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Abstract. We generalize the recent relative loss bounds for on-line algorithms where the additional loss of the
algorithm on the whole sequence of examples over the loss of the best expert is bounded. The generalization
allows the sequence to be partitioned into segments, and the goal is to bound the additional loss of the algorithm
over the sum of the losses of the best experts for each segment. This is to model situations in which the examples
change and different experts are best for certain segments of the sequence of examples. In the single segment case,
the additional loss is proportional tog n, wheren is the number of experts and the constant of proportionality
depends on the loss function. Our algorithms do not produce the best partition; however the loss bound shows
that our predictions are close to those of the best partition.

When the number of segmentsist- 1 and the sequence is of lengthwe can bound the additional loss of our
algorithm over the best partition &9 (k logn + klog(£/k)). For the case when the loss per trial is bounded by
one, we obtain an algorithm whose additional loss over the loss of the best partition is independent of the length
of the sequence. The additional loss becoméklogn + klog(L/k)), whereL is the loss of the best partition
with k 4+ 1 segments.

Our algorithms for tracking the predictions of the best expert are simple adaptations of Vovk’s original algorithm
for the single best expert case. As in the original algorithms, we keep one weight per expert, and Epeirde
per weight in each trial.
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1. Introduction

Consider the following on-line learning model. The learning occurs in a series of trials
labeled1,2, ... ,¢. In each trialt the goal is to predict theutcomey, € [0, 1] which is
received at the end of the trial. At the beginning of ttighe algorithm receives an n-tuple

x;. The element; ; € [0,1] of the n-tuplex; represents the prediction of arpert&; of

the value of the outcomg on trialz. The algorithm then produces a predicti@n based

on the current expert prediction tupkg, and on past predictions and outcomes. At the
end of the trial, the algorithm receives the outcogme The algorithm then incurs lass
measuring the discrepancy between the predigiicemd the outcome,. Similarly, each

expert incurs a loss as well. A possible goal is to minimize the total loss of the algorithm
over all/ trials on an arbitrary sequence of instance outcome pairs (such pairs are called
examples). Since we make no assumptions about the relationship between the prediction
of experts k;) and the outcomey), there is always some sequencepthat is “far away”

from the predictiong); of any particular algorithm. Thus, minimizing the total loss over

an arbitrary sequence of examples is an unreasonable goal. A refined relativized goal is to
minimize the additional loss of the algorithm over the loss of the best expert on the whole
sequence. If all experts have large loss then this goal might actually be easy to achieve,

*  An extended abstract appeared in (Herbster & Warmuth, 1995)
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since for all algorithms the additional loss over the loss of the best expert may then be small.
However, if at least one expert predicts well, then the algorithm must “learn” this quickly
and produce predictions which are “close” to the predictions of the best expert in the sense
that the additional loss of the algorithm over the loss of the best expert is bounded.

This expert framework might be used in various settings. For example, the experts might
predict the chance of rain or the likelihood that the stock market will rise or fall. Another
setting is that the experts might themselves be various sub-algorithms for recognizing
particular patterns. The “master” algorithm that combines the experts’ predictions does
not need to know the particular problem domain. It simply keeps one weight per expert,
representing the belief in the expert’s prediction, and then decreases the weight as a function
of the loss of the expert.

Previous work of Vovk (1998) and others (Littlestone & Warmuth, 1994; Haussler, Kivi-
nen & Warmuth, 1998) has produced an algorithm for which there is an upper bound on the
additional loss of the algorithm over the loss of the best expert. Algorithms that compare
against the loss of the best expert are caledTic-EXPERT algorithms in this paper.

The additional loss bounds for these algorithms have the fdimm for a large class of

loss functions, where is a constant which only depends on the loss funcfipandn is

the number of experts. This class of loss functions contains essentially all common loss
functions except for the absolute loss and the discreté [@ssinting prediction mistakes),
which are treated as special cases (Littlestone & Warmuth, 1994; Vovk, 1995; Cesa-Bianchi,
Freund, Haussler, Helmbold, Schapire & Warmuth, 1997). For example, if the loss function
is the square or relative entropy loss, thes % or ¢ = 1, respectively (see Section 2 for
definitions of the loss functions).

In the paper we consider a modification of the above goal introduced by Littlestone and
Warmuth (1994), in which the sequence of examples is subdivided ist@ segments of
arbitrary length and distribution. Each segment has an associated expert. The sequence of
segments and its associated sequence of experts is cpletiteon. The loss of a partition
is the sum of the total losses of the experts associated with each segment. The best partition
of sizek is the partition withk + 1 segments that has the smallest loss. The modified goal
is to perform well relative to the best partition of size This goal is to model real life
situations where the “nature” of the examples might change and a different expert produces
better predictions. For example, the patterns might change and different sub-algorithms
may predict better for different segments of the on-line sequence of patterns. We seek to
design master algorithms that “track” the performance of the best sequence of experts in
the sense that they incur small additional loss over the best partition df.sizthe whole
sequence of examples was given ahead of time, then one could compute the best partition of
a certain size and the associated experts using dynamic programming. Our algorithms get
the examples on-line and never produce the best partition. Even so, we are able to bound
the additional loss over the best off-line partition for an arbitrary sequence of examples.

When there arétrials, k + 1 segments, and experts, there aré;l)n(n — 1)* distinct
partitions. We can immediately get a good bound for this problem by expanding the set
of n experts into(“, )n(n — 1)¥ = O((n*+1(<£)*) “partition-experts.” Each partition-
expert represents a single partition of the trial sequence, and predicts on each trial as
the expertassociatedvith the segment which contains the current trial. Thus, using the
Static-EXPERT algorithm we obtain a bound efin (“,")n(n — 1)* < ¢[(k+1)logn +



TRACKING THE BEST EXPERT 153

klog % + k] of the additional loss of the algorithm over the loss of the best partition. There
are two problems: first, the algorithm is inefficient, since the number of partition-experts is
exponential in the number of partitions; and second, the bound on the additional loss grows
with the sequence length.

We were able to overcome both problems. Instead of keeping one weight for the exponen-
tially many partitions, we can get away with keeping only one weight per expert, as done in
the STATIC-EXPERT algorithm. So the “tracking” of the predictions of the best partition
is essentially for free. If there aresub-algorithms or experts whose predictions we want
to combine, then as in tHerATIC-EXPERT algorithm the new master algorithm takes only
O(n) additional time per trial over the time required for simulating theub-algorithms.

We develop two main algorithms: tH&IXED-SHARE Algorithm, and theVARIABLE-
SHARE Algorithm. Both of these are based on tieaTic-EXPERT algorithms which
maintain a weight of the forra="”: for each expert (cf. Littlestone & Warmuth, 1994;
Vovk, 1995), wherd; is total past loss of the experin past trials. In each trial the master
algorithm combines the experts’ predictions using the current weights of the experts. When
the outcome of the trial is received, we multiply the weight of every expbyt e "%,
whereL; is the loss of expert in the current trial. We call this update of the weights the
Loss Update

We modify theStaTic-EXPERT Algorithm by adding an additional update to obtain our
algorithms. Since in our model the best expert may shift over a series of trials, we cannot
simply use weights of the forrer 7%, because before an expert is optimal for a segment its
loss in prior segments may be arbitrarily large, and thus its weight may become arbitrarily
small. So we need to modify tieratic-ExpPERT Algorithm so that small weights can be
recovered quickly.

