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Abstract. We generalize the recent relative loss bounds for on-line algorithms where the additional loss of the
algorithm on the whole sequence of examples over the loss of the best expert is bounded. The generalization
allows the sequence to be partitioned into segments, and the goal is to bound the additional loss of the algorithm
over the sum of the losses of the best experts for each segment. This is to model situations in which the examples
change and different experts are best for certain segments of the sequence of examples. In the single segment case,
the additional loss is proportional tologn, wheren is the number of experts and the constant of proportionality
depends on the loss function. Our algorithms do not produce the best partition; however the loss bound shows
that our predictions are close to those of the best partition.

When the number of segments isk+ 1 and the sequence is of length`, we can bound the additional loss of our
algorithm over the best partition byO(k logn+ k log(`/k)). For the case when the loss per trial is bounded by
one, we obtain an algorithm whose additional loss over the loss of the best partition is independent of the length
of the sequence. The additional loss becomesO(k logn+ k log(L/k)), whereL is the loss of the best partition
with k + 1 segments.

Our algorithms for tracking the predictions of the best expert are simple adaptations of Vovk’s original algorithm
for the single best expert case. As in the original algorithms, we keep one weight per expert, and spendO(1) time
per weight in each trial.
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1. Introduction

Consider the following on-line learning model. The learning occurs in a series of trials
labeled1, 2, . . . , `. In each trialt the goal is to predict theoutcomeyt ∈ [0, 1] which is
received at the end of the trial. At the beginning of trialt, the algorithm receives an n-tuple
xt. The elementxt,i ∈ [0, 1] of the n-tuplext represents the prediction of anexpertEi of
the value of the outcomeyt on trial t. The algorithm then produces a predictionŷt, based
on the current expert prediction tuplext, and on past predictions and outcomes. At the
end of the trial, the algorithm receives the outcomeyt. The algorithm then incurs aloss
measuring the discrepancy between the predictionŷt and the outcomeyt. Similarly, each
expert incurs a loss as well. A possible goal is to minimize the total loss of the algorithm
over all ` trials on an arbitrary sequence of instance outcome pairs (such pairs are called
examples). Since we make no assumptions about the relationship between the prediction
of experts (xt) and the outcome (yt), there is always some sequence ofyt that is “far away”
from the predictionŝyt of any particular algorithm. Thus, minimizing the total loss over
an arbitrary sequence of examples is an unreasonable goal. A refined relativized goal is to
minimize the additional loss of the algorithm over the loss of the best expert on the whole
sequence. If all experts have large loss then this goal might actually be easy to achieve,

* An extended abstract appeared in (Herbster & Warmuth, 1995)
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since for all algorithms the additional loss over the loss of the best expert may then be small.
However, if at least one expert predicts well, then the algorithm must “learn” this quickly
and produce predictions which are “close” to the predictions of the best expert in the sense
that the additional loss of the algorithm over the loss of the best expert is bounded.

This expert framework might be used in various settings. For example, the experts might
predict the chance of rain or the likelihood that the stock market will rise or fall. Another
setting is that the experts might themselves be various sub-algorithms for recognizing
particular patterns. The “master” algorithm that combines the experts’ predictions does
not need to know the particular problem domain. It simply keeps one weight per expert,
representing the belief in the expert’s prediction, and then decreases the weight as a function
of the loss of the expert.

Previous work of Vovk (1998) and others (Littlestone & Warmuth, 1994; Haussler, Kivi-
nen & Warmuth, 1998) has produced an algorithm for which there is an upper bound on the
additional loss of the algorithm over the loss of the best expert. Algorithms that compare
against the loss of the best expert are calledStatic-expert algorithms in this paper.
The additional loss bounds for these algorithms have the formc lnn for a large class of
loss functions, wherec is a constant which only depends on the loss functionL, andn is
the number of experts. This class of loss functions contains essentially all common loss
functions except for the absolute loss and the discrete loss1 (counting prediction mistakes),
which are treated as special cases (Littlestone & Warmuth, 1994; Vovk, 1995; Cesa-Bianchi,
Freund, Haussler, Helmbold, Schapire & Warmuth, 1997). For example, if the loss function
is the square or relative entropy loss, thenc = 1

2 or c = 1, respectively (see Section 2 for
definitions of the loss functions).

In the paper we consider a modification of the above goal introduced by Littlestone and
Warmuth (1994), in which the sequence of examples is subdivided intok + 1 segments of
arbitrary length and distribution. Each segment has an associated expert. The sequence of
segments and its associated sequence of experts is called apartition. The loss of a partition
is the sum of the total losses of the experts associated with each segment. The best partition
of sizek is the partition withk + 1 segments that has the smallest loss. The modified goal
is to perform well relative to the best partition of sizek. This goal is to model real life
situations where the “nature” of the examples might change and a different expert produces
better predictions. For example, the patterns might change and different sub-algorithms
may predict better for different segments of the on-line sequence of patterns. We seek to
design master algorithms that “track” the performance of the best sequence of experts in
the sense that they incur small additional loss over the best partition of sizek. If the whole
sequence of examples was given ahead of time, then one could compute the best partition of
a certain size and the associated experts using dynamic programming. Our algorithms get
the examples on-line and never produce the best partition. Even so, we are able to bound
the additional loss over the best off-line partition for an arbitrary sequence of examples.

When there arè trials,k+ 1 segments, andn experts, there are
(
`−1
k

)
n(n− 1)k distinct

partitions. We can immediately get a good bound for this problem by expanding the set
of n experts into

(
`−1
k

)
n(n− 1)k = O((nk+1( e`k )k) “partition-experts.” Each partition-

expert represents a single partition of the trial sequence, and predicts on each trial as
the expertassociatedwith the segment which contains the current trial. Thus, using the
Static-expert algorithm we obtain a bound ofc ln

(
`−1
k

)
n(n− 1)k ≤ c[(k+1) logn+
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k log `
k + k] of the additional loss of the algorithm over the loss of the best partition. There

are two problems: first, the algorithm is inefficient, since the number of partition-experts is
exponential in the number of partitions; and second, the bound on the additional loss grows
with the sequence length.

We were able to overcome both problems. Instead of keeping one weight for the exponen-
tially many partitions, we can get away with keeping only one weight per expert, as done in
theStatic-expert algorithm. So the “tracking” of the predictions of the best partition
is essentially for free. If there aren sub-algorithms or experts whose predictions we want
to combine, then as in theStatic-expert algorithm the new master algorithm takes only
O(n) additional time per trial over the time required for simulating then sub-algorithms.

We develop two main algorithms: theFixed-share Algorithm, and theVariable-
share Algorithm. Both of these are based on theStatic-expert algorithms which
maintain a weight of the forme−ηTi for each expert (cf. Littlestone & Warmuth, 1994;
Vovk, 1995), whereTi is total past loss of the experti in past trials. In each trial the master
algorithm combines the experts’ predictions using the current weights of the experts. When
the outcome of the trial is received, we multiply the weight of every experti by e−ηLi ,
whereLi is the loss of experti in the current trial. We call this update of the weights the
Loss Update.

We modify theStatic-expert Algorithm by adding an additional update to obtain our
algorithms. Since in our model the best expert may shift over a series of trials, we cannot
simply use weights of the forme−ηTi , because before an expert is optimal for a segment its
loss in prior segments may be arbitrarily large, and thus its weight may become arbitrarily
small. So we need to modify theStatic-expert Algorithm so that small weights can be
recovered quickly.

For this reason, each expert “shares” a portion of its weight with the other experts after
the Loss Update; we call this theShare Update.Both theFixed-share andVariable-
share Algorithm first do the Loss Update followed by a Share Update, which differs for
each algorithm. In a Share Update, a fraction of each experts’ weight is added to the weight
of each other expert. In theFixed-share Algorithm the experts share a fixed fraction of
their weights with each other. This guarantees that the ratio of the weight of any expert to
the total weight of all the experts may be bounded from below. Different forms of lower
bounding the weights have been used by theWml algorithm and in the companion paper
for learning shifting disjunctions (Auer & Warmuth, 1998) that appears in this journal issue.
The latter two methods have been applied to learning problems where the loss is the discrete
loss (i.e., counting mistakes). In contrast our methods work for the same general class of
continuous loss functions that theStatic-expert algorithms can handle (Vovk, 1998;
Haussler et al., 1998). This class includes all common loss functions such as the square
loss, the relative entropy loss, and the hellinger loss. For this class there are tight bounds on
the additional loss (Haussler et al., 1998) of the algorithm over the loss of the best expert
(i.e., the non-shifting case). TheFixed-share Algorithm obtains the additional loss of
O(c[(k+ 1) logn+ k log `

k + k]), which is essentially the same as the sketched algorithm
that uses theStatic-expert algorithm with exponentially many partition-experts. The
salient feature of theFixed-share Algorithm is that it still usesO(1) time per expert per
trial. However, this algorithm’s additional loss still depends on the length of the sequence.
Our lower bounds give some partial evidence that this seems to be unavoidable for loss
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functions for which the loss in a single trial can be unbounded (such as for the relative
entropy loss). For the case when the loss in a particular trial is at most one (such as for the
square loss), we develop a second algorithm called theVariable-share Algorithm. This
algorithm obtains bounds on the additional loss that are independent of the length of the
sequence. It also shares weights after the Loss Update; however, the amount each expert
shares now is commensurate with the loss of the expert in the current trial. In particular,
when an expert has no loss, it does not share any weight.

