associated with
both the path101 in the entire tree and the paths′ = 1 in Tu, the subtree rooted atu. Since
101 is the concatenation of10 and1, we haves = us′. This notational convenience allows
us to easily express certain sums and products.

Let g : nodes(T) → R be any function. We define the functiong : nodes(T) → R as
follows:

g(u) =
∑
P of Tu

2−|P|
∏

s∈leaves(P)

g(us)

where we use the notation
∑
P of Tu to indicate summation over all prunings ofTu. Note that

the sum given in equation (6) is exactly equal tog(λ), whereλ denotes the empty string.
Thus, the following lemma, which gives an efficient method of computingg, implies a

PREDICTING NEARLY AS WELL AS THE BEST PRUNING 59

��
��

��
��

��
��

��
����

��

��
��

�
�

@
@

�
�

A
A

�
�

�
�

QQQ

BB

BB

A
A

�
�

u

s

Tu

0 1

1

0 1

0 1

0

0 1

0 1

Figure 3. Subtrees and names of nodes.

method of computing sums of the form in equation (6). This lemma generalizes the proofs
given for various special cases by Buntine (Buntine, 1990, Lemma 6.5.1) and Willems,
Shtarkov and Tjalkens (Willems, Shtarkov, and Tjalkens, 1995, Appendices III and IV).

Lemma 1 Letg, g be as above. Then, for any nodeu of T :

1. if u is a leaf theng(u) = g(u);

2. if u is an internal node, theng(u) = 1
2g(u) + 1

2

∏
a∈Σ g(ua).

Proof: Case 1 follows immediately from the definition ofg, keeping in mind that|P| = 0
if P consists only of a leaf ofT .

For case 2, we can expand the sum recursively over the children ofu. For simplicity,
suppose thatΣ = {0, 1}; the similar proof for generalΣ is sketched below. Note that any
pruningP of the subtreeTu either contains only nodeu or can be decomposed into two
subtrees,P0 andP1, rooted at the childrenu0 andu1 of u. By definition of|P|, it can be
shown that|P| = 1+ |P0|+ |P1|. Thus, separating out the case thatP consists only of the
nodeu, we can computeg(u) as

1
2g(u) +

∑
P0

∑
P1

2−(1+|P0|+|P1|)
∏
s0

g(u0s0)
∏
s1

g(u1s1) (7)

60 D.P. HELMBOLD AND R.E. SCHAPIRE

= 1
2g(u) + 1

2

(∑
P0

2−|P0|
∏
s0

g(u0s0)

)
·
(∑
P1

2−|P1|
∏
s1

g(u1s1)

)
(8)

= 1
2g(u) + 1

2

∏
a∈Σ

g(ua). (9)

Here it is understood that, fora ∈ {0, 1},
∑
Pa denotes summation over all pruningsPa of

Tua, and
∏
sa

denotes product over all leavessa of Pa.
In the more general case that|Σ| > 2, we repeat the sums and products in equation (7)

analogously for eacha ∈ Σ, and we use the more general identity|P| = 1 +
∑
a∈Σ |Pa|.

Likewise, the factors in equation (8) are repeated for eacha ∈ Σ, yielding equation (9) and
completing the lemma.

Thus, computing from the bottom up, the functiong can be computed in time proportional
to the number of nodes inT . We will see later that, for the functionsg of interest to us, a
data structure can be used for even faster computation ofg.

We now show how Lemma 1 can be used to compute the ratiort of equation (4) efficiently.
This will allow us to efficiently simulate the master algorithm of Cesa-Bianchi et al.(1993).

For any nodeu, we define the “weight” ofu at time stept, writtenweight
t(u), asu’s

contribution on the firstt−1 time steps to the weight decrease of any treeP which contains
u as a leaf. That is, we define,

weight
t(u) =

∏
1≤t′<t
u<xt

′

Uβ(|pred
t′(u)− yt′ |)

(recall thatu < xt
′

means thatu is a prefix ofxt
′
, and thusu is on the path described by

xt
′
). Clearly, by equation (1), ifu is a leaf ofP, then

weight
t(u) =

∏
1≤t′<t

leafP(xt
′
)=u

Uβ(|ξt
′

P − yt
′ |).