For this reason, each expert “shares” a portion of its weight with the other experts after
the Loss Update; we call this ttf@hare UpdateBoth theF1XED-SHARE andVARIABLE-
SHARE Algorithm first do the Loss Update followed by a Share Update, which differs for
each algorithm. In a Share Update, a fraction of each experts’ weight is added to the weight
of each other expert. In tHeixED-SHARE Algorithm the experts share a fixed fraction of
their weights with each other. This guarantees that the ratio of the weight of any expert to
the total weight of all the experts may be bounded from below. Different forms of lower
bounding the weights have been used byWisiL algorithm and in the companion paper
for learning shifting disjunctions (Auer & Warmuth, 1998) that appears in this journal issue.
The latter two methods have been applied to learning problems where the loss is the discrete
loss (i.e., counting mistakes). In contrast our methods work for the same general class of
continuous loss functions that tl¥erATic-EXPERT algorithms can handle (Vovk, 1998;
Haussler et al., 1998). This class includes all common loss functions such as the square
loss, the relative entropy loss, and the hellinger loss. For this class there are tight bounds on
the additional loss (Haussler et al., 1998) of the algorithm over the loss of the best expert
(i.e., the non-shifting case). TH&xXED-SHARE Algorithm obtains the additional loss of
O(c[(k +1)logn + klog £ + k), which is essentially the same as the sketched algorithm
that uses th&TATIC-EXPERT algorithm with exponentially many partition-experts. The
salient feature of th€'1XED-sHARE Algorithm is that it still use€)(1) time per expert per
trial. However, this algorithm’s additional loss still depends on the length of the sequence.
Our lower bounds give some partial evidence that this seems to be unavoidable for loss
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functions for which the loss in a single trial can be unbounded (such as for the relative
entropy loss). For the case when the loss in a particular trial is at most one (such as for the
square loss), we develop a second algorithm calle¥#traABLE-SHARE Algorithm. This
algorithm obtains bounds on the additional loss that are independent of the length of the
sequence. It also shares weights after the Loss Update; however, the amount each expert
shares now is commensurate with the loss of the expert in the current trial. In particular,
when an expert has no loss, it does not share any weight.

Both versions of our Share Update are trivial to implement and cost a constant amount of
time for each of thes weights. Although the algorithms are easy to describe, proving the
additional loss bounds takes some care. We believe that our techniques constitute a practical
method for tracking the predictions of the best expert with provable worst-case additional
loss bounds. The essential ingredient for our success in a non-stationary setting, seemsto be
an algorithm for the stationary setting with a multiplicative weight update whose loss bound
grows logarithmically with the dimension of the problem. Besides VOWNCSIREGATING
ALGorITHM (Movk, 1998) and théWEIGHTED MAJORITY Algorithm (Littlestone &
Warmuth, 1994), which only use the Loss Update, and are the basis of this work, a number
of such algorithms have been developed. Examples are algorithms for learning linear
threshold functions (Littlestone, 1988; Littlestone, 1989), and algorithms whose additional
loss bound over the loss of the best linear combination of experts or sigmoided linear
combination of experts is bounded (Kivinen & Warmuth, 1997; Helmbold, Kivinen &
Warmuth, 1995). Significant progress has recently been achieved for other non-stationary
settings building on the techniques developed in this paper (see discussion in the Conclusion
Section).

The paper is outlined as follows. After some preliminaries (Section 2), we present the
algorithms (Section 3), and give the basic proof techniques (Section 4). Sections 5 and 6
contain the detailed proofs for tHEIXED-SHARE and VARIABLE-SHARE algorithms,
respectively. The absolute loss is treated as a special case in Section 7. Section 8 dis-
cusses a subtle but powerful generalization ofWh@1ABLE-SHARE Algorithm, called the
PROXIMITY-VARIABLE-SHARE Algorithm. The generalization leads to improved bounds
for the case when best expert of the next segment is always likely to be “close” to the pre-
vious expert. Some preliminary lower bounds are given in Section 9. Simulation results on
artificial data that exemplify our methods are given in Section 10. Finally, in Section 11 we
conclude with a discussion of recent work. The casual reader who might not be interested
in the detailed proofs is recommended to read the sections containing the preliminaries
(Section 2), the algorithms (Section 3) and the simulations (Section 10).

2. Preliminaries

Let/ denote the number of trials andlenote the number of experts labefgdéss, . . . | E,.

When convenient we simply refer to an expert by its index; thus “expeefers to expert

&;. The prediction of alh experts in triak is referred to by th@redictiontuple x;, while

the prediction of expert on trial ¢ is denoted byz, ;. These experts may be viewed as
oracles external to the algorithm, and thus may represent the predictions of a neural net,
a decision tree, a physical sensor or perhaps even of a human expert. The outcome of a
trial ¢ is y;, while the prediction of the algorithm in trialis ¢,. The instance-outcome pair
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(x¢, ;) is called thet-th example In this paper the outcomes, the expert predictions and
the predictions of the algorithm are allfiy 1]. Throughout this pape¥ always denotes an
arbitrary sequence of examples, i.e., any sequence of elementffroffh x [0, 1] of any
length?. Aloss functionL(p, ¢) is a functionL : [0, 1] x [0, 1] — [0, co]. We consider four

loss functions in this paper: the square, the relative entropy, the hellinger, and the absolute
loss:

Lsq(p,q) = (p — )%,

Lent(p,q) = pln 2 + (1 — p)In 1=2,

Lhelr:q) = 3(VI—p—vI—=q)*+ (/P — V@)?) and
Lapdp:q) = p —ql-

On trial ¢ the loss of the algorithmd is L(y:, g:). Similarly, the loss of expert on

trial ¢ is L(y:, z+,;). We call a subsequence of contiguous triaeegment The notation
[¢t..t'] for non-negative integers < ¢’ denotes aegmenstarting on trial numbet and
ending on the triat’. Rounded parens are used if the ending trial is not included in the
segment. For the current sequerfteve abbreviate the loss of expérbn the segment

[t..t") by L([t..t"),3) = Zi:tl L(ys, xs4). The loss of the algorithm over the whole trial
sequence is defined ad.(S, A) = L([1..4], A) = Zle L(yt, §t)-

We are now ready to give the main definition of this paper that is used for scenarios in
which the best expert changes over time. Informalk@artition slices a sequence into
k+ 1 segments with an expert being associated with each segment. Fornkatisytition,
denoted byP ,, 1+.e(S), consists of three positive integefsn, k, and two tuples and
e of positive integers. The numbéris the length of the trial sequendg n is the size
of the expert pool, and is number oftarget shifts(k < ¢). The tuplet hask elements
(t1,...,t)suchthatl < ¢; < ¢andt; < t;41. Eacht; refers to one of thétrials, and by
convention we us& = 1,tx+1 = ¢+ 1. The tuplet divides the trial sequencginto k£ + 1
segmentdty..t1), [t1..t2), ... , [tg--tkr+1). The segment;..t;11) is called theth segment.
The0Oth segment is also referred to as the initial segment. The tupbsk + 1 elements
(eg,e1,-..,er) such thatl < e; < n ande; # e; 1. The element; denotes the expert
&., which isassociated withheith segmentt;..t;+1). The loss of a givek-partition for
loss functionZ and trial sequenc§ is

k

L(,P(yn}]%t)e(S)) = Z L([ti..tiJrl), €i>. (1)

=0
3. The Algorithms

There are four algorithms considered in this pap&FATIC-EXPERT, FIXED-SHARE,
VARIABLE-SHARE and PROXIMITY-VARIABLE-SHARE. The first three are summarized

in Figure 1. ThePROXIMITY-VARIABLE-SHARE Algorithm is a generalization of the
VARIABLE-SHARE Algorithm; this algorithm is given in Figure 3. The discussion of this
generalization is deferred to Section 8. For all algorithms the learning process proceeds
in trials, wheret > 1 denotes the trial number. The algorithms maintain one positive
weight per expert. The weight; ; (or its normalized version; ;) should be thought of as
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Parameters: 0 < n,cand0 < a < 1.

Initialization: Initialize the weights tav ; = ... = wi ,, = 1/n.
Prediction: Letv,; = w;;/W;, whereW, = 7" | w; ;. Predict with

7: = pred(vy, ;) (2

Loss Update: After receiving the'th outcomey,,

Viil,...,n:w; = wf,ie_nL(y*’x“). 3

Share Updates of all three algorithms:

Static-expert

eVi:l,...,n:wi,; =w; “noShareUpdate”
Fixed-share (4)

e pool = 31" | aw(}

oVi:l,...,n:wf_i_l)i:(l—a)wm"‘

1
n—1

(pool — awg’fi)

Variable-share (5)
e pool = S0 (1= (1= a) ) wp
eVi:1l,...,n:
wiy = (1- a)LW“wf)i)wﬁ - (pool — (1 —(1- a)L(yt’xt’i)) wf@)

n—1

Figure 1. The STATIC-EXPERT, FIXED-SHARE, andVARIABLE-SHARE algorithms.

a measurement of the algorithm’s belief in the quality of itheexpert’s predictions at the
start of trialt. The weight of each expert is initialized tgn.