Both versions of our Share Update are trivial to implement and cost a constant amount of
time for each of then weights. Although the algorithms are easy to describe, proving the
additional loss bounds takes some care. We believe that our techniques constitute a practical
method for tracking the predictions of the best expert with provable worst-case additional
loss bounds. The essential ingredient for our success in a non-stationary setting, seems to be
an algorithm for the stationary setting with a multiplicative weight update whose loss bound
grows logarithmically with the dimension of the problem. Besides Vovk’sAggregating
Algorithm (Vovk, 1998) and theWeighted Majority Algorithm (Littlestone &
Warmuth, 1994), which only use the Loss Update, and are the basis of this work, a number
of such algorithms have been developed. Examples are algorithms for learning linear
threshold functions (Littlestone, 1988; Littlestone, 1989), and algorithms whose additional
loss bound over the loss of the best linear combination of experts or sigmoided linear
combination of experts is bounded (Kivinen & Warmuth, 1997; Helmbold, Kivinen &
Warmuth, 1995). Significant progress has recently been achieved for other non-stationary
settings building on the techniques developed in this paper (see discussion in the Conclusion
Section).

The paper is outlined as follows. After some preliminaries (Section 2), we present the
algorithms (Section 3), and give the basic proof techniques (Section 4). Sections 5 and 6
contain the detailed proofs for theFixed-share and Variable-share algorithms,
respectively. The absolute loss is treated as a special case in Section 7. Section 8 dis-
cusses a subtle but powerful generalization of theVariable-share Algorithm, called the
Proximity-variable-share Algorithm. The generalization leads to improved bounds
for the case when best expert of the next segment is always likely to be “close” to the pre-
vious expert. Some preliminary lower bounds are given in Section 9. Simulation results on
artificial data that exemplify our methods are given in Section 10. Finally, in Section 11 we
conclude with a discussion of recent work. The casual reader who might not be interested
in the detailed proofs is recommended to read the sections containing the preliminaries
(Section 2), the algorithms (Section 3) and the simulations (Section 10).

2. Preliminaries

Let ` denote the number of trials andn denote the number of experts labeledE1, E2, . . . , En.
When convenient we simply refer to an expert by its index; thus “experti” refers to expert
Ei. The prediction of alln experts in trialt is referred to by thepredictiontuplext, while
the prediction of experti on trial t is denoted byxt,i. These experts may be viewed as
oracles external to the algorithm, and thus may represent the predictions of a neural net,
a decision tree, a physical sensor or perhaps even of a human expert. The outcome of a
trial t is yt, while the prediction of the algorithm in trialt is ŷt. The instance-outcome pair
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(xt, yt) is called thet-th example. In this paper the outcomes, the expert predictions and
the predictions of the algorithm are all in[0, 1]. Throughout this paperS always denotes an
arbitrary sequence of examples, i.e., any sequence of elements from[0, 1]n × [0, 1] of any
length`. A loss functionL(p, q) is a functionL : [0, 1]× [0, 1]→ [0,∞]. We consider four
loss functions in this paper: the square, the relative entropy, the hellinger, and the absolute
loss:

Lsq(p, q) = (p− q)2,

Lent(p, q) = p ln p
q + (1− p) ln 1−p

1−q ,

Lhel(p, q) = 1
2 ((
√

1− p−√1− q)2 + (
√
p−√q)2) and

Labs(p, q) = |p− q|.

On trial t the loss of the algorithmA is L(yt, ŷt). Similarly, the loss of experti on
trial t is L(yt, xt,i). We call a subsequence of contiguous trials asegment. The notation
[t..t′] for non-negative integerst ≤ t′ denotes asegmentstarting on trial numbert and
ending on the trialt′. Rounded parens are used if the ending trial is not included in the
segment. For the current sequenceS we abbreviate the loss of experti on the segment

[t..t′) byL([t..t′), i) =
∑t′−1
s=t L(ys, xs,i). The loss of the algorithmA over the whole trial

sequenceS is defined asL(S,A) = L([1..`], A) =
∑`
t=1 L(yt, ŷt).

We are now ready to give the main definition of this paper that is used for scenarios in
which the best expert changes over time. Informally ak-partition slices a sequence into
k+ 1 segments with an expert being associated with each segment. Formally, ak-partition,
denoted byP`,n,k,t,e(S), consists of three positive integers`, n, k, and two tuplest and
e of positive integers. The number` is the length of the trial sequenceS, n is the size
of the expert pool, andk is number oftarget shifts(k < `). The tuplet hask elements
(t1, . . . , tk) such that1 < ti ≤ ` andti < ti+1. Eachti refers to one of thè trials, and by
convention we uset0 = 1, tk+1 = `+ 1. The tuplet divides the trial sequenceS into k+ 1
segments, [t0..t1), [t1..t2), . . . , [tk..tk+1). The segment[ti..ti+1) is called theith segment.
The0th segment is also referred to as the initial segment. The tuplee hask + 1 elements
(e0, e1, . . . , ek) such that1 ≤ ei ≤ n andei 6= ei+1. The elementei denotes the expert
Eei which isassociated withtheith segment[ti..ti+1). The loss of a givenk-partition for
loss functionL and trial sequenceS is

L(P`,n,k,t,e(S)) =
k∑
i=0

L([ti..ti+1), ei). (1)

3. The Algorithms

There are four algorithms considered in this paper –Static-expert, Fixed-share,
Variable-share andProximity-variable-share. The first three are summarized
in Figure 1. TheProximity-variable-share Algorithm is a generalization of the
Variable-share Algorithm; this algorithm is given in Figure 3. The discussion of this
generalization is deferred to Section 8. For all algorithms the learning process proceeds
in trials, wheret ≥ 1 denotes the trial number. The algorithms maintain one positive
weight per expert. The weightwst,i (or its normalized versionvst,i) should be thought of as
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Parameters: 0 < η, c and0 ≤ α ≤ 1.

Initialization: Initialize the weights tows1,1 = . . . = ws1,n = 1/n.

Prediction: Let vt,i = wst,i/Wt, whereWt =
∑n
i=1 w

s
t,i. Predict with

ŷt = pred(vt,xt) (2)

Loss Update:After receiving thetth outcomeyt,

∀i : 1, . . . , n : wmt,i = wst,ie
−ηL(yt,xt,i). (3)

Share Updates of all three algorithms:

Static-expert

• ∀i : 1, . . . , n : wst+1,i = wmt,i “no Share Update”

Fixed-share (4)

• pool =
∑n
i=1 αw

m
t,i

• ∀i : 1, . . . , n : wst+1,i = (1− α)wmt,i + 1
n−1

(
pool − αwmt,i

)
Variable-share (5)

• pool =
∑n
i=1

(
1− (1− α)L(yt,xt,i)

)
wmt,i

• ∀i : 1, . . . , n :

wst+1,i = (1− α)L(yt,xt,i)wmt,i + 1
n−1

(
pool −

(
1− (1− α)L(yt,xt,i)

)
wmt,i

)
Figure 1. TheStatic-expert, Fixed-share, andVariable-share algorithms.

a measurement of the algorithm’s belief in the quality of theith expert’s predictions at the
start of trialt. The weight of each expert is initialized to1/n.

The algorithms have the following three parameters:η, c andα. The parameterη is a
learning rate quantifying how drastic the first update will be. The parameterc will be set
to 1/η for most loss functions. (The absolute loss is an exception treated separately in
Section 7.) The parameterα quantifies the rate of shifting that is expected to occur. The
Fixed-share Algorithm is designed for potentially unbounded loss functions, such as the
relative entropy loss. TheVariable-share Algorithm assumes that the loss per trial lies
in [0, 1]. For theFixed-share Algorithm,α is the rate of shifting per trial. Thus, if five
shifts are expected in a1000 trial sequence, thenα = 1/200. For theVariable-share
Algorithm,α is approximately the rate of shifting per unit of loss of the best partition. That
is, if five shifts are expected to occur in a partition with a total loss of80, thenα ≈ 1/16.
The tunings of the parametersη andc are considered in greater depth in Section 4, and for
α in sections 5 and 6. Finally, theStatic-expert Algorithm does not use the parameter
α since it assumes that no shifting occurs.