In other words, ifu is a leaf in pruningP, thenweight
t(u) is the product of the weight

update factors applied to the weight associated withP at those time steps whenP predicts
with the mini-expert at nodeu.

Recall thatUβ(|ξt
′

P − yt
′ |) is the master algorithm’s weight update function. For any

pruningP, we have by equations (3) and (5) that

wtP = 2−|P|
∏

1≤t′<t
Uβ(|ξt

′

P − yt
′ |)

= 2−|P|
∏

u∈leaves(P)

∏
1≤t′<t

leafP(xt
′
)=u

Uβ(|ξt
′

P − yt
′ |)

= 2−|P|
∏

u∈leaves(P)

weight
t(u).

PREDICTING NEARLY AS WELL AS THE BEST PRUNING 61

Thus, the denominator ofrt is∑
P
wtP =

∑
P

2−|P|
∏

u∈leaves(P)

weight
t(u),

which has the form given in equation (6) and can be computed asweight
t(λ) using

Lemma 1. The quantityweight
t(u) has an interpretation as the “weight of the subtree

rooted atu.” In other wordsweight
t(u) is the combined weight of all prunings of the

subtree rooted atu.
Initially, each nodeu has weight1 so thatweight

1(u) = 1. It follows from Lemma 1
by a trivial induction argument thatweight

1(u), the combined weight of the entire tree,
is equal to1. Thus, equation (2) is satisfied.

For the numerator ofrt, we define

wpred
t(u) =

{
weight

t(u)pred
t(u) if u < xt

weight
t(u) otherwise.

Then we have, for any pruningP, that

wtPξ
t
P = 2−|P|

 ∏
u∈leaves(P)

weight
t(u)

ξtP
= 2−|P|

∏
u∈leaves(P)

wpred
t(u) (10)

by equation (1). Thus,∑
P
wtPξ

t
P =

∑
P

2−|P|
∏

u∈leaves(P)

wpred
t(u) = wpred

t(λ)

also has the form given in equation (6). As above,wpred
t(u) has an interpretation

relating to the subtree rooted atu. The valuewpred
t(u) is the sum over all prunings of

the subtree rooted atu of the weight of the pruning times the prediction of the pruning.
Thus,wpred

t(u) can be viewed as the “weighted prediction” of the prunings of the subtree
rooted atu. The valueswpred

t(u) are (generally) not normalized; as the total weights of
the prunings decreases due to errors, so willwpred

t(u). Note, however, that the quotient
wpred

t(u)/weight
t(u) is the weighted average of the predictions made by the prunings

of the subtree rooted atu.
We have shown then that the numerator and denominator ofrt (as expressed in equa-

tion (4)) can both be computed in time linear in the size ofT . In fact, this computation
can be carried out at each time stept using time proportional to|xt| when the quantities
weight

t(u) andweight
t(u) are maintained at each nodeu. The pseudo-code for the

procedure is given in Figure 4.
Initially weight

1(u) andweight
1(u) are both equal to1 for all nodes inT . In gen-

eral, after seeingxt we must producert = wpred
t(λ)/weight

t(λ) used by the master
algorithm at timet. The denominator,weight

t(λ), is immediately accessible since the

62 D.P. HELMBOLD AND R.E. SCHAPIRE

Input: template treeT
access to predictionspred

t(u) of mini-experts
parameterβ ∈ [0, 1]

Initialize weight
1(u) = weight

1(u) = 1 for all nodesu in T
Do for t = 1, 2, . . .

• Prediction:

– Givenxt ∈ Σ∗

– Compute weighted predictionswpred
t(u) for each subtree using the rule:

wpred
t(u) =


weight

t(u) if u 6< xt (off path)
weight

t(u)pred
t(u) if u = xt (path leaf)

1
2weight

t(u)pred
t(u) + 1

2

∏
a∈Σ wpred

t(ua)
otherwise (path internal node)

– Predictŷt = Fβ(wpred
t(λ)/weight

t(λ))

• Update:

– Update the weight of each node,weight
t:

weight
t+1(u) =

{
weight

t(u)Uβ(|pred
t(u)− yt|) if u < xt (on path)

weight
t(u) otherwise (off path)