The algorithms have the following three parameters: anda. The parametey is a
learning rate quantifying how drastic the first update will be. The parametdr be set
to 1/n for most loss functions. (The absolute loss is an exception treated separately in
Section 7.) The parameterquantifies the rate of shifting that is expected to occur. The
FixeD-sHARE Algorithm is designed for potentially unbounded loss functions, such as the
relative entropy loss. ThEARIABLE-SHARE Algorithm assumes that the loss per trial lies
in [0,1]. For theFIXED-SHARE Algorithm, « is the rate of shifting per trial. Thus, if five
shifts are expected in B000 trial sequence, then = 1/200. For theVARIABLE-SHARE
Algorithm, « is approximately the rate of shifting per unit of loss of the best partition. That
is, if five shifts are expected to occur in a partition with a total los8pthena ~ 1/16.
The tunings of the parameteysandc are considered in greater depth in Section 4, and for
a in sections 5 and 6. Finally, tHeraTic-EXPERT Algorithm does not use the parameter
« since it assumes that no shifting occurs.

In each trialt the algorithm receives an instance summarizing the predictions of the
n expertsx,. The algorithm then plugs the current instangeand normalized weights
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v, into the prediction functiorpred(wv, x) in order to produce a predictiof. In the
simplest case, the algorithm predicts with the weighted mean of the experts’ predictions,
i.e., pred(v,x) = v - x. A more sophisticated prediction function introduced by Vovk
(Vovk, 1998) will be discussed in Section 4. After predicting, the algorithm performs two
update steps. The first update is thass Updatethe second is thEhare Update

In the Loss Update the weight of experis multiplied bye="%:, whereL, is the loss
of thei-th expert in the current trial. Thus, no update occurs when- 0. The learning
raten intensifies the effect of this update. We usg, to denote the weights in the middle
of the two updates. These weights will be referred tintsrmediatewveights. The Share
Update for theSTaTiC-EXPERT Algorithm is vacuous. However, for the other algorithms
the Share Update is crucial. We briefly argue for the necessity of the share updates in the
non-stationary setting, and then give an intuitive description of how they function.

When we move from predicting as well as the best expert to predicting as well as a
sequence of experts, the Loss Update is no longer appropriate as the sole update. Assume
we have two experts and two segments. In the first segment Expert 1 has small loss and
Expet 2 a large loss. The roles are reversed for the second segment. By the end of the first
segment, the Loss Update has caused the weight of Expert 2 to be almost zero. However,
during the second segment the predictions of Expert 2 are important, and its weight needs
to be recovered quickly. The share updates make sure that this is possible. The simulation
in Section 10 furthers the intuition for why the share updates are needed. The two share
updates are summarized below. A straightforward implementation €4ststime per
expert per trial:

. . s m - « m
Fixed-share:  w;, = (1 — a)w} + Z W (6)
J#i
n (]_ — (]_ — OZ)L(ytymt’j))
Variable-share: w;; = (1 — a)L(y““’i)wm + Z
j#i

n—1

In contrast, the implementations in Figure 1, that use the intermediate variable “pool” cost
O(1) time per expert per trial. After the Loss Update, every expert “shares” a fraction
of its weight equally with every other expert. The received weight enables an expert to
recover its weights quickly relative to the other experts. In the Fixed-share Update (6) each
expert shares a fraction of of its weight in each trial. If one expert is perfect for a long
segment, this type of sharing is not optimal, since the perfect expert keeps on sharing weight
with possible non-perfect experts. The Variable-share Update (7) is more sophisticated:
roughly, an expert shares weight when its loss is large. A perfect expert doesn't share, and
if all other experts have high loss, it will eventually collect all the weight. However, when
a perfect expert starts to incur high loss, it will rapidly begin to share its weight with the
other experts, allowing a now good expert with previously small relative weight to recover
quickly. As discussed above the parameteas the shifting rate.

In the introduction we discussed an algorithm that uses exponentially many static experts,
one for each partition. Our goal was to achieve bounds close to those of this inefficient
algorithm by using only: weights. The bounds we obtain for our share algorithms are only



158 M. HERBSTER AND M.K. WARMUTH

slightly weaker than the partition-expert algorithm and gracefully degrade when neither the
length of the sequendenor the number of shifts are known in advance.

4. Prediction Functions and Proof Techniques

We consider two choices of prediction functions. The simplest prediction is the weighted
mean (Warmuth, 1997):

predwmear(v, ) = > _ vi;. (8)
i=1

A more sophisticated prediction function giving slightly better bounds was introduced by
Vovk (Movk, 1998; Haussler et al., 1998). Defifig(z) = L(0,z) andL;(z) = L(1, z).

Both of these functions must be monotone. Lgt (z) andL; *(z) denote the inverses of
Lo(z) and L4 (z). Vovk's prediction is now defined in two steps by

Ay) = —cln Y1 ve W)
Lo H(AO)+LT (A1) ©)
z .

predygyk (v, ) =

The following definition is a technical condition on the relation between the prediction
functionpred(v, x), the loss functiorL, and the constantsandy.

DEFINITION 1 (HAUSSLER ET AL., 1998; VOvK, 1998) A loss functionL and pre-
diction functionpred are (c, n)-realizable for the constantsandy if

L(pred(v,x),y) < —clnzvl.e*nL(y,xi)’ (10)
i=1

foralln € Z*, all examplegx, y) € [0,1]" x [0, 1], and all weight tuples € [0, 1]" of
total weight 1.

We consider four loss functions in this paper: the square, the relative entropy, the hellinger,
and the absolute loss (see Section 2). However, the algorithms are not limited to these loss
functions. The techniques in (Vovk, 1998; Haussler et al., 1998; Warmuth, 1997) can
determine the constantsandn for a wide class of loss functions. The algorithm is also
easy to adapt for classification by using the majority vote (Littlestone & Warmuth, 1994)
for the prediction function, and counting mistakes for the loss. In a practical application,
no worst-case loss bounds may be provable for the given loss function. However, the share
updates may still be useful. For an interesting application to the prediction of disk idle time
see the work of Helmbold et al. (Helmbold, Long & Sherrod, 1996).

The square, relative entropy and hellinger losseé@rg-realizable for botlpredyymean
andpredyg,k With (n = 1/c). The values ot (and hence of)) for the two prediction
functions are summarized in Figure 2. Since the absolute loss has more complex bounds,
we treat it in a section of its own. A smaller valuewlteads to a smaller loss bound (see
Lemma 1). The: values forpredy g (cf. column two of Figure 2) are optimal for a large
class of loss functions (Haussler et al., 1998).
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Loss cvalues: § =1/c)
Functions:| predymearv, ) | predygyk (v, )
Lent(p, q) 1 1
Lhel(p; 9) 1 1/v2

Figure 2. (¢, 1/c)-realizability: ¢ values for loss and prediction function pairings.

The proof of the loss bounds for each of the algorithms is based on the following lemma.
The lemma embodies a key feature of the algorithms: the prediction is done such that the
loss incurred by the algorithm is tempered by a corresponding change in total weight. This
lemma gives the same inequality as the lemmas used in (Vovk, 1998; Haussler et al., 1998).
The proof here is essentially the same, since the share updates do not change the total weight

Wy = ZZ‘L:I wfz

LEMMA 1 (Vovk, 1998; HAUSSLER ET AL., 1998) For any sequence of exampl&s

and for any expert, the total loss of the master algorithms in Figure 1 may be bounded by
L(S,A) < —clnwjq;, (11)

when the loss functioh and prediction functiomred is (c, n)-realizable (cf. Definition 1

and Figure 2).