In each trialt the algorithm receives an instance summarizing the predictions of the
n expertsxt. The algorithm then plugs the current instancext and normalized weights



TRACKING THE BEST EXPERT 157

vt into the prediction functionpred(v,x) in order to produce a prediction̂yt. In the
simplest case, the algorithm predicts with the weighted mean of the experts’ predictions,
i.e., pred(v,x) = v · x. A more sophisticated prediction function introduced by Vovk
(Vovk, 1998) will be discussed in Section 4. After predicting, the algorithm performs two
update steps. The first update is theLoss Update; the second is theShare Update.

In the Loss Update the weight of experti is multiplied bye−ηLi , whereLi is the loss
of the i-th expert in the current trial. Thus, no update occurs whenLi = 0. The learning
rateη intensifies the effect of this update. We usewmt,i to denote the weights in the middle
of the two updates. These weights will be referred to asintermediateweights. The Share
Update for theStatic-expert Algorithm is vacuous. However, for the other algorithms
the Share Update is crucial. We briefly argue for the necessity of the share updates in the
non-stationary setting, and then give an intuitive description of how they function.

When we move from predicting as well as the best expert to predicting as well as a
sequence of experts, the Loss Update is no longer appropriate as the sole update. Assume
we have two experts and two segments. In the first segment Expert 1 has small loss and
Expert 2 a large loss. The roles are reversed for the second segment. By the end of the first
segment, the Loss Update has caused the weight of Expert 2 to be almost zero. However,
during the second segment the predictions of Expert 2 are important, and its weight needs
to be recovered quickly. The share updates make sure that this is possible. The simulation
in Section 10 furthers the intuition for why the share updates are needed. The two share
updates are summarized below. A straightforward implementation costsO(n) time per
expert per trial:

Fixed-share: wst,i = (1− α)wmt,i +
n∑
j 6=i

α

n− 1
wmt,j , (6)

Variable-share: wst,i = (1− α)L(yt,xt,i)wmt,i +
n∑
j 6=i

(
1− (1− α)L(yt,xt,j)

)
n− 1

wmt,j . (7)

In contrast, the implementations in Figure 1, that use the intermediate variable “pool” cost
O(1) time per expert per trial. After the Loss Update, every expert “shares” a fraction
of its weight equally with every other expert. The received weight enables an expert to
recover its weights quickly relative to the other experts. In the Fixed-share Update (6) each
expert shares a fraction ofα of its weight in each trial. If one expert is perfect for a long
segment, this type of sharing is not optimal, since the perfect expert keeps on sharing weight
with possible non-perfect experts. The Variable-share Update (7) is more sophisticated:
roughly, an expert shares weight when its loss is large. A perfect expert doesn’t share, and
if all other experts have high loss, it will eventually collect all the weight. However, when
a perfect expert starts to incur high loss, it will rapidly begin to share its weight with the
other experts, allowing a now good expert with previously small relative weight to recover
quickly. As discussed above the parameterα is the shifting rate.

In the introduction we discussed an algorithm that uses exponentially many static experts,
one for each partition. Our goal was to achieve bounds close to those of this inefficient
algorithm by using onlynweights. The bounds we obtain for our share algorithms are only
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slightly weaker than the partition-expert algorithm and gracefully degrade when neither the
length of the sequencènor the number of shiftsk are known in advance.

4. Prediction Functions and Proof Techniques

We consider two choices of prediction functions. The simplest prediction is the weighted
mean (Warmuth, 1997):

predwmean(v,x) =
n∑
i=1

vixi. (8)

A more sophisticated prediction function giving slightly better bounds was introduced by
Vovk (Vovk, 1998; Haussler et al., 1998). DefineL0(z) = L(0, z) andL1(z) = L(1, z).
Both of these functions must be monotone. LetL−1

0 (z) andL−1
1 (z) denote the inverses of

L0(z) andL1(z). Vovk’s prediction is now defined in two steps by

∆(y) = −c ln
∑n
i=1 vie

−ηL(y,xi)

predVovk(v,x) = L−1
0 (∆(0))+L−1

1 (∆(1))
2 .

(9)

The following definition is a technical condition on the relation between the prediction
functionpred(v,x), the loss functionL, and the constantsc andη.

Definition 1 (Haussler et al., 1998; Vovk, 1998) A loss functionL and pre-
diction functionpred are (c, η)-realizable for the constantsc andη if

L(pred(v,x), y) ≤ −c ln
n∑
i=1

vie
−ηL(y,xi), (10)

for all n ∈ Z+, all examples(x, y) ∈ [0, 1]n × [0, 1], and all weight tuplesv ∈ [0, 1]n of
total weight 1.

We consider four loss functions in this paper: the square, the relative entropy, the hellinger,
and the absolute loss (see Section 2). However, the algorithms are not limited to these loss
functions. The techniques in (Vovk, 1998; Haussler et al., 1998; Warmuth, 1997) can
determine the constantsc andη for a wide class of loss functions. The algorithm is also
easy to adapt for classification by using the majority vote (Littlestone & Warmuth, 1994)
for the prediction function, and counting mistakes for the loss. In a practical application,
no worst-case loss bounds may be provable for the given loss function. However, the share
updates may still be useful. For an interesting application to the prediction of disk idle time
see the work of Helmbold et al. (Helmbold, Long & Sherrod, 1996).

The square, relative entropy and hellinger losses are(c, η)-realizable for bothpredwmean
andpredVovk with (η = 1/c). The values ofc (and hence ofη) for the two prediction
functions are summarized in Figure 2. Since the absolute loss has more complex bounds,
we treat it in a section of its own. A smaller value ofc leads to a smaller loss bound (see
Lemma 1). Thec values forpredVovk (cf. column two of Figure 2) are optimal for a large
class of loss functions (Haussler et al., 1998).
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Loss c values: (η = 1/c)
Functions: predwmean(v,x) predVovk(v,x)
Lsq(p, q) 2 1/2
Lent(p, q) 1 1
Lhel(p, q) 1 1/

√
2

Figure 2. (c, 1/c)-realizability: c values for loss and prediction function pairings.

The proof of the loss bounds for each of the algorithms is based on the following lemma.
The lemma embodies a key feature of the algorithms: the prediction is done such that the
loss incurred by the algorithm is tempered by a corresponding change in total weight. This
lemma gives the same inequality as the lemmas used in (Vovk, 1998; Haussler et al., 1998).
The proof here is essentially the same, since the share updates do not change the total weight
Wt =

∑n
i=1 w

s
t,i.

Lemma 1 (Vovk, 1998; Haussler et al., 1998) For any sequence of examplesS
and for any experti, the total loss of the master algorithms in Figure 1 may be bounded by

L(S,A) ≤ −c lnws`+1,i, (11)

when the loss functionL and prediction functionpred is (c, η)-realizable (cf. Definition 1
and Figure 2).

Proof: SinceL andpred are(c, η)-realizable, we have by Definition 1 that

L(yt,pred(vt,xt)) ≤ −c ln
n∑
i=1

vt,ie
−ηL(yt,xt,i) = −c ln

1
Wt

n∑
i=1

wmt,i. (12)

Since the share updates do not change, the total weight
∑n
i=1 w

m
t,i is

∑n
i=1 w

s
t+1,i = Wt+1.

This implies that

L(yt, ŷt) ≤ −c ln
Wt+1

Wt
.

Hence, sinceW1 = 1,

L(S,A) =
∑̀
t=1

L(yt, ŷt) ≤ −c lnW`+1 ≤ −c lnw`+1,i.

So far we have used the same basic technique as in (Littlestone & Warmuth, 1994; Vovk,
1995; Cesa-Bianchi et al., 1997; Haussler et al., 1998), i.e.,c lnWt becomes the potential
function in an amortized analysis. In the static expert case (whenη = 1/c) the final weights
have the formws`+1,i = e−L(S,Ei)/c/n. Thus the above lemma leads to the bound

L(S,A) ≤ L(S, Ei) + c lnn,
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relating the loss of the algorithm to the loss of any static expert.
The share updates make it much more difficult to lower bound the final weights. Intuitively,

there has to be sufficient sharing so that the weights can recover quickly. However, there
should not be too much sharing, so that the final weights are not too low. In the following
sections we bound final weights of individual experts in terms of the loss of a partition. The
loss of any partition(L(P`,n,k,t,e(S))) is just the sum of the sequence of losses defined by
the sequence of experts in the partition. When an expert accumulates loss over a segment,
we bound its weight using Lemma 2 for theFixed-share Algorithm and Lemma 7 for
the Variable-share Algorithm. Since a partition is composed of distinct segments,
we must also quantify how the weight is transferred from the expert associated with a
segment to the expert associated with the following segment; this is done with Lemma 3
for the Fixed-share Algorithm and Lemma 8 for theVariable-share Algorithm.
The lower bounds on the weights are then combined with Lemma 1 to bound the total
loss of theFixed-share Algorithm (Theorem 1) and theVariable-share Algorithm
(Theorem 2).

