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Abstract. We review the application of statistical mechanics methods to the study of online learning of a drifting
concept in the limit of large systems. The model where a feed-forward network learns from examples generated
by a time dependent teacher of the same architecture is analyzed. The best possible generalization ability is
determined exactly, through the use of a variational method. The constructive variational method also suggests
a learning algorithm. It depends, however, on some unavailable quantities, such as the present performance of
the student. The construction of estimators for these quantities permits the implementation of a very effective,
highly adaptive algorithm. Several other algorithms are also studied for comparison with the optimal bound and
the adaptive algorithm, for different types of time evolution of the rule.
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1. Introduction

The importance of universal bounds to generalization errors, in the spirit of the Vapnik-
Chervonenkis (VC) theory, cannot be overstated, since these results are independent of target
function and input distribution. These bounds are tight in the sense that for a particular target
an input distribution can be found where generalization is as difficult as the VC bound states.
However, for several learning problems, by making specific assumptions, it is possible to
go further. Haussler et al. (1996) have found tighter bounds that even capture functional
properties of learning curves, such as for example the occurrence of discontinuous jumps
in learning curves, which cannot be predicted from VC theory alone.

These results were derived by adapting to the problem of learning ideas that arise in the
context of statistical mechanics. In recent years many other results (Seung et al., 1992;
Watkin et al., 1993; Opper & Kinzel, 1996), bounds or approximations, rigorous or not,
have been obtained in the learning theory of neural networks by applying a host of methods
originated in the study of disordered materials. These methods permit looking at the
properties of large networks, where great analytical simplifications can occur; and also,
they afford the possibility of performing averages over the randomness introduced by the
training data. They are useful in that they give information about typical rather than, e.g.,
worst case behavior and should be regarded as complementary to those of computational
learning theory.
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The statistical mechanics of learning has been formulated either as a problem at thermo-
dynamical equilibrium or as a dynamical process off-equilibrium, depending on the type
of learning strategy. Although many intermediate regimes can be identified, we briefly
discuss the two dynamical extremes. Batch or offline methods essentially give rise to the
equilibrium formulation, while online learning can be better described as an off-equilibrium
process.

The offline method begins by constructing a cost or energy function on the param-
eter space, which depends onall the training datasimultaneously (Seung et al., 1992;
Watkin et al., 1993). Learning occurs by defining a gradient descent process on the param-
eter space, subject to some (thermal) noise process, which permits to some extent escaping
from local traps. In a very simplified way it may be said that, after some time, this process
leads to “thermal equilibrium”, when essentially all possible information has been extracted
by the algorithm from the learning set. The system is now described by a stationary (Gibbs)
probability distribution on parameter space.

On the other extreme lies online or incremental learning. Instead of training with a cost
function defined over all the available examples, the online cost function depends directly on
only one single example, independently chosen at each time step of the learning dynamics
(Amari, 1967), (for a review, see (Mace & Coolen, 1998)). Online learning occurs also by
gradient descent, but now the random nature of the presentation of the examples implies
that at each learning step an effectively different cost function is being used. This can
lead to good performance even without the costly memory resources needed to keep the
information about the whole learning set, as is the case in the offline case.

Although most of the work has concentrated on learning in stationary environments with
either online or offline strategies, the learning of drifting concepts has also been modeled
using ideas of statistical mechanics (Biehl & Schwarze, 1992; Biehl & Schwarze, 1993;
Kinouchi & Caticha, 1993). The natural approach to this type of problem is to consider
online learning, since old examples may not be representative of the present state of the
concept. It makes little sense, if any, to come to thermal equilibrium with possibly already
irrelevant old data, as would be the case with an offline strategy. The possibility of forgetting
old information and of preventing the system from reusing it, which are essential features
to obtain good performance, are inherent to the online processes, as will be seen below.

We will model the problem of supervised learning, in the sense of Valiant (1984), of a
drifting concept by defining a “teacher” neural network. Drift is modeled by allowing the
teacher network parameters to undergo a drift that can be either random or deterministic.
The dynamics of learning occurs in discrete time. At each time step, a random input vector
is chosen independently from a distributionPD, giving rise to a temporal stream of input-
output pairs, where the output is determined by the teacher. From this set of data the student
parameters will be built.