– Update the subtree weightsweight
t:

weight
t+1(u) =


weight

t(u) if u 6< xt (off path)
weight

t+1(u) if u = xt (path leaf)
1
2weight

t+1(u) + 1
2

∏
a∈Σ weight

t+1(ua)
otherwise (path internal node)

Figure 4. Pseudo-code for the master algorithm.

weight
t(u) values are maintained at all of the nodes. To computewpred

t(λ), we can ap-
ply Lemma 1 which suggests a recursive procedure taking time linear in the number of nodes
of T . Note, however, that if nodeu is not a prefix ofxt thenwpred

t(u) = weight
t(u).

Furthermore, this equality also holds for all of the descendants of anyu which is not a
prefix of xt sowpred

t(u) = weight
t(u) for all u which are not prefixes ofxt. Thus

wpred
t(u) need only be computed along the path ofxt in T , allowingwpred

t(λ) to be
computed in time linear in|xt|.

Onceyt is observed, we need to update the values ofweight
t(u) andweight

t(u).
Again, theweight

t(u) andweight
t(u) values change only for thoseu which are pre-

PREDICTING NEARLY AS WELL AS THE BEST PRUNING 63

fixes of xt. Each newweight
t(u) value requires a single multiplication, and the new

weight
t(u) values can be computed “bottom-up” in time proportional to|xt|.

To summarize, we have thus proved the following theorem, which is the main result of
this paper.

Theorem 1 Let T be a template tree, let(x1, y1), . . . , (xT , yT) be any sequence of
instance-feedback pairs, and let the predictionsξtP associated with each pruningP ofT be
of the form given in equation (1). Then the loss of the master algorithm given in Figure 4
is at most

LP ln(1/β) + |P| ln(2)
2 ln(2/(1 + β))

for every pruningP. Furthermore, the running time of this algorithm, at every time stept,
is linear in |xt|.

Recall thatweight
1(u) = weight

1(u) = 1 for any nodeu, and that these values are
only changed ifu is a prefix of some instancext. Thus these quantities need only be stored
explicitly for the nodes ofT that have actually been visited. This allows us to apply this
procedure efficiently even ifT is extremely large, or even infinite (so long as every instance
x defines a finite path through the tree).

Finally, we remark that thisO(|xt|) running time does not include the time required
to update the mini-experts’ predictions. However, if the template tree is produced by
a batch process so that each node’s predictions are fixed in advance then no updating is
necessary. Furthermore, the predictions at a node will often be an easily calculated function
of the instances on which that node has previously predicted. Functions such as Laplace’s
estimator (hits+1

trials+2) are based on the examples previously seen by that node and can be
updated in constant time.

5. Multiple prediction rules at each node

In this section, we extend the preceding results to a more general setting in which there is
more than one “mini-expert” or prediction rule associated with each node of the template
tree. Here, our goal is to select not only the best pruning but also the best mini-expert at
each leaf of this pruning.

For example, suppose we are given a template tree for routing instances but no prediction
rule at the nodes. In this case, we might associate with each node two mini-experts corre-
sponding to the deterministic boolean rules which always predict 0 or always predict 1. The
goal then is to make predictions that are almost as good as the bestlabeledpruning, i.e.,
the best pruning whose leaves have each been labeled with the best deterministic boolean
prediction rule. As before, the mini-experts need not make the same prediction every time;
their predictions can depend on the current instance and past history.

More formally, letn be the number of mini-experts associated with each node of the
template tree.3 Our goal now is to compete against the predictions made by eachlabeled
pruning (P, I), whereP is a pruning andI : leaves(P) → {1, . . . , n} assigns a mini-
expert to each leaf ofP. That is,P tells which pruning to use, andI tells us which of the

64 D.P. HELMBOLD AND R.E. SCHAPIRE

mini-experts to predict with for each leaf ofP. The prediction at timet of such a labeled
pruning is denotedξtP,I .

At each time stept, each nodeu generates a predictionpred
t(u, i) ∈ [0, 1] for i =

1, . . . , n wherei is the index of a mini-expert at nodeu. Analogous to Equation (1), we
assume formally that

ξtP,I = pred
t(leafP(xt), I(leafP(xt))). (11)

The cumulative loss of a labeled pruning is defined to be

LP,I =
T∑
t=1

|ξtP,I − yt|.