5. Fixed-share Analysis

This algorithm works for unbounded loss functions, but its total additional loss grows with
the length of the sequence.

Lemma 2 For any sequence of examplesS the intermediate weight of experti on trial t′

is at leaste−ηL([t..t′],i)(1−α)(t′−t) times the weight of experti at the start of trialt, where
t ≤ t′. Formally we have

wmt′,i
wst,i

≥ e−ηL([t..t′],i)(1− α)(t′−t). (13)

Proof: The combined Loss and Fixed-share Update (Equation (6)) can be rewritten as

wst+1,i =
α

n− 1

n∑
j 6=i

wmt,j + (1− α)e−ηL(yt,xt,i)wst,i.

Then if we drop the additive term produced by the Share Update, we have

wst+1,i ≥ (1− α)e−ηL(yt,xt,i)wst,i.

We apply the above iteratively on the trials[t..t′). Since we are boundingwmt′,i (the weights
in trial t′ after the Loss Update), the weight on trialt′ is only reduced by a factor of
e−ηL(yt′ ,xt′,i). Therefore we have

wmt′,i ≥ wst,i
t′−1∏
r=t

[
e−ηL(yr,xr,i)(1− α)

]
e−ηL(yt′ ,xt′,i).

By simple algebra and the definition ofL([a..b], i) the bound of the lemma follows.
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Lemma 3 For any sequence of examplesS, the weight of an experti at the start of trial
t+ 1 is at least α

n−1 times the intermediate weight of any other expertj on trial t.

wst+1,i

wmt,j
≥ α

n− 1
, i 6= j (14)

Proof: Expanding the Fixed-share Update (4) we have

wst+1,i = (1− α)wmt,i +
α

n− 1

n∑
j 6=i

wmt,j .

Thuswst+1,i ≥
(

α
n−1

)
wmt,j , wheni 6= j and we are done.

We can now bound the additional loss.

Theorem 1 LetS be any sequence of examples and letL andpred be(c, η)-realizable.
Then for anyk-shift sequence partitionP`,n,k,t,e(S) the total loss of theFixed-share
Algorithm with parameterα satisfies

L(S,A) ≤ c lnn+ cηL(P`,n,k,t,e(S)) + c(`− k − 1) ln
1

1− α + ck[ln
1
α

+ ln(n− 1)].

(15)

Proof: Recall thatek is the expert of the last segment. By Lemma 1, withi = ek, we have

L(S,A) ≤ −c lnws`+1,ek
. (16)

We boundws`+1,ek
by noting that it “follows” the weight in an arbitrary partition. This is

expressed in the following telescoping product:

ws`+1,ek
= wst0,e0

wmt1−1,e0

wst0,e0

k∏
i=1

(
wsti,ei

wmti−1,ei−1

·
wmti+1−1,ei

wsti,ei

)
ws`+1,ek

wmtk+1−1,ek

.

Thus, applying lemmas 3 and 2, we have

ws`+1,ek
≥ wst0,e0

k∏
i=0

[
e−ηL([ti..ti+1),ei)(1− α)(ti+1−ti)−1

]( α

n− 1

)k ws`+1,ek

wmtk+1−1,ek

.

The final term
ws`+1,ek

wmtk+1−1,ek
equals one, since we do not apply the Share Update on the final

trial; therefore by the definition ofL(P`,n,k,t,e(S)), we have

ws`+1,ek
≥ 1
n
e−ηL(P`,n,k,t,e(S))(1− α)`−k−1

(
α

n− 1

)k
.

We then substitute the above bound onws`+1,ek
into (16) and simplify to obtain (15).
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The bound of Theorem 1 holds for allk, and there is a tradeoff between the terms
ck lnn and cηL(P`,n,k,t,e(S)); i.e., whenk is small theck lnn term is small and the
cηL(P`,n,k,t,e(S)) term is large, and vice-versa. The optimal choice ofα (obtained by
differentiating the bound of Theorem 1) isα∗ = k

`−1 . The following corollary rewrites the
bound of Theorem 1 in terms of the optimal parameter choiceα∗. The corollary gives an
interpretation of the theorem’s bound in terms of code length. We introduce the following
notation. LetH(p) = p ln 1

p + (1− p) ln 1
1−p be the binary entropy measured in nats, and

D(p‖q) = p ln p
q + (1− p) ln 1−p

1−q be the binary relative entropy in nats.2

Corollary 1 LetS be any sequence of examples and letL andpred be(c, η)-realizable.
Then for anyk-shift sequence partitionP`,n,k,t,e(S) the total loss of theFixed-share
Algorithm with parameterα satisfies

L(S,A) ≤ c lnn+ cηL(P`,n,k,t,e(S)) + c(`− 1) [H(α∗) +D(α∗‖α)] + ck ln(n− 1),
(17)

whereα∗ = k
`−1 . Whenα = k

`−1 , then this bound becomes

L(S,A) ≤ c lnn+ cηL(P`,n,k,t,e(S))+ck(ln `−1
k + ln(n− 1))

+c(`− 1− k) ln(1 + k
`−1−k ). (18)

For the interpretation of the bound we ignore the constantsc, η and the difference between
nats and bits. The termslnn andk ln(n − 1) account for encoding thek + 1 experts of
the partition:logn bits for the initial expert andlog(n− 1) bits for each expert thereafter.
Finally, we need to encode where thek shifts occur (the inner boundaries of the partition).
If α∗ is interpreted as the probability that a shift occurs on any of the` − 1 trials, then
the term(`−1) [H(α∗) +D(α∗‖α)] corresponds to the expected optimal code length (see
Chapter 5 of (Cover & Thomas, 1991)) if we code the shifts with the estimateα instead
of the true probabilityα∗. This bound is thus an example of the close similarity between
prediction and coding as brought out by many papers (e.g., (Feder, Merhav & Gutman,
1992)).

Note that theα that minimizes the bound of Theorem 1 depends onk and` which are
unknown to the learner. In practice a good choice ofα may be determined experimentally.
However, if we have an upper bound on` and a lower bound onk we may tuneα in terms
of these bounds.

Corollary 2 LetS be any sequence of examples andˆ̀and k̂ be any positive integers
such that̂k < ˆ̀−1. Then by settingα = k̂/(ˆ̀−1), the loss of theFixed-share Algorithm
can be bounded by

L(S,A) ≤ c lnn+ cηL(P`,n,k,t,e(S)) + ck(ln
ˆ̀− 1

k̂
+ ln(n− 1)) + ck̂, (19)

whereP`,n,k,t,e(S) is any partition ofS such that̀ ≤ ˆ̀andk ≥ k̂.
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Proof: Recall the loss bound given in Theorem 1. By settingα = k̂
ˆ̀−1

, we have

L(S,A) ≤ c lnn+ cηL(P`,n,k,t,e(S))+ck[ln ˆ̀−1
k̂

+ ln(n− 1)]

+c(`− 1− k) ln(1 + k̂
ˆ̀−1−k̂ ).

(20)

We now separate out the term(`−1−k) ln(1+ k̂
ˆ̀−1−k̂ ) and apply the inequalityln(1+x) ≤

x:

(`− 1− k) ln

(
1 +

k̂

ˆ̀− 1− k̂

)
≤ k̂ `− 1− k

ˆ̀− 1− k̂
= k̂

(
1 +

(`− ˆ̀) + (k̂ − k)
ˆ̀− 1− k̂

)
≤ k̂.

The last inequality follows from the condition that` ≤ ˆ̀andk̂ ≤ k. We obtain the bound of
the corollary by replacing(`−1−k) ln(1+ k̂

ˆ̀−1−k̂ ) in Equation (20) by its upper bound̂k. 3

6. Variable-share analysis

TheVariable-share algorithm assumes that the loss of each expert per trial lies in[0, 1].
Hence theVariable-share Algorithm works in combination with the square, hellinger,
or absolute loss functions but not with the relative entropy loss function. TheVariable-
share Algorithm has an upper bound on the additional loss of the algorithm which is
independent of the length of the trial sequence. We will abbreviatewst,i with wt,i, since in
this section we will not need to refer to the weight of an expert in the middle of a trial. We
first give two technical lemmas that follow from convexity inr of βr.