The question addressed in this paper concerns thebestpossible way in which the in-
formation can be used by the student in order to obtain maximum typical generalization
ability. This is certainly too much to ask for and we will have to make some restrictions
to the problem. This question will be answered by means of avariational methodfor the
following class of exactly soluble models: a feed-forward boolean network learning from
a teacher which is itself a neural network of similar architecture and learns by a Hebbian
modulated mechanism.
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This is still hard and further restrictions will be made. The thermodynamic limit (TL)
will always be assumed. This means that the dimensionN of parameter space is taken to
infinity. This increase brings about great analytical simplifications. The TL is the natural
regime to study in condensed matter physics. There the number of interacting units is of
the order ofN ≈ 1023 and fluctuations of macroscopic variables of order

√
N. In studying

neural networks, results obtained in the TL ought to be considered as the first term in a
systematic expansion in powers of1/N.

Once this question has been answered in a restricted setting, what does it imply for more
general and realistic problems? The variational method has been applied to several models,
including boolean and soft transfer functions, single layer perceptrons and networks with
hidden units, networks with or without overlapping receptive fields and also for the case
of non-monotonic transfer functions (Kinouchi & Caticha, 1992b; Kinouchi & Caticha,
1995; Copelli & Caticha, 1995; Simonetti & Caticha, 1996; Vicente & Caticha, 1997; Van
den Broeck & Reimann, 1996). In solving the problem in different cases, different optimal
algorithms have been found. But rather than delving in the differences, it is important to
stress that a set of features is common to all optimal algorithms. Some of these common
features are obvious or at least expected and have been incorporated into algorithms built
in anad hocmanner. Nevertheless, it is quite interesting to see them arise from theoretical
arguments rather than heuristically. Moreover, the exact functional dependence is also
obtained, and this can never be obtained just from heuristics. See (Opper, 1996) for an
explicitly Bayesian formulation of online learning which in the TL seems to be similar to
the variational method.

The first important result of the variational program is to give lower bounds on the
generalization errors. But it gives more; the constructive nature of the method furnishes
also an ‘optimal algorithm’. However, the direct implementation of the optimal algorithm
is not possible, as it relies on information that is not readily accessible. This reliance is
not to be thought of as a drawback but rather as indicating what kind of information is
needed in order to approximate, if not saturate, the optimal bounds. It indicates directions
for further research where the aim should be on developing efficient estimation schemes
for those variables.

The procedure to answer what is the best possible algorithm in the sense of generalization
is as follows. The generalization error, in the TL, can be written as a function of a set of
macroscopic parameters, sometimes referred to as ‘order parameters’, by borrowing the
nomenclature from physics. The online dynamics of the weights (microscopic variables)
induces a dynamics of the order parameters, which in the TL is described by aclosed
set of coupled differential equations. The evolution of the generalization error is thus a
functional of the cost function gradient which defines the learning algorithm. The gradient
of the cost function is usually called the modulation function. The local optimization (see
(Rattray & Saad, 1997) for global) is done in the following way. Taking the functional
derivative of the rate of decay of the generalization error, with respect to the modulation
function, equal to zero, permits determining the modulation function that extremizes the
mean decay at each time step. This extremum represents, in many of the interesting cases,
a maximum (see (Vicente & Caticha, 1997) for exceptions). We can thus determine the
modulation function, i.e., the algorithm, that leads to the fastest local decrease of the
generalization error under several restrictions, to be discussed below.
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In this paper several online algorithms are analyzed for the boolean single layer perceptron.
Other architectures, with e.g., internal layers of hidden units, can be analyzed, although
there is a need for laborious modifications of the methods. Examples of random drift,
deterministic evolution, changing drift levels and piecewise constant concepts are presented.
The paper is organized as follows. In Section 2, the variational approach is briefly reviewed.
In Section 3, analytical results and simulations are presented for several algorithms in the
cases of random drift and deterministic ‘worst-case’ drift, where the teacher “flees” from
the student in weight space. The asymptotics of the different algorithms are characterized
by a couple of exponents,β, the learning exponent andδ, the drift or residual exponent. A
relation between these exponents is obtained. A practical adaptive algorithm is discussed
in Section 4, where it is applied to a problem with changing drift level. In Section 5, the
Wisconsin test for perceptrons is studied. Numerical results for the piecewise constant rule
are presented. Concluding remarks are presented in Section 6.