Our goal is to come up with a master algorithm with cumulative loss close to that of the
best labeled pruning.

To do so, in the obvious manner, we can replace the weightswtP used in Section 3 by
weightswtP,I for every labeled pruning(P, I). We choose the initial weights to be

w1
P,I = 2−|P| · n−|leaves(P)|.

As before, applying the results of Cesa-Bianchi et al.(1992) immediately gives us a bound
on the loss of the resulting master algorithm. To implement this algorithm efficiently, we
need to be able to compute

rt =

∑
P,Iw

t
P,Iξ

t
P,I∑

P,Iw
t
P,I

.

As before, we show how numerator and denominator can be written in the form given in
Equation (6).

First, for any functionh : nodes(T)× {1, . . . , n} → R, it can be verified that

∑
P,I

2−|P|
∏

u∈leaves(P)

h(u, I(u)) =
∑
P

2−|P|
∏

u∈leaves(P)

n∑
i=1

h(u, i).

This can be seen by “multiplying out” the product appearing on the right hand side. There-
fore, any expression of the form∑

P,I
2−|P|

∏
u∈leaves(P)

h(u, I(u)) (12)

can be evaluated efficiently by applying Lemma 1 withg(u) set to
∑n
i=1 h(u, i). To

computert then, it suffices to write the denominator and numerator in the form given in
Equation (12).

For the denominator, we define

PREDICTING NEARLY AS WELL AS THE BEST PRUNING 65

weight
t(u, i) =

∏
1≤t′<t
u<xt

′

Uβ(|pred
t′(u, i)− yt′ |).

Then

wtP,I = 2−|P|n−|leaves(P)|
∏

1≤t′<t
Uβ(|ξt

′

P,I − yt
′ |)

= 2−|P|
∏

u∈leaves(P)

1
n

∏
1≤t′<t

leafP(xt
′
)=u

Uβ(|ξt
′

P,I − yt
′ |)

= 2−|P|
∏

u∈leaves(P)

1
n
weight

t(u, I(u)).

Thus,∑
P,I

wtP,I =
∑
P,I

2−|P|
∏

u∈leaves(P)

1
n
weight

t(u, I(u))

has the form given in Equation (12). Similarly, for the numerator, we define

wpred
t(u, i) =

{
weight

t(u, i)pred
t(u, i) if u < xt

weight
t(u, i) otherwise.

Then it can be shown, as in Equation (10), that∑
P,I

wtP,Iξ
t
P,I =

∑
P,I

2−|P|
∏

u∈leaves(P)

1
n
wpred

t(u, I(u))

which is of the desired form.
Unraveling these ideas, we obtain the algorithm shown in Figure 5. The properties of this

algorithm are summarized by the following theorem:

Theorem 2 Let T be a template tree, let(x1, y1), . . . , (xT , yT) be any sequence of
instance-feedback pairs, and let the predictionsξtP,I associated with each labeled pruning
(P, I)be of the form given in Equation (11) wheren is the number of mini-experts associated
with each node. Then the loss of the master algorithm given in Figure 5 is at most

LP,I ln(1/β) + |P| ln(2) + |leaves(P)| lnn
2 ln(2/(1 + β))

for every labeled pruning(P, I). Furthermore, the running time of this algorithm, at every
time stept, is linear in |xt|n.

66 D.P. HELMBOLD AND R.E. SCHAPIRE

Input: template treeT
access to predictionspred

t(u, i) of mini-experts
parameterβ ∈ [0, 1]

Initialize weight
1(u, i) = weight

1(u) = 1 for all nodesu in T , andi = 1, . . . , n.
Do for t = 1, 2, . . .