Lemma 4 If β > 0 and r ∈ [0, 1], thenβr ≤ 1− (1− β)r and1− (1− β)r ≥ βr.
Lemma 5 Givenb, c ∈ [0, 1), d ∈ (0, 1] andc+ d ≥ 1, thenbc(c+ dbd) ≥ b.
Proof: Sinced ≥ 1 − c andbd ≥ b, we havedbd ≥ (1 − c)b. Therefore,c + dbd ≥
c+ (1− c)b = 1− (1− b)(1− c). Applying the first inequality of Lemma 4 to the RHS
we havec+ dbd ≥ b1−c, and thus

bc(c+ dbd) ≥ b.

Lemma 6 At the beginning of trialt + 1, we may lower bound the weight of experti by
either Expression(a) or Expression(b), wherej is any expert different fromi:

wt+1,i ≥
{
wt,ie

−ηL(yt,xt,i)(1− α)L(yt,xt,i) (a)
wt,je

−ηL(yt,xt,j) α
n−1L(yt, xt,j) (b).

Proof: Expanding the Loss Update and the Variable-share Update for a trial (cf. (7)) we
have

wt+1,i =wt,ie−ηL(yt,xt,i)(1− α)L(yt,xt,i)

+ 1
n−1

∑n
j 6=i wt,je

−ηL(yt,xt,j)
(

1− (1− α)L(yt,xt,j)
)
.
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Expression(a) is obtained by dropping the summation term. For Expression(b) we drop

all but one summand of the second term:wt+1,i ≥ wt,je−ηL(yt,xt,j) 1−(1−α)L(yt,xt,j)

n−1 . We
then apply Lemma 4 and obtain(b).

Lemma 7 The weight of experti from the start of trialt to the start of trialt′, wheret < t′,

is reduced by no more than a factor of[e−η(1− α)]L([t..t′),i), i.e.

wt′,i
wt,i

≥
[
e−η(1− α)

]L([t..t′),i)
. (21)

Proof: From Lemma 6(a), we have that on trialt the weight of experti is reduced as
follows: wt+1,i

wt,i
≥ e−ηL(yt,xt,i)(1 − α)L(yt,xt,i). If we apply this iteratively on the trials

[t..t′), we have

wt′,i
wt,i

≥
t′−1∏
r=t

[
e−ηL(yr,xr,i)(1− α)L(yr,xr,i)

]
=
[
e−η(1− α)

]L([t..t′),i)
.

In Lemma 6(b) we lower bound the weight transferred from expertp to expertq in a single
trial. In the next lemma we show how weight is transferred over a sequence of trials.

Lemma 8 For any distinct expertsp andq, if L([t..t′), p) < 1 and1 ≤ L([t..t′], p) < 2,
then on trialt′ + 1 we may lower bound the weight of expertq by

wt′+1,q ≥ wt,p
[

α

n− 1
e−η(1− α)

] [
e−η(1− α)

]L([t..t′],q)
. (22)

Proof: As expertp accumulates loss in trialst..t′, it transfers part of its weight to the
othern − 1 experts, specifically to expertq, via the Variable-share Update. Letai, for

t ≤ i ≤ t′, denote the weighttransferredby expertp to expertq in trial i. LetA =
∑t′

i=t ai
denote the total weight transferred from expertp to expertq in trials [t..t′]. The transferred
weight, however, is still reduced as a function of the loss of expertq in successive trials.

By Lemma 7, the weightai added in triali is reduced by a factor of[e−η(1− α)]L((i..t′],q)

during trialsi+ 1 to t′. Thus

wt′+1,q ≥
t′∑
i=t

ai
[
e−η(1− α)

]L((i..t′],q)
.

We lower bound each factor[e−η(1− α)]L((i..t′],q) by [e−η(1− α)]L([t..t′],q), and thus

wt′+1,q ≥ A
[
e−η(1− α)

]L([t..t′],q)
. (23)

To complete the proof of the lemma we still need to lower bound the total transferred
weightAbywt,p α

n−1e
−η(1−α). Letli be the loss of expertpon triali, i.e. li = L(yi, xi,p).

From our assumption, we have1 ≤∑t′

i=t li < 2.



TRACKING THE BEST EXPERT 165

By direct application of Lemma 6(b), the weightat transferred by expertp to expertq in
the first trialt of the segment is at leastwt,p α

n−1 lte
−ηlt . Likewise, we apply Lemma 7 over

trials [t..i) to expertp, and then apply Lemma 6(b) on triali. This gives us a lower bound
for the transferred weightsai and the total transferred weightA:

ai ≥ wt,p
α

n− 1
lie
−ηPi

j=t lj (1− α)
Pi−1
j=t lj ,

A =
t′∑
i=t

ai ≥ wt,p
α

n− 1

t′∑
i=t

lie
−ηPi

j=t lj (1− α)
Pi−1
j=t lj .

We split the last sum into two terms:

A ≥ wt,p
α

n− 1

t′−1∑
i=t

(
lie
−ηPi

j=t lj (1− α)
Pi−1
j=t lj

)
+ wt,p

α

n− 1
lt′e
−ηPt′

j=t lj .

We upper bound all exponents of(1 − α) by one; we also replace the sum in the first

exponent by its upper bound,
∑t′−1
i=t li. The substitutionsb = e−η, c =

∑t′−1
i=t li < 1, and

d = lt′ ≤ 1, then lead to an application of Lemma 5. Thus we rewrite the above inequality
as

A ≥ wt,p
α

n− 1
[
cbc(1− α) + dbc+d(1− α)

]
= wt,p

α

n− 1
(1− α)bc

(
c+ dbd

)
,

and then apply Lemma 5. This gives us

A ≥ wt,p
α

n− 1
e−η(1− α).

The proof of the loss bound for theVariable-share Algorithm proceeds analogously
to the proof of theFixed-share Algorithm’s loss bound. In both cases we “follow” the
weight of a sequence of experts along the sequence of segments. Within a segment we
bound the weight reduction of an expert with Lemma 2 for the Fixed-share analysis and
Lemma 7 for Variable-share analysis.

When we pass from one segment to the next, we bound the weight of the expert cor-
responding to the new segment by the weight of the expert in the former segment with
lemmas 3 and 8, respectively. The former lemma used for theFixed-share Algorithm
is very simple, since in each trial each expert always shared a fixed fraction of its weight.
However, since the weight was shared on every trial, this produced a bound dependent on
sequence length. In theVariable-share Algorithm we produce a bound independent of
the length. This is accomplished by each expert sharing weight in accordance to its loss.
However, if an expert does not accumulate significant loss, then we cannot use Lemma 8 to
bound the weight of the following expert in terms of the previous expert. Nevertheless, if
the former expert does not make significant loss in the current segment, this implies that we
may bound the current segment with the former expert bycollapsingthe segments together.
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In other words, the collapsing of two consecutive segments ([ti−1..ti), [ti..ti+1)), creates
a single segment ([ti−1..ti+1). which is associated with the expert of the first segment of
the original two consecutive segments. We can do this for any segment; thus we determine
our bound in terms of the relatedcollapsedpartition whose loss is not much worse.

Lemma 9 For any partitionP`,n,k,t,e(S) there exists acollapsedpartitionP`,n,k′,t′,e′(S)
such that for each segment (except the initial segment), the expertassociatedwith the prior
segment incurs at least one unit of loss, and the loss on the whole sequence of the collapsed
partition exceeds the loss of the original partition by no more thank−k′, i.e., the following
properties hold:

∀i : 1 ≤ i ≤ k′, L([t′i..t
′
i+1), e′i−1) ≥ 1 and (24)

L(P`,n,k′,t′,e′(S)) ≤ L(P`,n,k,t,e(S)) + k − k′. (25)

Proof: Recall thatei is the expertassociatedwith the ith segment, which is comprised
of the trials[ti..ti+1). If in any segmenti, the loss of the expertei−1 associated with the
prior segment (i− 1) is less than one, then we merge segmenti− 1 with segmenti. This
combined segment in the new partition isassociatedwith expertei−1. Formally in each
iteration, we decrementk by one, and we deleteei and ti from the tuplese andt. We
continue until (24) holds. We bound the loss of the collapsed partitionP`,n,k′,t′,e′(S), by
noting that the loss of the new expert on the subsumed segment is at most one. Thus per
application of the transformation, the loss increases by at most one. Thus since there are
k − k′ applications, we are done.

Theorem 2 4 Let S be any sequence of examples, letL andpred be (c, η)-realizable,
and letL have a [0,1] range. Then for any partitionP`,n,k,t,e(S) the total loss of the
Variable-share algorithm with parameterα satisfies

L(S,A)≤c lnn+ c[η+ln
1

1− α ]L(P`,n,k,t,e(S)) + ck[η+ln
1
α

+ln
1

1− α+ln(n− 1)].