2. The Variational Approach

The mathematical framework employed in the statistical mechanics of online learning and
in the variational optimization are quickly reviewed in this section. We consider only the
simple perceptron with no hidden layer. For extensions to other architectures see (Kinouchi
& Caticha, 1995; Copelli & Caticha, 1995; Simonetti & Caticha, 1996; Vicente & Caticha,
1997; Van den Broeck & Reimann, 1996).

2.1. Preliminary Definitions

The boolean single layer perceptron is defined by the functionσB = sign(B · S), with
S ∈ RN , parametrized by theconceptweight vectorB ∈ RN , also calledsynaptic vector.

In the student-teacher scenario that we are considering, a perceptron (teacher) generates
a sequence of statistically independent training pairsL = {(Sµ, σµB) : µ = 1, ..., p}, and
another perceptron (student) is constructed, using only the examples inL, in order to infer
the concept represented by the teacher’s vector. The teacher and student are respectively
defined by weight vectorsB andJ with norms denoted byB andJ .

In the presence of noise, instead ofσB , the student has access only to a corrupted version
σ̃B . For example, formultiplicativenoise, each teacher output is flipped independently
with probabilityχ (Biehl et al., 1995; Copelli et al., 1996b; Copelli, 1997; Heskes, 1994):

P (σ̃B |σB) = (1− χ)δ(σB , σ̃B) + χδ(σB ,−σ̃B) , (1)

whereσB = sign(y), andy = B · S/B is thenormalized field. The Kroneckerδ is 1 (0)
only if the arguments are equal (different). In the same way, for the student, the field
x = J · S/J and the outputσJ = sign(x) are defined.

The definition of a global cost functionEL(J) =
∑
µE

µ(J), over the entire data setL,
is required for batch or offline learning. The interaction among the partial potentialsEµ(J)
may generate spurious local minima, leading to metastable states and possibly very long
thermalization times. This can be avoided to a great extent by learning online.

We define a discrete dynamics where at each time step a weight update is performed
along the gradient of a partial potentialEµ(J), which depends on the randomly chosen
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µth example. This random sampling of partial potentials introduces fluctuations which
tend to decrease as the system approaches a (hopefully) global minimum. That process has
been recently calledself-annealing(Hondou, 1996) in contrast to the external parameter
dependent simulated annealing. The general conditions for convergence of online learning
to a global minimum, even in stationary environments, is an open problem of major current
interest.

The online dynamics can be represented by a finite difference equation for the update
of weight vectors. For each new random example, make a small correction of the current
student, in the direction opposite to the gradient of the partial potential and also allow for
a restriction of the overall length of the weight vector to prevent runaway behavior:

Jµ+1 = Jµ −∆tΩµJµ −∆t∇JE
µ . (2)

Here the partial potentialEµ is a function of the scalars that are accessible to the student
(field x, normJ and output̃σB) and corresponds to the randomly sampled example pair
(Sµ, σ̃µB). The time scale∆t must be∆t ∼ O(1/N) so that in the TL we can derive
well-behaved differential equations; in general we will choose∆t = 1/N . The second
term allows to control the norm of the weight vectorJ.