• Prediction:

– Givenxt ∈ Σ∗

– Compute weighted predictionswpred
t(u) for each subtree using the rule:

wpred
t(u) =


weight

t(u) if u 6< xt (off path)
1
n

∑n
i=1 weight

t(u, i)pred
t(u, i)

if u = xt (path leaf)
1
2n

∑n
i=1 weight

t(u, i)pred
t(u, i) + 1

2

∏
a∈Σ wpred

t(ua)
otherwise (path internal node)

– Predictŷt = Fβ(wpred
t(λ)/weight

t(λ))

• Update:

– Updateweight
t:

weight
t+1(u, i) =

{
weight

t(u, i)Uβ(|pred
t(u, i)− yt|) if u < xt (on path)

weight
t(u, i) otherwise (off path)

– Update the subtree weightsweight
t:

weight
t+1(u) =


weight

t(u) if u 6< xt (off path)
1
n

∑n
i=1 weight

t+1(u, i) if u = xt (path leaf)
1
2n

∑n
i=1 weight

t+1(u, i) + 1
2

∏
a∈Σ weight

t+1(ua)
otherwise (path internal node)

Figure 5. Pseudo-code for the master algorithm with multiple mini-experts.

6. Other applications and extensions

In a real implementation of our algorithm, the weights stored at each node may become
extremely small, possibly causing a floating-point underflow. There is a simple trick for
avoiding this difficulty, based on the following observation: Suppose all of the weights
weight

t(u) of the nodesu along a given root-to-leaf path are multiplied by some constant
c. Then because each pruning contains exactly one leaf that is a node from the given
path, this effectively causes bothwpred

t(λ) andweight
t(λ) to be multiplied byc, and

PREDICTING NEARLY AS WELL AS THE BEST PRUNING 67

therefore, the ratio of these values (which is used to produce the algorithm’s predictions) is
unaffected. Thus, if the weights along a path in the tree seem too small, we can multiply
all of these weights by a constant to prevent floating-point underflow.4

As a simple application of our result, we can use our method to predict a sequence of
symbols, say, the next letter in a passage of English text. We might restrict our predictions
to depend on the most recently observed sequence of characters. For instance, on seeing
“q,” we might reliably predict that the next letter is “u.” Obviously, in other cases, a longer
context is needed for reliable prediction. Thus, we would like to use different lengths for
the different contexts. By defining a template tree in which the root node tests the last
symbol, its children test the symbol before last, and so on, we can use our method to make
predictions that are competitive with the best pruning. Such a pruning, in this case, is
equivalent to a rule for determining one of several variable-length contexts, which in turn
can be used to predict the next symbol. Learning results on such suffix trees were presented
by Ron, Singer and Tishby(1994).

Similar tree machines have been used to represent finite memory sources in the infor-
mation theory community, and they form the core of Rissanen’s Context algorithm for
universal data compression (Rissanen, 1983) (see also (Weinberger, Lempel, & Ziv, 1992,
Weinberger, Merhav, & Feder, 1994, Weinberger, Rissanen, & Feder, 1995)). In work more
closely related to the results presented here, an efficient algorithm for averaging over prun-
ings of such trees was presented by Willems, Shtarkov and Tjalkens(1993, 1995). However,
these authors focus on predicting a distribution of symbols for coding purposes, rather than
simply predicting what the next symbol will be.

Our method is easily extended to other loss functions provided that there exists a multi-
plicative weight-update algorithm of the appropriate form. For instance, such algorithms
are given by Vovk(1990), Kivinen and Warmuth(1994), and Freund and Schapire(1995).

Acknowledgments

Thanks to Jason Catlett, William Cohen, Yoav Freund, Ron Kohavi, Jonathan Oliver, Alon
Orlitsky, Dana Ron, Linda Sellie, Bruce Sherrod, Yoram Singer, Manfred Warmuth, and
Marcelo Weinberger for many helpful discussions. Thanks also to Meier Feder for (in-
directly) bringing references (Willems, Shtarkov & Tjalkens, 1993, Willems, Shtarkov &
Tjalkens, 1995) to our attention, and to the anonymous reviewers for their careful reading
and helpful comments.

Notes

1. Actually, we only use the predictions of nodeu whenu is a prefix ofxt.

2. Although the initial weights sum to 1, this is generally not the case due to the update step of Equation (5).
Therefore dividing by the sum of the weights is necessary to obtain the weighted average of the experts’
predictions.

3. The generalization to the case in which the number of mini-experts varies from node to node is straightforward.

4. Note that this operation affects the data structure in other ways; for instance, all of the valuesweight
t(u)

for nodesu along the given path must be updated.