Proof: By Lemma 1 withi = ek we have

L(S,A) ≤ −c lnws`+1,ek
. (26)

Let P`,n,k,t,e(S) be an arbitrary partition. For this proof we need the property that the
loss in each segment (except the initial segment), with regard to the expertassociatedwith
the prior segment, is at least one (cf (24)). If this property does not hold, we use Lemma 9
to replaceP`,n,k,t,e(S) by a collapsed partitionP`,n,k′,t′,e′(S) for which the property does
hold. If the property holds already forP`,n,k,t,e(S), then for notational convenience we
will refer toP`,n,k,t,e(S) byP`,n,k′,t′,e′(S). Recall that the loss ofP`,n,k′,t′,e′(S) exceeds
the loss ofP`,n,k,t,e(S) by no more thank − k′.

Since (24) holds, there exists a trialqi in the ith segment (for1 ≤ i ≤ k′) such that
L([t′i..qi), e

′
i−1) < 1 and 2 > L([t′i..qi], e

′
i−1) ≥ 1. We now expressw`+1,e′

k′
as the

telescoping product

w`+1,e′
k′

= wt′0,e′0
wt′1,e′0
wt′0,e′0

k′∏
i=1

(
wqi,e′i
wt′i,e′i−1

·
wt′i+1,e

′
i

wqi,e′i

)
.
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Applying lemmas 7 and 8 we have

w`+1,e′
k′
≥wt′0,e′0 [e−η(1− α)]L([t′0..t

′
1),e′0)∏k′

i=1

((
α
n−1

)
e−η(1− α)[e−η(1− α)]L([t′i..t

′
i+1),e′i)

)
,

which simplifies to the following bound:

w`+1,e′
k′
≥ [e−η(1− α)]L(P`,n,k′,t′,e′ (S))+k′

(
α
n−1

)k′
≥ [e−η(1− α)]L(P`,n,k,t,e(S))+k

(
α
n−1

)k
.

The last inequality follows from (25). Thus if we substitute the above bound onw`+1,e′
k′

into (26) and simplify, we obtain the bound of the theorem.

Again we cannot optimize the above upper bound as a function ofα, sincek and
L(P`,n,k,t,e(S)) are not known to the learning algorithm. Below we tuneα based on
an upper bound ofL(P`,n,k,t,e(S)). The same approach was used in Corollary 2.5

Corollary 3 Let S be any sequence of examples andL̂ and k̂ be any positive reals.
Then by settingα = k̂

2k̂+L̂
, the loss of theVariable-share Algorithm can be bounded

as follows:

L(S,A) ≤ c lnn+ cηL(P`,n,k,t,e(S)) + ck

(
ln

(
L̂

k̂

)
+ ln(n− 1) + ln

9
2

+ η

)
+ ck̂,

(27)

whereP`,n,k,t,e(S) is any partition such thatL(P`,n,k,t,e(S)) ≤ L̂, and in addition̂k ≤ L̂.

For any partitionP`,n,k,t,e(S) for whichL(P`,n,k,t,e(S)) ≤ L̂ and k̂ ≥ L̂, we obtain
the upper bound

L(S,A) ≤ c lnn+ cηL(P`,n,k,t,e(S)) + ck

(
ln(n− 1) + ln

9
2

+ η

)
+

1
2
ck̂. (28)

Proof: We proceed by upper bounding the three terms containingα from the bound of
Theorem 2 (we useα = k̂

2k̂+L̂
):

L(P`,n,k,t,e(S)) ln

(
2k̂ + L̂

L̂+ k̂

)
+ k

[
ln

(
2k̂ + L̂

L̂+ k̂

)
+ ln

(
2k̂ + L̂

k̂

)]
. (29)

We rewrite the above as:

L(P`,n,k,t,e(S)) ln(1 +
k̂

L̂+ k̂
) + k

[
ln

(2k̂ + L̂)2

(k̂ + L̂)k̂
+ ln

L̂

k̂

]
.
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We apply the identityln(1+x) ≤ x and boundL(P`,n,k,t,e(S)) by L̂, giving the following
upper bound of the previous expression:

L̂k̂

L̂+ k̂
+ k ln

L̂

k̂
+ k ln

(2k̂ + L̂)2

(k̂ + L̂)L̂
.

If k̂ ≤ L̂, then L̂k̂
L̂+k̂

< k̂. By simple calculus,k ln (2k̂+L̂)2

(k̂+L̂)L̂
≤ k ln 9

2 , when0 < k̂ ≤ L̂.

Therefore the above is upper bounded by

k ln
L̂

k̂
+ k ln

9
2

+ k̂.

Using this expression to upper bound Equation (29), we obtain Equation (27).
Whenk̂ ≥ L̂, we upper bound Equation (29) by

L̂k̂

L̂+ k̂
+ k ln

(2k̂ + L̂)2

(k̂ + L̂)k̂
.

The first term is bounded by12 k̂. The second term(2k̂+L̂)2

(k̂+L̂)k̂
is at mostk ln 9

2 in the region

0 < L̂ ≤ k̂, and thus the above is upper bounded by

k ln
9
2

+
1
2
k̂.

We use the above expression to upper bound Equation (29). This gives us Equation (28)
and we are done.

7. Absolute Loss Analysis

The absolute loss functionLabs(p, q) = |p− q| is (c, η)-realizable with both the prediction
functionspredVovk andpredwmean; however,cη > 1. Thus the tuning is more complex,
and for the sake of simplicity we use the weighted mean prediction (Littlestone & Warmuth,
1994) in this section.

Theorem 3 (Littlestone & Warmuth, 1994) For η ∈ [0,∞), the absolute loss
function Labs(p, q) = |p − q| is ( 1

1−e−η , η)-realizable for the prediction function
predwmean(v,x).

To obtain a slightly tighter bound we could also have used the Vee Algorithm for the
absolute loss, which is((2 ln 2

1+e−η )−1, η)-realizable (Haussler et al., 1998). This algo-
rithm takesO(n logn) time to produce its prediction. Both the weighted mean and the
Vee prediction allow the outcomes to lie in[0, 1]. For binary outcomes with the absolute
loss,O(n) time prediction functions exist with the same realizability criterion as the Vee
prediction (Vovk, 1998; Cesa-Bianchi et al., 1997).

Unlike the(c, 1/c)-realizable loss functions discussed earlier (cf. Figure 2), the absolute
value loss does not have constant parameters, and thus it must be tuned. In practice, the
tuning ofη may be produced by numerical minimization of the upper bounds. However,
we use a tuning ofη produced by Freund & Schapire (1997).
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Theorem 4 (Lemma 4 (Freund & Schapire, 1997)) Suppose0 ≤ P ≤ P̂ and
0 < Q ≤ Q̂. Letη = g(P̂ /Q̂), whereg(z) = ln(1 +

√
2/z); then

Pη +Q

1− e−η ≤ P +
√

2P̂ Q̂+Q.

We now use the above tuning in the bound for theVariable-share Algorithm (Theo-
rem 2).

Theorem 5 Let the loss function be the absolute loss. LetS be any sequence of examples,
and L̂ and k̂ be any positive reals such thatk ≤ k̂, L(P`,n,k,t,e(S)) ≤ L̂, and k ≤
L̂. Set the two parameters of theVariable-share algorithm α and η to k̂

2k̂+L̂
and

ln(1 +
√

2(Q̂/P̂ )), respectively, where

P̂ = L̂+ k̂andQ̂ = lnn+ k̂

(
ln(n− 1) + ln(

L̂

k̂
) + ln

9
2

)
+ k̂.

Then the loss of the Algorithm with weighted mean prediction can be bounded as follows:

L(S,A) ≤ L(P`,n,k,t,e(S)) + k

+

√√√√2
(
L̂+ k̂

)(
lnn+ k̂

(
ln(n− 1) + ln(

L̂

k̂
) + ln

9
2

)
+ k̂

)

+ lnn+ k

(
ln(n− 1) + ln(

L̂

k̂
) + ln

9
2

)
+ k̂.

Alternatively, letL̂ andk̂ be any positive reals such thatk ≤ k̂,L(P`,n,k,t,e(S)) ≤ L̂, and

k ≥ L̂. Set the two parameters of theVariable-share algorithmα andη to k̂
2k̂+L̂

and

ln(1 +
√

2(Q̂/P̂ )), respectively, where

P̂ = L̂+ k̂andQ̂ = lnn+ k̂

(
ln(n− 1) + ln

9
2

)
+

1
2
k̂.