It is easy to see that∇JE
µ = (∂Eµ/∂x)∇Jx. The calculation of the gradient and the

definition∂Eµ/∂x = −JµWµ(V)σ̃µB finally lead to the online dynamics in the form:

Jµ+1 =
(

1− Ωµ

N

)
Jµ +

1
N
JµWµ(V)σ̃µBSµ . (3)

Note that each example pair(Sµ, σ̃µB) is used only once to update the student’s synapses,
σ̃µBSµ is called theHebbian termand the intensity of each modification is given by the
modulation functionW . The factorJσ̃µB can be absorbed into the modulation function,
but has been explicitly written for convenience. The single most important fact is that
the relevant change is made along the direction of the input vectorSµ. This is not the
most general update rule since non parallel changes could be considered. However we will
concern ourselves with the TL, since it is only there that bounds can be derived. In the TL
and in the absence of correlations between different inputs, i.e.,〈SiSj〉 = 0, the prefactor
of Sµ is a diagonal matrix (Opper, 1996). Furthermore the class of modulated Hebbian
algorithms is interesting, from a biological perspective, even for finiteN . The symbolV
denotes thelearning situationdefined by the set of quantities that we are allowed to use
in the modulation function, that is, the available information. For boolean perceptrons,V
may contain the corrupted teacher’s outputσ̃B , the fieldx, and as discussed below, some
information about the generalization error. We can still study the restrictionsV = {σ̃B},
V = {σ̃B , σJ} andV = {σ̃B , | x |}. Evidently, the more information the student has, the
better we expect it to learn.

We consider a specific model of concept drift introduced by Biehl and Schwarze (1992).
The drift that can be followed by an online learning system can not be too large for it
would be impossible to track, but if too slow it trivially reduces to an effectively stationary
problem. Their choice, which makes the problem interesting, is as follows. At each time
step the concept vectorB suffers the influence of the changing environment and evolves as

Bµ+1 =
(

1− Λµ

N

)
Bµ +

1
N
~ηµ , (4)
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Figure 1. Simple representation of weight vectors in the hyper-sphere. The teacher and the student disagree when
the input vectorS is inside the shaded region.

whereΛ controls the normB and~η ∈ RN is thedrift vector. Random and deterministic
versions of~η will be considered in Section 4.

The performance of a specific studentJ on a given conceptB can be measured by the
generalization erroreG that is defined as the instantaneous average errorε = 1

2 (1−σJσB) =
1
2Θ(−xy) (σB is the non-corrupted output andΘ(x) is the step function ) over inputs
extracted from the uniform distributionPU (S) with support over the hyper-sphere of radius√
N :

eG(J,B) =
∫
dSPU (S) ε (σJ(S), σB(S)) . (5)

We make explicit the difference betweeneG and the prediction erroreP , which mea-
sures the averageεP = 〈 12 (1 − σJ σ̃B)〉, over thetrue distribution of examplesPD. It is
not difficult to see that the expression foreG is invariant under rotations of axes inRN ,
therefore the integral (5) depends only on the scalarsρ = B · J/BJ , x, y, B andJ . As
x andy are sums of independent random variables (SiJi/J andSiBi/B, respectively),
in the TL a straightforward application of the central limit theorem leads to (see e.g.,
(Opper et al., 1990; Seung et al., 1992; Watkin et al., 1993)):

eG(ρ) =
∫
dxdyPC(x, y)

Θ(−xy)
2

=
1
π

arccos ρ . (6)

PC(x, y) is a Gaussian distribution inR2 with correlation matrix

C =
(

1 ρ
ρ 1

)
.

Note thatρ is a parameter in the probability distribution describing the fields, andJ andB
define the scale of the fields. In statistical physics, these parameters are calledmacroscopic
variables. It is interesting to note that the number of macroscopic variables depends on the
symmetry of the input distributionPU (S).
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The intuitive meanings ofρ and of the Eq. 6 can be verified with the help of Figure 1.
Observing thatρ = cos θ and that for the boolean perceptron the weight vectors are normal
to a hyper-plane that divides the hyper-sphere in two differently labeled hemispheres, it is
easy to see that the student and the professor disagree on the labeling of input vectorsS
inside the shaded region, thus triviallyeG = θ/π = 1

π arccos ρ .