Proof: SinceL andpred are(c, n)-realizable, we have by Definition 1 that
- - Tt 4 1 - m
L(y:, pred(vy, z;)) < —CIH;UW@ o) = —cln W, ; Wy - (12)

Since the share updates do not change, the total wgight w; is 7" | wi,; ; = Wiy,
This implies that

W,
L(y:, ) < —cln %

t
Hence, sincéV; = 1,

J4
L(S,A) =Y Ly, i) < —cln Wiy < —clnwgys.

t=1

So far we have used the same basic technique as in (Littlestone & Warmuth, 1994; Vovk,
1995; Cesa-Bianchi et al., 1997; Haussler et al., 1998) cile.lV; becomes the potential
function in an amortized analysis. In the static expert case (when /c) the final weights
have the formw;_, ; = e~ 2(5:€)/¢/n_ Thus the above lemma leads to the bound

L(S,A) < L(S,&;) + clan,
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relating the loss of the algorithm to the loss of any static expert.

The share updates make it much more difficult to lower bound the final weights. Intuitively,
there has to be sufficient sharing so that the weights can recover quickly. However, there
should not be too much sharing, so that the final weights are not too low. In the following
sections we bound final weights of individual experts in terms of the loss of a partition. The
loss of any partitiof L(Py.., k. ¢,e(S))) is just the sum of the sequence of losses defined by
the sequence of experts in the partition. When an expert accumulates loss over a segment,
we bound its weight using Lemma 2 for theXED-SHARE Algorithm and Lemma 7 for
the VARIABLE-SHARE Algorithm. Since a partition is composed of distinct segments,
we must also quantify how the weight is transferred from the expert associated with a
segment to the expert associated with the following segment; this is done with Lemma 3
for the FIXED-SHARE Algorithm and Lemma 8 for th&/ARIABLE-SHARE Algorithm.

The lower bounds on the weights are then combined with Lemma 1 to bound the total
loss of theF1XED-SHARE Algorithm (Theorem 1) and th¥ ARIABLE-SHARE Algorithm
(Theorem 2).

5. Fixed-share Analysis

This algorithm works for unbounded loss functions, but its total additional loss grows with
the length of the sequence.

LEMMA 2 For any sequence of exampl&ghe intermediate weight of experon trial ¢’
is at leaste ~7L([-119) (1 — o) 1) times the weight of experrat the start of trialt, where
t < t'. Formally we have

m
Wyr ;

> e ML) (] — )1, (13)

S
Wy 5

Proof: The combined Loss and Fixed-share Update (Equation (6)) can be rewritten as

n

«
s _ § m _ —nL(yt,xt,i),, s
thrl,’i == —1 ’th + (1 a)e tylbt,i wt’i'
n— .
J#i

Then if we drop the additive term produced by the Share Update, we have

Wiy, > (1 - a)einL(yt’mt’i)w;i-
We apply the above iteratively on the triagdst’). Since we are bounding}”; (the weights
in trial ¢’ after the Loss Update), the weight on tridlis only reduced by a factor of
e~ we.mva)  Therefore we have

t'—1
wis > wy, H |:e_7]L(y7‘73:7‘,i)(1 — a)] e~ MLy @y i)

r=t

By simple algebra and the definition @f([a..b],i) the bound of the lemma follows.
[
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LEmMA 3 For any sequence of exampl&sthe weight of an expeitat the start of trial
t + 1is at least25 times the intermediate weight of any other exgeon trial ¢.

S
Wiy1,5 «a

2 s BFE] (14)
wy'

Proof: Expanding the Fixed-share Update (4) we have

wf+1,i =(1-aw Zwt,]
J#l
Thuswy,, ; > (ﬂ 1) wy;, wheni # j and we are done. [ |

We can now bound the additional loss.

THEOREM 1 LetS be any sequence of examples andleindpred be (¢, n)-realizable.
Then for anyk-shift sequence partitiof; ,, 1 ¢ «(S) the total loss of th&'1XED-SHARE
Algorithm with parametet satisfies

+ ck[lné +In(n —1))].
(15)

1

L(S,A) <clnn+cnL(Penite(S) +c(l —k—1)ln .
Proof: Recall thak, is the expert of the last segment. By Lemma 1, with e, we have
L(S,A) < —clnwy, ;.- (16)

We boundwy, , ., by noting that it “follows” the weight in an arbitrary partition. This is
expressed in the following telescoping product:

m k s m s
w' s Phleo Wier  Whipi—le | Witle
£+1,er = to,eo ws wm ws wm :
to,eo0 1 ti—1l,ei—1 tieq tr+1—1,ex

Thus, applying lemmas 3 and 2, we have

k k s
—nL([ti.tis1),€i tisn—ti)—1 «o Wyyi1e
warl €k > wto €0 H |:e i e )(1 - a)( w } ( ) m :

i=0 n—1 Wiyi1—1len

The final termmHJ equals one, since we do not apply the Share Update on the final

—1l,ep

trial; therefore by the deflnmon A (Pen i te(S)), we have
1 « k
s —nL(Pe.n (S l—k—1
wy Lex > Ee NL(Pe,n,k,t,e( ))(1 _ Oé) (m) X

We then substitute the above boundwof,, ., into (16) and simplify to obtain (15).
[ |



162 M. HERBSTER AND M.K. WARMUTH

The bound of Theorem 1 holds for &l and there is a tradeoff between the terms
cklnn and enL(Pen i 1,e(S)); i.€., whenk is small thecklnn term is small and the
enL(Penkt.e(S)) term is large, and vice-versa. The optimal choicexafobtained by
differentiating the bound of Theorem 1)d$ = % The following corollary rewrites the
bound of Theorem 1 in terms of the optimal parameter chaiteThe corollary gives an
interpretation of the theorem’s bound in terms of code length. We introduce the following

notation. LetfI (p) = pln  + (1 — p) In 1= be the binary entropy measured in nats, and

D(pllq) = pln§ +(1-=p)ln }%5 be the binary relative entropy in nats.
COROLLARY 1 LetS be any sequence of examples andlahdpred be(c, n)-realizable.
Then for anyk-shift sequence partitio®, ,, i +,e(S) the total loss of thé&' IXED-SHARE
Algorithm with parameten satisfies

L(S,A) <clnn+ enL(Pepkte(S)) +c(l — 1) [H(a®) + D(a*||a)] + ckIn(n — 1),
(17)

wherea* = £-. Whena = £, then this bound becomes

L(S,A) <clnn+ cnL(Pep i t.e(S))+ck(In K’Tl +1In(n —1))

+e(l —1—k)In(1 + —2). (18)

For the interpretation of the bound we ignore the constamtand the difference between
nats and bits. The termian andkIn(n — 1) account for encoding the + 1 experts of
the partition:log n bits for the initial expert antbg(n — 1) bits for each expert thereafter.
Finally, we need to encode where thghifts occur (the inner boundaries of the partition).

If o* is interpreted as the probability that a shift occurs on any of’thel trials, then
theterm(¢—1) [H(a*) + D(a*||a)] corresponds to the expected optimal code length (see
Chapter 5 of (Cover & Thomas, 1991)) if we code the shifts with the estimatstead

of the true probabilityn*. This bound is thus an example of the close similarity between
prediction and coding as brought out by many papers (e.g., (Feder, Merhav & Gutman,
1992)).

Note that then that minimizes the bound of Theorem 1 depends:@nd{ which are
unknown to the learner. In practice a good choice: ofiay be determined experimentally.
However, if we have an upper bound 6and a lower bound oh we may tunex in terms
of these bounds.

COROLLARY 2 LetS be any sequence of examples drahd k be any positive integers
suchthat: < /—1. Thenby setting = k/(¢—1), the loss of th&1XED-SHARE Algorithm
can be bounded by

/-1

L(S,A) <clnn+ enL(Pemit.e(S)) + ck(ln +In(n—-1))+ clAc, (19)

T

wherePy,, 1..+.(S) is any partition ofS such that < ¢ andk > k.
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Proof: Recall the loss bound given in Theorem 1. By setting ﬁ we have

L(S,A) < clnn+ enL(Pen i t.e(S))+ck[ln Z_Tl +1n(n — 1)]

; 20
+e(f —1—k)In(1 + ). (20)
We now separate outthe tefth—1—%) In(1+ 2_1’%_1;) and apply the inequality (1+2) <
@
C-1-Bmn (14— ) <tk g (g O EZR)
(—1—k (—1—k (—1—k

The last inequality follows from the condition thax / andk < k. We obtain the bound of

the corollary by replacing —1—k) In(1+ ;_1’%_&) in Equation (20) by its upper bourid?
' [ |

6. Variable-share analysis

TheVARIABLE-SHARE algorithm assumes that the loss of each expert per trial li@s I
Hence theVARIABLE-SHARE Algorithm works in combination with the square, hellinger,
or absolute loss functions but not with the relative entropy loss function.VAlreABLE-
SHARE Algorithm has an upper bound on the additional loss of the algorithm which is
independent of the length of the trial sequence. We will abbrevigtevith w, ;, since in

this section we will not need to refer to the weight of an expert in the middle of a trial. We
first give two technical lemmas that follow from convexityrirf 5".