Then the loss of the Algorithm with weighted mean prediction can be bounded as follows:

L(S,A) ≤ L(P`,n,k,t,e(S)) + k

+

√
2
(
L̂+ k̂

)(
lnn+ k̂

(
ln(n− 1) + ln

9
2

)
+

1
2
k̂

)
+ lnn+ k

(
ln(n− 1) + ln

9
2

)
+

1
2
k̂.
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Parameters: 0 < η, c and0 ≤ α ≤ 1. ∀i, j, k : 1, . . . , n : 0 < λ0
i , λj,k,∑n

i=1 λ
0
i = 1, and∀j : 1, . . . , n :

∑n
k 6=j λj,k = 1.

Initialization: Initialize the weights tows1,1 = λ0
1, . . . , w

s
1,n = λ0

n.

Prediction: Let vt,i = wst,i/Wt, whereWt =
∑n
i=1 w

s
t,i. Predict with

ŷt = pred(vt,xt)

Loss Update:After receiving thetth outcomeyt,

∀i : 1, . . . , n : wmt,i = wst,ie
−ηL(yt,xt,i).

Proximity-variable-share Update

• ∀i : 1, . . . , n :

wst+1,i = (1− α)L(yt,xt,i)wmt,i +
∑n
j 6=i λj,i

(
1− (1− α)L(yt,xt,j)

)
wmt,j

Figure 3. TheProximity-variable-share algorithm.

8. Proximity-variable-share Analysis

In this section we discuss theProximity-variable-share Algorithm (see Figure 3).
Recall that in theVariable-share Algorithm each expert shared a fraction of weight
dependent on its loss in each trial; that fraction is then shared uniformly among the remaining
n−1 experts. TheProximity-variable-share Algorithm enables each expert to share
non-uniformly to the othern− 1 experts. The Proximity-variable-share Update now costs
O(n) per expert per trial instead ofO(1) (see Figure 3). This algorithm allows us to model
situations where we have some prior knowledge about likely pairs of consecutive experts.

Let us consider the parameters of the algorithm. Then-tupleλ0 ∈ [0, 1]n (
∑n
i=1 λ

0
i = 1)

contains the initial weights of the algorithm, i.e.,ws1,i = λ0
i . The second additional param-

eter besidesη andc is a complete directed graphλ of sizenwithout loops. The edge weight
λj,k is the fraction of the weight shared by expertj to expertk. Naturally, for any vertex,
all outgoing edges must be nonnegative and sum to one. Theλ0 probability distribution is
a prior for the initial expert and theλj,. probability distribution is a prior for which expert
will follow expert j. Below is the upper bound for theProximity-variable-share Al-
gorithm. TheFixed-share Algorithm could be generalized similarly to take proximity
into account.

Theorem 6 Let S be any sequence of examples, letL and pred be (c, η)-realizable,
and letL have a [0,1] range. Then for any partitionP`,n,k,t,e(S), the total loss of the
Proximity-variable-share Algorithm with parameterα satisfies

L(S,A)≤c[η+ln
1

1−α ]L(P`,n,k,t,e(S))+ck[η+ln
1
α

+ln
1

1−α ]+lnλ0
e0 +

k∑
i=1

lnλei−1,ei .

(30)
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Proof: We omit the proof of this bound since it is similar to the corresponding proof of
Theorem 2 for theVariable-share Algorithm: The only change is that the1n and 1

n−1
fractions are replaced by the correspondingλ parameters.

Note that settingλe0 = 1
n and λei−1,ei = 1

n−1 gives the previous bound for the
Variable-share Algorithm (Theorem 2). In that case the last sum isO(k lnn), ac-
counting for the code length of the names of the best experts (except the first one). Using
theProximity-variable-share Algorithm we can get this last sum toO(k) in some
cases.

For a simple example, assume that the processors are on a circular list and that for the two
processors of distanced from processori, λi,i+d mod n = λi,i−d mod n ∝ 1/d2. Now if
the next best expert is always at most a constant away from the previous one, then the last
sum becomesO(k). Of course, other notions of closeness and choices of theλ parameters
might be suitable. Note that there is a price for decreasing the last sum: the update time is
nowO(n2) per trial. However, if for each experti all arrows that end ati are labeled with
the same value, then the Share Update of theProximity-variable-share Algorithm
is still O(n).

9. Lower Bounds

The upper bounds for theFixed-share Algorithm grow with the length of the sequence.
The additional loss of the algorithm over the loss of the bestk-partition is approximately
(k+1) lnn+k ln(`/k). This holds for unbounded loss functions such as the relative entropy
loss. When restricting the loss to lie in[0, 1], theVariable-share Algorithm gives an
additional loss bound of approximately(k+ 1) lnn+ k ln(L/k), whereL is the loss of the
bestk-partition andk < L. One natural question is whether a similar reduction is possible
for unbounded loss functions. In other words, whether for an unbounded loss function a
bound of the same form is possible with` replaced bymin{`, L}. We give evidence to the
contrary. We give an adversary argument that forces any algorithm to makeln 2+ln(`−1)
loss over the best one-partition (for which the adversary setsL = L(P`,2,1,t,e) = 0). In
this section we limit ourselves to giving this construction. It can easily be extended to an
adversary that forcesln(n) + ln(`− log2 n) additional loss over the best one-partition with
n experts. By iterating the adversary, we may force

k [ln(n− 1) + ln(
`

k
− log2(n− 1))]

additional loss over the bestk-partition. (Here we assume thatlog2(n − 1) and `
k are

positive integers, and`k > log2(n− 1).)

Theorem 7 For the relative entropy loss there exists an example sequenceS of length`
with two experts such thatL(P`,2,1,t,e) = 0, i.e., there is a partition with a single shift of
loss0, and furthermore, for any algorithmA,

L(S,A) ≥ ln 2 + ln(`− 1). (31)
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1. ∀t : xt = (0, 1).

2. On trialt = 0, sety0 to 0 if ŷ0 ≥ 1
2 and to 1 otherwise.

(Assume without loss of generality thatŷ0 ≥ 1
2 and thusy0 = 0).

3. New trial: t = t+ 1.

4. If ŷt > 1
`−t then

(A) yt = 0. (Invariant conditions: 4(i)Lt ≥ ln `−t
`−t−1 , 4(ii)

∑t
t′=0 Lt′ ≥ ln 2 +

ln `−1
`−t−1 ).

5. else

(A) yt = 1. (Invariant conditions: 5(i)Lt ≥ ln(`− t), 5(ii)
∑t
t′=0 Lt′ ≥ ln 2+ln(`−

1)).

(B) Go to step 7.

6. If t < `− 2 then go to step 3.

7. Letyt = 1 for the remaining trial(s) and exit.

Figure 4. Adversary’s strategy.

Proof: The adversary’s strategy is described in Figure 4. We useŷt to denote the prediction
of an arbitrary learning algorithm, andLt = Lent(yt, ŷt) to denote the loss at trialt. For
convenience we number the trials fromt = 0 . . . `− 1 instead oft = 1 . . . `.

There are two experts; one always predicts 0 and the other always predicts 1. The
adversary returns a sequence of 0 outcomes followed by a sequence of 1 outcomes such
that neither sequence is empty. Thus, there is a single shift in the best partition, and this
partition has loss 0.

We now prove thatL(S,A) ≥ ln 2+ln(`−1), thus proving the lemma. ClearlyL0 ≥ ln 2
(see Step 2). Without loss of generality assumeŷ0 ≥ 1

2 . Note that the threshold for̂yt
is 1

`−t . Furthermore,Lent(0, 1
`−t ) = ln `−t

`−t−1 andLent(1, 1
`−t ) = ln(` − t). Thus,

the conditions 4(i) and 5(i) follow. Condition 4(ii) holds by simple induction. If a shift
occurs, then Condition 5(ii) holds, since by Condition 4(ii) in trialt − 1 we have that∑t−1
t′=0 Lt′ ≥ ln 2 + ln `−1

`−t . Therefore, when we addLt, which is at leastln(` − t) by
Condition 5(i), we obtain Condition 5(ii) and we are done. If Step 5 is never executed then
the shift toyt = 1 occurs in the last trial̀ − 1 since Step 6 is skipped. Thus, if Step 5 is
never executed then

∑`−2
t′=0 Lt′ ≥ ln 2+ln(`−1) in trial t = `−2 (Condition 4(ii)), which

is again the bound of the lemma.

We first reason that this lower bound is tight by showing that the upper bounds of the
algorithms discussed in this paper are close to the lower bound. The number of partitions
whenn = 2 andk = 1 is 2(`− 1). Thus, we may expand the set ofn experts into2(`− 1)
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Figure 5. Loss of theVariable-share Algorithm vs theStatic-expert Algorithm.

partition-experts as discussed in the introduction. Using theStatic-expert Algorithm
with the weighted mean prediction gives an upper bound ofln 2+ln(`−1) on the total loss
of the algorithm when the loss of the best partition is zero. This matches the above lower
bound. Second, the bound of theFixed-share Algorithm (cf. Corollary 1) is larger than
the lower bound by(`− 2) ln(1 + 1

`−2 ), and this additional term may be upper bounded by
1.