68 D.P. HELMBOLD AND R.E. SCHAPIRE

References

Breiman, Leo, Friedman, Jerome H., Olshen, Richard A. & Stone, Charles J. 1984Classification and Regression
Trees. Wadsworth International Group.

Buntine, Wray. 1992. Learning classification trees.Statistics and Computing, 2:63–73.
Buntine, Wray Lindsay. 1990.A Theory of Learning Classification Rules. PhD thesis, University of Technology,

Sydney, 1990.
Cesa-Bianchi, Nicol`o , Freund, Yoav, Helmbold, David P., Haussler, David, Schapire, Robert E., & Warmuth,

Manfred K. 1993. How to use expert advice. InProceedings of the Twenty-Fifth Annual ACM Symposium on the
Theory of Computing, pages 382–391, 1993. To appear,Journal of the Association for Computing Machinery.

Freund, Yoav & Schapire, Robert E. 1995. A decision-theoretic generalization of on-line learning and an
application to boosting. InComputational Learning Theory: Second European Conference, EuroCOLT ’95,
pages 23–37. Springer-Verlag. To appear,Journal of Computer and System Sciences.

Hastie, Trevor & Pregibon, Daryl. 1990. Shrinking trees. Technical report, AT&T Bell Laboratories.
Kivinen, Jyrki & Warmuth, Manfred K. Using experts for predicting continuous outcomes. InComputational

Learning Theory: EuroCOLT ’93, pages 109–120. Springer-Verlag.
Kwok, Suk Wah & Carter, Chris. 1990. Multiple decision trees. In Ross D. Shachter, Tod S. Levitt, Laveen N.

Kanal, and John F. Lemmer, editors,Uncertainty in Artificial Intelligence 4, pages 327–335. North-Holland.
Littlestone, Nick. 1988. Learning when irrelevant attributes abound: A new linear-threshold algorithm.Machine

Learning, 2:285–318.
Littlestone, Nick & Warmuth, Manfred K. 1994. The weighted majority algorithm.Information and Computation,

108:212–261.
Oliver, Jonathan J.& Hand, David. 1994. Averaging over decision stumps. InMachine Learning: ECML-94,

pages 231–241. Springer-Verlag.
Oliver, Jonathan J. & Hand David J. 1995. On pruning and averaging decision trees. InProceedings of the Twelfth

International Conference on Machine Learning, pages 430–437.
Quinlan, J. Ross. 1993.C4.5: Programs for Machine Learning. Morgan Kaufmann.
Rissanen, Jorma. 1983. A universal data compression system.IEEE Transactions on Information Theory,

IT-29(5):656–664.
Ron, Dana, Singer, Yoram & Tishby, Naftali. 1994. Learning probabilistic automata with variable memory length.

In Proceedings of the Seventh Annual ACM Conference on Computational Learning Theory, pages 35–46.
Vovk, Volodimir G. 1990. Aggregating strategies. InProceedings of the Third Annual Workshop on Computational

Learning Theory, pages 371–383.
Weinberger, Marcelo J., Lempel, Abraham & Ziv, Jacob. 1992. A sequential algorithm for the universal coding

of finite-memory sources.IEEE Transactions on Information Theory, 38(3):1002–1014.
Weinberger, Marcelo J., Merhav, Neri & Feder, Meir. 1994. Optimal sequential probability assignment for

individual sequences.IEEE Transactions on Information Theory, 40(2):384–396.
Weinberger, Marcelo J., Rissanen, Jorma J. & Feder, Meir. 1995. A universal finite memory source.IEEE

Transactions on Information Theory, 41(3):643–652.
Willems, Frans M. J., Shtarkov, Yuri M. & Tjalkens, Tjalling J. 1993. Context tree weighting: a sequential

universal source coding procedure for FSMX sources. InProceedings 1993 IEEE International Symposium on
Information Theory, page 59.

Willems, Frans M. J., Shtarkov, Yuri M. & Tjalkens, Tjalling J. 1995. The context tree weighting method: basic
properties.IEEE Transactions on Information Theory, 41(3):653–664.

Received Date October 11, 1995
Accepted Date February 29, 1996
Final Manuscript Date June 28, 1996