LEMMA 4 If 8> 0and r € [0,1], theng” <1—(1—g)randl — (1 - 3)" > pr.
LeEMMA 5 Givenb,c € [0,1), d € (0,1] andc +d > 1, thenb®(c + db?) > b.

Proof: Sinced > 1 — c andb® > b, we havedb? > (1 — c)b. Thereforec + db? >
c+(1—c)b=1-(1-0)(1— c). Applying the first inequality of Lemma 4 to the RHS
we havec + db? > b'~¢, and thus

be(c+ db) > b.
[ |
LEMMA 6 At the beginning of triat 4+ 1, we may lower bound the weight of expelty
either Expressiotfa) or Expressionb), wherej is any expert different from
{ wt’ie*nL(yt;l‘t,i)(l _ a)L(ytyl't,i) (@)
Wt41,5 =2

wtyje_nL(yt#Et.j) n(il L(yt, xt’j) (b).

Proof: Expanding the Loss Update and the Variable-share Update for a trial (cf. (7)) we
have

Wit :wuie—"][/(tht,i)(l _ a)L(yt#Et,i)

oty Yo we ge W) (1 - (1= a)L(yt’xt’j)) :



164 M. HERBSTER AND M.K. WARMUTH

Expressior(a) is obtained by dropping the summation term. For Expresgipmwe drop
L(yt,zt 5)
all but one summand of the second termy:, , ; > w; je~"EWewe;) IZUZ0) 707 e

n—1

then apply Lemma 4 and obtajh). ]

LEMMA 7 The weight of expeitfrom the start of triak to the start of trial’, wheret < ¢/,
([t.2")4)

is reduced by no more than a factor[ef (1 — a)]L ,l.e.
Wy 5 - L([t..t"),i)
’ > n 1 _ .
Wt 4 - [e ( 04)] (21)

Proof: From Lemma 6(a), we have that on triathe weight of experi is reduced as
follows: w;% > e EWorei) (1 — o)bwoed) | If we apply this iteratively on the trials
[t..t"), we have

t'—1
Wi { —nL(yr.r.i) L(; z)] — [0 L([t--t'),4)
> | I e M Tr i) (] — o) HWrTri) | = 1e7 (] — o .
Wt,5 a r—t ( ) [ ( )]

]
In Lemma 6(b) we lower bound the weight transferred from exptrexpert; in a single
trial. In the next lemma we show how weight is transferred over a sequence of trials.

LEMMA 8 For any distinct experts andgq, if L([t..t'),p) < landl < L([t..t'],p) < 2,
then on trialt’ + 1 we may lower bound the weight of expetty

«
n—1

e "(1—a)| [e7"(1—a) Lt-tha), (22)

W41, = We,p

Proof: As expertp accumulates loss in trials.t’, it transfers part of its weight to the
othern — 1 experts, specifically to expeqt via the Variable-share Update. Let, for

t < i < t,denote the weightansferredby expertp to experty in trial i. Let A = Zﬁ:t a;
denote the total weight transferred from expet experty in trials [¢..t']. The transferred
weight, however, is still reduced as a function of the loss of expértsuccessive trials.
By Lemma 7, the weight, added in triali is reduced by a factor ¢¢~7(1 — a)]“((-*19
during trialsi + 1 to¢’. Thus

¢

Wi 1,q = Zai [e‘"(l _ a)]L((i--t/]aq).

i=t
We lower bound each factge—"(1 — o)) “ 19 py [e=1(1 — a))“1*19 | and thus

w1 > Afe(1 — o) MO, (23)

To complete the proof of the lemma we still need to lower bound the total transferred
weightA byw; ,—%-e~"(1—a). Letl; be theloss of expepton triali, i.e. l; = L(y;, z; p)-

n—1

From our assumption, we have< 3% I; < 2.
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By direct application of Lemma 6(b), the weighttransferred by expeftto expertg in
the first trialt of the segment is at leagt , -5 l,e"ﬂf Likewise, we apply Lemma 7 over
trials [¢..7) to expertp, and then apply Lemma 6(b) on trial This gives us a lower bound
for the transferred weights; and the total transferred weight

le"’EJ ¢ (l—oz)EL 1l

a; > Wy,
pTL

Zle nEj= (1—@)21 ol

t/
A=) @i > Wep
i=t 1=t

We split the last sum into two terms:

’

Azwtp%Z(le Y= (1—@)27 l)—l—wt,pn

=t

lt/e_nz:_/ t

We upper bound all exponents ¢f — «) by one; we also replace the sum in the first
exponent by its upper boun;’ ;" I;. The substitutions = ¢, ¢ = 3!, I, < 1, and

d =1y <1, then lead to an application of Lemma 5. Thus we rewrite the above inequality
as

A> wm,n(i 0 [eb(1 — @) + bt (1 — )] = Wip 7 a (1 — a)b® (c+db?),

1

and then apply Lemma 5. This gives us

A> wt,pnﬁ (1 - a).

The proof of the loss bound for tRéarRIABLE-SHARE Algorithm proceeds analogously
to the proof of the'IXED-SHARE Algorithm’s loss bound. In both cases we “follow” the
weight of a sequence of experts along the sequence of segments. Within a segment we
bound the weight reduction of an expert with Lemma 2 for the Fixed-share analysis and
Lemma 7 for Variable-share analysis.

When we pass from one segment to the next, we bound the weight of the expert cor-
responding to the new segment by the weight of the expert in the former segment with
lemmas 3 and 8, respectively. The former lemma used foFilx@D-SHARE Algorithm
is very simple, since in each trial each expert always shared a fixed fraction of its weight.
However, since the weight was shared on every trial, this produced a bound dependent on
sequence length. In tiéaRrR1ABLE-SHARE Algorithm we produce a bound independent of
the length. This is accomplished by each expert sharing weight in accordance to its loss.
However, if an expert does not accumulate significant loss, then we cannot use Lemma 8 to
bound the weight of the following expert in terms of the previous expert. Nevertheless, if
the former expert does not make significant loss in the current segment, this implies that we
may bound the current segment with the former expeddiapsingthe segments together.
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In other words, the collapsing of two consecutive segméhts;(.¢;), [t;..ti+1)), creates

a single segmenfi(_;..t;+1). which is associated with the expert of the first segment of
the original two consecutive segments. We can do this for any segment; thus we determine
our bound in terms of the relatedllapsedpartition whose loss is not much worse.