10. Simulation Results

In this section we discuss some simulations on artificial data. These simulations are mainly
meant to provide a visualization of how our algorithms track the predictions of the best
expert and should not be seen as empirical evidence of the practical usefulness of the
algorithms. We believe that the merits of our algorithms are more clearly reflected in the
strong upper bounds we prove in the theorems of the earlier sections. Simulations only
show the loss of an algorithm for a typical sequence of examples. The bounds of this paper
are worst-case bounds that hold even for adversarially-generated sequences of examples.
Surprisingly, the losses of the algorithms in the simulations with random sequences are very
close to the corresponding worst-case bounds which we have proven in this paper. Thus,
our simulations show that our loss bounds are tight for some sequences.

We compared the performance of theStatic-expert Algorithm to the two Share al-
gorithms in the following setting. We chose to use the square loss as our loss function,
because of its widespread use and because the task of tuning the learning rate for this loss
function is simple. We used the Vovk prediction function (cf. Equation 9), and we chose
η = 2 andc = 1/2 in accordance with Figure 2. We considered a sequence of 800 trials
with four distinctsegments, beginning at trials 1, 201, 401, and 601. On each trial the
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Figure 6. Relative Weights of theVariable-share Algorithm.
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Figure 7. Relative Weights of theStatic-expert Algorithm.

outcome(yt) was 0. The prediction tuple (xt) contained the predictions of 64 experts.
When we generated the predictions of the 64 experts, we chose a different expert as the best
one for each segment. The best experts always have an expected loss of1/120 per trial.
The other 63 experts have an expected loss of1/12 per trial. At the end of each segment
a new “best expert” was chosen. Since theoutcomewas always 0, we generated these
expected losses by sampling predictions from a uniform random distribution on(0, 1

2 ) and
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(0, 1
2

√
1
10 ) for the “typical” and “best” experts, respectively. Thus, the expected loss for

the best6 partition, denoted by the segment boundaries above, is800
120 = 62

3 , with a variance
of σ2 ≈ .044. The actual loss of the best partition in the particular simulation used for the
plots was6.47. For theFixed-share Algorithm we tunedαf based on the values ofk = 3
and` = 800 (αf = 3

799 = 0.00375), using theαf tuning suggested in Corollary 1. For
theVariable-share Algorithm we tunedαv based on the values ofk = 3 andL̂ = 6.73
(αv = 3

6+6.73 = 0.24), using theαv tuning suggested in Corollary 3. Using theorems 1
and 2 we calculated a worst case upper bound on the loss of theFixed-share Algorithm
and theVariable-share Algorithm of 24.89 and21.50, respectively (see “×” and “+”
marks in Figure 5). The simulations on artificial data show that our worst-case bounds are
rather tight even on this very simple artificial data.

There are many heuristics for finding a suitable tuning. We used the tunings prescribed
by our theorem, but noticed that for these types of simulations the results are relatively
insensitive to the tuning ofα. For example, in calculatingαv for theVariable-share
Algorithm whenL̂ was overestimated by 10 standard deviations, the loss bound for our
algorithm increased by only0.02, while the actual loss of the algorithm in the simulation
increased by0.17.

In Figure 5, we have plotted the loss of theStatic-expert Algorithm versus the loss
of the two Share algorithms. Examination of the figure shows that on the first segment
theStatic-expert Algorithm performed comparably to the Share algorithms. However,
on the remaining three segments, theStatic-expert Algorithm performed poorly, in
that its loss is essentially as bad as the loss of a “typical” expert (the slope of the total
loss of a typical expert and theStatic-expert Algorithm is essentially the same for
the later segments). The Share algorithms performed poorly at the beginning of a new
segment; however, they quickly “learned” the new “best” expert for the current segment.
The Share algorithms’ loss plateaued to almost the same slope as the slope of the total
loss of the best expert. The two Share algorithms had the same qualitative behavior, even
though theFixed-share Algorithm incurred approximately 10% additional loss over the
Variable-share Algorithm. In our simulations we tried learning ratesη slightly smaller
than two, and verified that even with other choices for the learning rates, the total loss of
theStatic-expert algorithm does not improve significantly.

In Figures 6 and 7, we plotted the weights of the normalized weight vectorwt that
is maintained by theVariable-share Algorithm and theStatic-expert Algorithm
over the trial sequence. In Figure 6, we see that theVariable-share Algorithm shifts
the relative weights rapidly. During the latter part of each segment, the relative weight
of the best expert is almost one (the corresponding plot of theFixed-share Algorithm
is similar). On the other hand, we see in Figure 7 that theStatic-expert Algorithm
also “learned” the best expert for segment 1. However, theStatic-expert Algorithm is
unable to shift the relative weight sufficiently quickly, i.e., it takes the length of the second
segment to partially “unlearn” the best expert of the first segment. The relative weights of
the best experts for segments one and two essentially perform a “random walk” during the
third segment. In the final segment, the relative weight of the best expert for segment three
also performs a “random walk.” In summary, we see these simulations as evidence that the
Fixed-share and Variable-share Updates are necessary to track shifting experts.
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11. Conclusion

In this paper, we essentially gave a reduction for any multiplicative update algorithm that
works well compared to the best expert for arbitrary segments of examples, to an algorithm
that works well compared to the best partition, i.e., a concatenation of segments. Two
types of share updates were analyzed. TheFixed-share Algorithm works well when
the loss function can be unbounded, and theVariable-share Algorithm is suitable for
the case when the range of the loss lies in [0,1]. The first method is essentially the same
as the one used in theWml algorithm of (Littlestone & Warmuth, 1994) and a recent
alternate developed in (Auer & Warmuth, 1998) for learning shifting disjunctions. When
the loss is the discrete loss (as in classification problems), then these methods are simple and
effective if the algorithm only updates after a mistake occurs (i.e., conservative updates).
Our second method, the Variable-share Update, is more sophisticated. In particular, if one
expert predicts perfectly for a while, then it can collect all the weight. However, if this
expert is starting to incur large loss, then it shares weight with the other experts, helping
the next best expert to recover its weight from zero.

The methods presented here and in (Littlestone & Warmuth, 1994) have inspired a number
of recent papers. Auer & Warmuth (1998) adapted the Winnow algorithm to learn shifting
disjunctions. Comparing against the best shifting disjunction is more complicated than
comparing against the best expert. However, since this is a classification problem a simple
Sharing Update similar to the Fixed-share Update is sufficient. Our focus in this paper was
to track the prediction of the best expert for the same class of loss functions for which the
originalStatic-expert Algorithm of Vovk was developed (Vovk, 1998; Haussler et al.,
1998).

Our share updates have been applied experimentally for predicting disk idle times (Helm-
bold et al., 1996) and for the on-line management of investment portfolios (Singer, 1997). In
addition, a reduction has been shown between expert and metrical task systems algorithms
(Blum & Burch, 1997). The Share Update has been used successfully in the new domain
of metrical task systems. A natural probabilistic interpretation of the Share algorithms has
recently been given in (Vovk, 1997).

In any particular application of the Share algorithms, it is necessary to consider how to
choose the parameterα. Theoretical techniques exist for theFixed-share Algorithm
for eliminating the need to choose the value ofα ahead of time. One method for tuning
parameters (among other things) is the “specialist” framework of (Freund, Schapire, Singer
& Warmuth, 1997), even though the bounds produced this way are not always optimal.
Another method incorporates a prior distribution on all possible values ofα. For the sake
of simplicity we have not discussed these methods (Herbster, 1997; Vovk, 1997; Singer,
1997) in this paper.
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Notes

1. The discrete loss is defined to be

Ldis(p, q) =

�
0 p = q
1 p 6= q.

2. Note thatD(p‖q) = Lent(p, q). We use theD(p‖q) notation here as is customary in information theory.

3. If we replace the assumption thatk ≥ k̂ by 2k̂ ≤ ˆ̀, we obtain a bound where the final termck̂ is replaced by
2ck̂.

4. Vovk has recently proved a sharper bound for this algorithm (Vovk, 1997):

L(S,A) ≤ c lnn+ c[η + ln
1

1− α ]L(P`,n,k,t,e(S)) + ck[η + ln
1− e−η + αe−η

α
+ ln(n− 1)].

5. Unlike Corollary 2 we do not need a lower bound onk.

6. We call the partition described by the segment boundaries 1, 201, 401, and 601, the best partition with respect
to the tradeoff betweenk andL(P`,n,k,t,e(S)), as expressed implicitly in Theorem 2.
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