LeMMA 9 Forany partitionP, ,, 1 .« (S) there exists @ollapsedartition Py ,, 1/ ¢ e (S)

such that for each segment (except the initial segment), the eagertiatedvith the prior
segment incurs at least one unit of loss, and the loss on the whole sequence of the collapsed
partition exceeds the loss of the original partition by no more thark’, i.e., the following
properties hold:

Vi:l<i<Kk, L([t;.t;,),e;_,) > 1and (24)
L(Pé,n,k/,t’,e/(s)) < L(Pl,n,k,t,e(s)) +k— k/« (25)

Proof: Recall thate; is the experassociatedvith theith segment, which is comprised

of the trials[t;..t;11). If in any segment, the loss of the exper;_; associated with the

prior segmenti(— 1) is less than one, then we merge segmentl with segment. This
combined segment in the new partitionaissociatedvith experte;_;. Formally in each
iteration, we decremerit by one, and we delete; and¢; from the tuplese andt. We
continue until (24) holds. We bound the loss of the collapsed partiion + e (S), by

noting that the loss of the new expert on the subsumed segment is at most one. Thus per
application of the transformation, the loss increases by at most one. Thus since there are
k — k' applications, we are done. ]

THEOREM 2 * Let S be any sequence of examples,lleand pred be (c, )-realizable,
and let L have a [0,1] range. Then for any partitioR, ,, » +.e(S) the total loss of the
VARIABLE-SHARE algorithm with parametet satisfies

1 1
L(S,A)<clnn+ c[np+In T a]L(Pé,n,k,t,e(S)) + ck[n+In E—Hn = +ln(n — 1))
Proof: By Lemma 1 withi = ¢, we have
L(S,A) < —clnwjyq ., - (26)

Let Py k.t,e(S) be an arbitrary partition. For this proof we need the property that the
loss in each segment (except the initial segment), with regard to the egsediatedvith
the prior segment, is at least one (cf (24)). If this property does not hold, we use Lemma 9
to replaceP; ,, 1.+, (S) by a collapsed partitio®, ,, 1 + o (S) for which the property does
hold. If the property holds already @, +,.e(S), then for notational convenience we
will refer to Py, t.e(S) BY Pen i .0 (S). Recall thatthe loss &, 1+ e (S) eXceeds
the loss ofP; , k +.e(S) by no more thark — &’.

Since (24) holds, there exists a triglin the ith segment (forl < ¢ < k) such that
L([t;-qi),€i_y) < land2 > L([t;..qi],ei_;) = 1. We now expressu,.; ., as the
telescoping product '

k/
Wpaqe, = Wy el Dy H < e : wt£+l)62>
€ - € .
1 0:¢0

YN Wyr 1 W, o
to:€0 =1 i€ 1 qi,€;
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Applying lemmas 7 and 8 we have

_ L([ty--t7).eq
Wei1,el, Zwt{)’e&[e (1 — «)] ([to--t1).€0)

Hii1 ((%) e (1 — a)[e (1 — a)]L([tQ-'tiﬂ)ﬁﬁ)) :
which simplifies to the following bound:

k'

n—1

k
> [e=1(1 — )| FPem ke (S)+k (L) .

n—1

Weg,el, = e (1 — a)]L(Pe‘”’k"t”e'(S)Hkl ( <

The last inequality follows from (25). Thus if we substitute the above bounﬂ@m%
into (26) and simplify, we obtain the bound of the theorem. [ ]

Again we cannot optimize the above upper bound as a function, afince & and
L(Pyn kte(S)) are not known to the learning algorithm. Below we tuméased on
an upper bound of (P,  t.(S)). The same approach was used in Corollary 2.

CoroLLARY 3 Let S be any sequence of examples dndnd k be any positive reals.
Then by settingr = 21%]i 7. the loss of th&VARIABLE-sHARE Algorithm can be bounded
as follows:

L(S,A) <clnn+ enL(Ponkt.e(S)) + ck <1n (%) +In(n—1)+ lng + 77) + ck,

(27)

and in additiork < L.
andk > L, we obtain

whereP; ,, i.+.e(S) is any partition such thak (P, 1,6 (S))
For any partitionPy ,, 1. +.c(S) for which L(Py 1. £, (S))
the upper bound

<L,
<L

1 .
L(S,A) <clnn+ enL(Penkt,e(S)) + ck (ln(n -1+ lng + T]) + §Ck' (28)

Proof:  We proceed by upper bounding the three terms containifrgm the bound of

_ _k .
Theorem 2 (we usa = 21;+£)‘

2% + L 2k + L 2% + L
LPemrto(S)In [ 2t 2 ) fp | | 222 ) [ 255
Ltk Ltk i

We rewrite the above as:

(29)

L(Pgm_yk,t,e(S)) ln(l + —— ) +k
L+
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We apply the identityn(1+z) < z and bound(Py ., 1 +.6(S)) by L, giving the following
upper bound of the previous expression:

Lk L @D
L+k k (k+ L)

w¥/

(2k+1L)?
(k+1)L <kl

P b
IN
~

If k < L, then < k. By simple calculusk In
Therefore the above is upper bounded by

n 5, wheno <

km£+kmg+k
k 2

Using this expression to upper bound Equation (29), we obtain Equation (27).
Whenk > L, we upper bound Equation (29) by

71 7. 712

E g GREL
L+k (k+ L)k

- - 2 2k+1)?

The tII’St term is bounded b%lk The second ter AWAY
0 < L < k, and thus the above is upper bounded by

9 1.
klno + —h.
nyta

is at mostk ln in the region

We use the above expression to upper bound Equation (29). This gives us Equation (28)
and we are done. ]

7. Absolute Loss Analysis

The absolute loss functiab,,s (p, ¢) = |p — ¢| is (¢, n)-realizable with both the prediction
functionspredy 5,k andpredyymean howevercn > 1. Thus the tuning is more complex,
and for the sake of simplicity we use the weighted mean prediction (Littlestone & Warmuth,
1994) in this section.

THEOREM 3 (LITTLESTONE & WARMUTH, 1994) For n € [0, c0), the absolute loss
function Lass(p,q) = [p — g| is (1=, n)-realizable for the prediction function

predwmean?; ©)-

To obtain a slightly tighter bound we could also have used the Vee Algorithm for the
absolute loss, which i§21n —=— 1+e -)~1 n)-realizable (Haussler et al., 1998). This algo-
rithm takesO(nlogn) time to produce its prediction. Both the weighted mean and the
Vee prediction allow the outcomes to lie @ 1]. For binary outcomes with the absolute
loss,O(n) time prediction functions exist with the same realizability criterion as the Vee
prediction (Movk, 1998; Cesa-Bianchi et al., 1997).

Unlike the(c, 1/c¢)-realizable loss functions discussed earlier (cf. Figure 2), the absolute
value loss does not have constant parameters, and thus it must be tuned. In practice, the
tuning ofn may be produced by numerical minimization of the upper bounds. However,
we use a tuning of produced by Freund & Schapire (1997).
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THEOREM 4 (LEMMA 4 (FREUND & SCHAPIRE, 1997)) Supposé) < P < P and
0<Q<Q. Lety =g(P/Q), whereg(z) = In(1 + /2/2); then

M§P+ 2PQ + Q.
1—e

We now use the above tuning in the bound forther1ABLE-SHARE Algorithm (Theo-
rem 2).

THEOREM 5 Letthe loss function be the absolute loss. $b€ any sequence of examples,
and L and k be any positive reals such that < k, L(Prnrte(S)) < L, andk <
L. Set the two parameters of tAéARIABLE-SHARE algorithm a and 5 to —£— and

2k+L
In(1+ 1/2(Q/P)), respectively, where

P=1L+kandQ =Inn+k (hl(n—l)—i—ln(

|

)+lng> + k.

Then the loss of the Algorithm with weighted mean prediction can be bounded as follows:
9 .
In —
)+1n 2) + k)

Alternatively, let/, and/ be any positive reals such that< k, L(Prmkte(S)) < L,and
k > L. Set the two parameters of theRIABLE-SHARE algorithma andr to —— and

2k+L
In(1+ 1/2(Q/P)), respectively, where

N A A N ~ 1~
P=L+kandQ =Inn+k (hl(n— 1)—|—lng> +§k.

L(S,A) < L(Pinkte(S)) +Ek

+ Jz(iw&) <1nn+l%<1n(n—1)+1n(

)+lng> + k.

|t

|

+ lnn+k (ln(n— 1) + In(

Then the loss of the Algorithm with weighted mean prediction can be bounded as follows:

IN

L(S,A) L(Ponite(S)) +k

\/2 (i+l%> (lnn+k<ln(n—1)+lng> +;k>

k.

+

1
+ lnn+k<1n(n1)+lng>+§
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Parameters: 0 < n,cand0 < o < 1. Vi,j,k: 1,...,n:0 < XY, A4,
Sr AN =1 andvj:1,... ,n: Zk;ﬁj k=1
Initialization: Initialize the weights tav§ ; = A?,... ,w}f,, = ).

Prediction: Letv, ; = w;,;/W;, whereW, = 37" | w; ;. Predict with

7y = pred(vy, ;)

Loss Update: After receiving theth outcomey,,

-, . mo __ S 7?7L(yt,:rt,')
Vil ..o,ncw; =wy e i,

Proximity-variable-share Update
oVi:1l,...,n:
wiiy; = (1—a) Woredw + 570, (1 —(1- a)”y“”“) wy

Figure 3. The PROXIMITY-VARIABLE-SHARE algorithm.

8. Proximity-variable-share Analysis

In this section we discuss tHBROXIMITY-VARIABLE-SHARE Algorithm (see Figure 3).

Recall that in theVARIABLE-SHARE Algorithm each expert shared a fraction of weight

dependentonitslossin each trial; that fraction is then shared uniformly among the remaining

n—1 experts. Th&ROXIMITY-VARIABLE-SHARE Algorithm enables each expert to share

non-uniformly to the othen — 1 experts. The Proximity-variable-share Update now costs

O(n) per expert per trial instead 6i(1) (see Figure 3). This algorithm allows us to model

situations where we have some prior knowledge about likely pairs of consecutive experts.
Let us consider the parameters of the algorithm. TtepleX® € [0,1]" 37, A? = 1)

contains the initial weights of the algorithm, i.e;; ; = }. The second additional param-

eter besides andc is a complete directed graplof sizen without loops. The edge weight

Aj % is the fraction of the weight shared by expgtb expertk. Naturally, for any vertex,

all outgoing edges must be nonnegative and sum to one A% peobability distribution is

a prior for the initial expert and tha; = probability distribution is a prior for which expert

will follow expert j. Below is the upper bound for tHEROXIMITY-VARIABLE-SHARE Al-

gorithm. TheFixep-sHARE Algorithm could be generalized similarly to take proximity

into account.

THEOREM 6 Let S be any sequence of examples, leand pred be (¢, n)-realizable,
and letL have a [0,1] range. Then for any partitioR, ., . +.e(5), the total loss of the
PROXIMITY-VARIABLE-SHARE Algorithm with parametet satisfies

1
L(S,A)gc[n+lnm]L(Pg7n,k7t,e(S))+ck[77+1n +1n— +1n A2 +Zln/\€1

(30)
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Proof: We omit the proof of this bound since it is similar to the corresponding proof of
Theorem 2 for théVARIABLE-SHARE Algorithm: The only change is that thnb andﬁ
fractions are replaced by the correspondingarameters. ]

Note that setting\,, = + and X, ,., = —1; gives the previous bound for the
VARIABLE-SHARE Algorithm (Theorem 2). In that case the last sunO&kInn), ac-
counting for the code length of the names of the best experts (except the first one). Using
the PROXIMITY-VARIABLE-SHARE Algorithm we can get this last sum (k) in some
cases.

For a simple example, assume that the processors are on a circular list and that for the two
processors of distanekfrom processot, \; i+d mod n = Aiji—d mod n < 1/d%. Now if
the next best expert is always at most a constant away from the previous one, then the last
sum become® (k). Of course, other notions of closeness and choices of fr@ameters
might be suitable. Note that there is a price for decreasing the last sum: the update time is
now O(n?) per trial. However, if for each expertall arrows that end atare labeled with
the same value, then the Share Update offReXIMITY-VARIABLE-SHARE Algorithm
is still O(n).

9. Lower Bounds

The upper bounds for theixEp-SHARE Algorithm grow with the length of the sequence.
The additional loss of the algorithm over the loss of the legartition is approximately
(k+1) Inn+k1In(¢/k). This holds for unbounded loss functions such as the relative entropy
loss. When restricting the loss to lie i, 1], the VARIABLE-SHARE Algorithm gives an
additional loss bound of approximately+ 1) Inn + k In(L/k), whereL is the loss of the
bestk-partition andk < L. One natural question is whether a similar reduction is possible
for unbounded loss functions. In other words, whether for an unbounded loss function a
bound of the same form is possible witheplaced bynin{¢, L}. We give evidence to the
contrary. We give an adversary argument that forces any algorithm tolmakeln (¢ — 1)

loss over the best one-partition (for which the adversary 5ets L(P¢2,1.t.e) = 0). In

this section we limit ourselves to giving this construction. It can easily be extended to an
adversary that forcda(n) + In(¢ — log, n) additional loss over the best one-partition with

n experts. By iterating the adversary, we may force

k [In(n—1)+ 1n(£ —logy(n — 1))]

additional loss over the bestpartition. (Here we assume thhig,(n — 1) and £ are
positive integers, and > log,(n — 1).)

THEOREM 7 For the relative entropy loss there exists an example sequé&nédéength’
with two experts such thdt(P21¢.e) = 0, i.e., there is a partition with a single shift of
loss0, and furthermore, for any algorithm,

L(S,A) > In2 +1n(¢ - 1). (31)
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1. Vt: Xt = (0, 1)

2. Ontrialt =0, setyy to O if go > % and to 1 otherwise.
(Assume without loss of generality that > % and thugyy, = 0).

3. Newtrial:t =+¢+ 1.

4. If g, > ;L then

(A) y = 0. (Invariant conditions: 4()L; > In /24, 4() Y5 _o Ly > In2 +
-1

In =)

5. else

(A) y: = 1. (Invariant conditions: 5(iJ.; > In(¢—t), 5(ii) E;:O Ly >In2+1In({—
1)).
(B) Gotostep 7.

6. Ift < ¢—2thengoto step 3.

7. Lety, = 1 for the remaining trial(s) and exit.
Figure 4. Adversary’s strategy.

Proof: The adversary’s strategy is described in Figure 4. Weusedenote the prediction
of an arbitrary learning algorithm, arfth = L.,..(y:, ¥¢) to denote the loss at trial For
convenience we number the trials frane=0.../ — 1 instead oft = 1... 7.

There are two experts; one always predicts 0 and the other always predicts 1. The
adversary returns a sequence of 0 outcomes followed by a sequence of 1 outcomes such
that neither sequence is empty. Thus, there is a single shift in the best partition, and this
partition has loss 0.

We now prove thak(S, A) > In2+In(¢—1), thus proving the lemma. Clearly, > In 2
(see Step 2). Without loss of generality aSSLmsle> 1. Note that the threshold fay,
is /2. Furthermore L..(0, /%) = In 4% and Lem( 7)) = In(¢ —t). Thus,
the conditions 4(i) and 5(i) follow. Condmon 4(ii) holds by simple induction. If a shift
occurs then Condltlon 5(||) holds, since by Condition 4(ii) in tdal- 1 we have that

Lt/ >1n2+ ln . Therefore, when we adfl;, which is at leasin(¢ — t) by
Condmon 5(i), we obtaln Condmon 5(ii) and we are done. If Step 5 is never executed then
the shift toy, = 1 occurs in the last triad — 1 since Step 6 is skipped. Thus, if Step 5 is
never executed theEf/ Ly > In2+41In(¢—1)intrial t = ¢ — 2 (Condition 4(ii)), which
is again the bound of the lemma. ]

We first reason that this lower bound is tight by showing that the upper bounds of the
algorithms discussed in this paper are close to the lower bound. The number of partitions
whenn = 2 andk = 1is2(¢ — 1). Thus, we may expand the setroéxperts int@(¢ — 1)
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Figure 5. Loss of theVARIABLE-SHARE Algorithm vs theSTATIC-EXPERT Algorithm.

partition-experts as discussed in the introduction. Usingtheric-ExXpPERT Algorithm

with the weighted mean prediction gives an upper bounid ?f- In(¢ — 1) on the total loss

of the algorithm when the loss of the best partition is zero. This matches the above lower
bound. Second, the bound of tRexED-sHARE Algorithm (cf. Corollary 1) is larger than

the lower bound by¢ — 2) In(1 + +15), and this additional term may be upper bounded by

1.

10. Simulation Results

In this section we discuss some simulations on artificial data. These simulations are mainly
meant to provide a visualization of how our algorithms track the predictions of the best
expert and should not be seen as empirical evidence of the practical usefulness of the
algorithms. We believe that the merits of our algorithms are more clearly reflected in the
strong upper bounds we prove in the theorems of the earlier sections. Simulations only
show the loss of an algorithm for a typical sequence of examples. The bounds of this paper
are worst-case bounds that hold even for adversarially-generated sequences of examples.
Surprisingly, the losses of the algorithms in the simulations with random sequences are very
close to the corresponding worst-case bounds which we have proven in this paper. Thus,
our simulations show that our loss bounds are tight for some sequences.

We compared the performance of theaTic-ExPERT Algorithm to the two Share al-
gorithms in the following setting. We chose to use the square loss as our loss function,
because of its widespread use and because the task of tuning the learning rate for this loss
function is simple. We used the Vovk prediction function (cf. Equation 9), and we chose
n = 2 andec = 1/2 in accordance with Figure 2. We considered a sequence of 800 trials
with four distinctsegmentsbeginning at trials 1, 201, 401, and 601. On each trial the
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Figure 7. Relative Weights of th& TaTIC-EXPERT Algorithm.

outcome(y,) was 0. The prediction tuplexf) contained the predictions of 64 experts.
When we generated the predictions of the 64 experts, we chose a different expert as the best
one for each segment. The best experts always have an expected 1gd&mper trial.

The other 63 experts have an expected losk/a® per trial. At the end of each segment

a new “best expert” was chosen. Since thécomewas always 0, we generated these
expected losses by sampling predictions from a uniform random distributi¢h ét)l and



TRACKING THE BEST EXPERT 175

2
the best partition, denoted by the segment boundaries abov%%i& 62, with a variance
of 02 ~ .044. The actual loss of the best partition in the particular simulation used for the
plots was5.47. FortheF1xED-SHARE Algorithm we tunedy ; based on the values bf= 3

and? = 800 (ay = % = 0.00375), using thea; tuning suggested in Corollary 1. For

the VARIABLE-SHARE Algorithm we tuned,, based on the values #f= 3 andL = 6.73

(ap = MLB = 0.24), using thea,, tuning suggested in Corollary 3. Using theorems 1
and 2 we calculated a worst case upper bound on the loss Bitep-sHARE Algorithm

and theVARIABLE-SHARE Algorithm of 24.89 and21.50, respectively (seexX” and “+”

marks in Figure 5). The simulations on artificial data show that our worst-case bounds are

rather tight even on this very simple artificial data.

0,1,/ 1—10) for the “typical” and “best” experts, respectively. Thus, the expected loss for

There are many heuristics for finding a suitable tuning. We used the tunings prescribed
by our theorem, but noticed that for these types of simulations the results are relatively
insensitive to the tuning of. For example, in calculating,, for the VARIABLE-SHARE
Algorithm when L was overestimated by 10 standard deviations, the loss bound for our
algorithm increased by only.02, while the actual loss of the algorithm in the simulation
increased by.17.

In Figure 5, we have plotted the loss of theaTic-EXPERT Algorithm versus the loss
of the two Share algorithms. Examination of the figure shows that on the first segment
theSTATIC-EXPERT Algorithm performed comparably to the Share algorithms. However,
on the remaining three segments, #eAaTiC-EXPERT Algorithm performed poorly, in
that its loss is essentially as bad as the loss of a “typical” expert (the slope of the total
loss of a typical expert and thHeraTic-EXPERT Algorithm is essentially the same for
the later segments). The Share algorithms performed poorly at the beginning of a new
segment; however, they quickly “learned” the new “best” expert for the current segment.
The Share algorithms’ loss plateaued to almost the same slope as the slope of the total
loss of the best expert. The two Share algorithms had the same qualitative behavior, even
though theF'IXED-SHARE Algorithm incurred approximately 10% additional loss over the
VARIABLE-SHARE Algorithm. In our simulations we tried learning ratgslightly smaller
than two, and verified that even with other choices for the learning rates, the total loss of
the STATIC-EXPERT algorithm does not improve significantly.

In Figures 6 and 7, we plotted the weights of the normalized weight veetothat
is maintained by th&/ ARIABLE-SHARE Algorithm and theSTATIC-EXPERT Algorithm
over the trial sequence. In Figure 6, we see thaf\fae1ABLE-SHARE Algorithm shifts
the relative weights rapidly. During the latter part of each segment, the relative weight
of the best expert is almost one (the corresponding plot ofFth&D-sHARE Algorithm
is similar). On the other hand, we see in Figure 7 thatShmeTic-ExpPERT Algorithm
also “learned” the best expert for segment 1. HoweverStheric-ExpERT Algorithm is
unable to shift the relative weight sufficiently quickly, i.e., it takes the length of the second
segment to partially “unlearn” the best expert of the first segment. The relative weights of
the best experts for segments one and two essentially perform a “random walk” during the
third segment. In the final segment, the relative weight of the best expert for segment three
also performs a “random walk.” In summary, we see these simulations as evidence that the
Fixed-share and Variable-share Updates are necessary to track shifting experts.



176 M. HERBSTER AND M.K. WARMUTH

11. Conclusion

In this paper, we essentially gave a reduction for any multiplicative update algorithm that
works well compared to the best expert for arbitrary segments of examples, to an algorithm
that works well compared to the best partition, i.e., a concatenation of segments. Two
types of share updates were analyzed. FheED-SHARE Algorithm works well when

the loss function can be unbounded, and¥ha1ABLE-SHARE Algorithm is suitable for

the case when the range of the loss lies in [0,1]. The first method is essentially the same
as the one used in thé/ML algorithm of (Littlestone & Warmuth, 1994) and a recent
alternate developed in (Auer & Warmuth, 1998) for learning shifting disjunctions. When
the loss is the discrete loss (as in classification problems), then these methods are simple and
effective if the algorithm only updates after a mistake occurs (i.e., conservative updates).
Our second method, the Variable-share Update, is more sophisticated. In particular, if one
expert predicts perfectly for a while, then it can collect all the weight. However, if this
expert is starting to incur large loss, then it shares weight with the other experts, helping
the next best expert to recover its weight from zero.

The methods presented here and in (Littlestone & Warmuth, 1994) have inspired a number
of recent papers. Auer & Warmuth (1998) adapted the Winnow algorithm to learn shifting
disjunctions. Comparing against the best shifting disjunction is more complicated than
comparing against the best expert. However, since this is a classification problem a simple
Sharing Update similar to the Fixed-share Update is sufficient. Our focus in this paper was
to track the prediction of the best expert for the same class of loss functions for which the
original STATIC-EXPERT Algorithm of Vovk was developed (Vovk, 1998; Haussler et al.,
1998).

Our share updates have been applied experimentally for predicting disk idle times (Helm-
bold etal., 1996) and for the on-line management of investment portfolios (Singer, 1997). In
addition, a reduction has been shown between expert and metrical task systems algorithms
(Blum & Burch, 1997). The Share Update has been used successfully in the new domain
of metrical task systems. A natural probabilistic interpretation of the Share algorithms has
recently been given in (Vovk, 1997).

In any particular application of the Share algorithms, it is necessary to consider how to
choose the parameter. Theoretical techniques exist for thaxXED-SHARE Algorithm
for eliminating the need to choose the valuenohhead of time. One method for tuning
parameters (among other things) is the “specialist” framework of (Freund, Schapire, Singer
& Warmuth, 1997), even though the bounds produced this way are not always optimal.
Another method incorporates a prior distribution on all possible values &or the sake
of simplicity we have not discussed these methods (Herbster, 1997; Vovk, 1997; Singer,
1997) in this paper.
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Notes

1. The discrete loss is defined to be

0 p=gq
Lyis(p, q) = { 1 p£aq.

Note thatD(p||q) = Lent(p, q). We use theD(p||q) notation here as is customary in information theory.
. Ifwe replace the assumption thiat> k by 2k < ¢, we obtain a bound where the final teehis replaced by
2ck.
4. Vovk has recently proved a sharper bound for this algorithm (Vovk, 1997):
—e T4+ ae™

1 1 n
1 7a]L(’ngn,k,t,e(S))+ck[n+ln +In(n — 1)].

L(S,A) <clnn+c¢n+In

Unlike Corollary 2 we do not need a lower boundian

6. We call the partition described by the segment boundaries 1, 201, 401, and 601, the best partition with respect
to the tradeoff betweeh and L(P; ,, i t,e(S)), as expressed implicitly in Theorem 2.
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