2.2. Emergence of the Macroscopic Dynamics

The dimensionality of the dynamical system involved can be reduced by using (4) and (3)
to write a system of coupled difference equations to the macroscopic variables:

ρµ+1 = ρµ +
ρµ

N

[
Wµ(V)

(
yµσ̃µB
ρµ

−∆µ

)
− 1

2
(Wµ(V))2

]
+

1
N

[
Jµ · ~ηµ
Jµ

− ρµΛµ +
Sµ · ~ηµ
N

σ̃µBW
µ(V)

]
+O

(
1
N2

)
, (7)

Jµ+1 = Jµ +
Jµ

N

(
Wµ(V)∆µ +

1
2

(Wµ(V))2 − Ωµ
)

+O
(

1
N2

)
, (8)

Bµ+1 = Bµ +
1
N

(
~ηµ ·Bµ

B
− ΛµBµ

)
+
~ηµ · ~ηµ
2BN2

+O
(

1
N2

)
. (9)

In the above equations thelocal stability ∆ = xσ̃B was introduced. Positive stability
means that the student classificationσJ = sign(x) agrees with the (noisy) learning data
σ̃B .

The usefulness of the TL lies in the possibility of transforming the stochastic difference
equations into a closed set of deterministic differential equations (Kinzel & Ruj´an, 1990;
Kinouchi & Caticha, 1992a). The idea is to choose a continuous time scaleα such that
for the TL regimep/N → α, wherep is the number of examples already presented. The
equations are then averaged over the input vectorsS and drift vector~η distributions, leading
to:

dρ

dα
= ρ

〈
W

(
yσ̃B
ρ
−∆

)
− 1

2
W 2

〉
+
〈

J · ~η
J
− ρΛ + CSησ̃BW

〉
, (10)

dJ

dα
= J

〈
W∆ +

1
2
W 2 − Ω

〉
, (11)

dB

dα
=
〈
~η ·B
B
− ΛB + Cηη

〉
, (12)

where〈...〉 =
∫
d~η dS (. . .)P (~η,S) and the definitionsCSη = limN→∞(S · ~η)/(NB) and

Cηη = limN→∞(~η · ~η)/(2BN) have been used.
The fluctuations in the stochastic equations vanish in the TL and the above equations

become exact (self-averaging property). This can be proved by writing the Fokker-Planck
equations for the finiteN stochastic process defined in (7), (8) and (9), and showing that
the diffusive term vanishes in the TL (Mace & Coolen, 1998).
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2.3. Variational Optimization of Algorithms

The variational approach was proposed in (Kinouchi & Caticha, 1992b) as an analytical
method to find learning algorithms with optimal mean decay (per example) of the general-
ization error. The same method was applied in several architectures and learning situations.

The idea is to write:

deG

dα
=
∂eG

∂ρ

dρ

dα
, (13)

and use the macroscopic dynamics equation (10) to build:

deG
dα

[W ] =
∂eG
∂ρ

[
ρ

〈
W

(
yσ̃B
ρ
−∆

)
− 1

2
W 2

〉
+
〈

J · ~η
J
− ρΛ + CSησ̃BW

〉]
.

(14)

Each modulation function leads to a specific macroscopic dynamics and, correspondingly,
to a mean decay error. The above equation captures explicitly the dependence of the decay
on the modulation function. To emphasize thatdeG/dα is a function of a functionW we
enclose the argument in square brackets and refer todeG/dα[W ] as afunctional. Thus, the
optimization is attained by imposing the extremum condition:

δ

δW (V)

(
deG
dα

[W (V)]
)
W=W∗

= 0 , (15)

whereδ/δW (V) stands for thefunctional derivativein the subspace of modulation functions
W with dependence in the setV. The above equation is analogous to those involving usual
derivatives and can be solved observing that∂eG/∂ρ 6= 0 and

δ

δW (V)
〈f(H,V)Wn(V)〉 = n〈f(H,V)〉H|V Wn−1(V) , (16)

f is an arbitrary function,H is the set ofhiddenvariables, that is, in contrast to the set
V, the variables not accessible to the student (e.g., fieldsy, drift vector ~η, etc ...) and
〈...〉H|V =

∫
dHP (H|V)..., where for a given setH = {a1, a2, ..}, dH = da1da2.... The

solution is given by:

W ∗(V) =
〈

(y + CSη)σ̃B
ρ

−∆
〉
H|V

. (17)

By writing y + CSη = (B + ~η) · S/
√
B it can be seen that the optimal algorithm “tries”

to pull the example stability∆, not to an estimative of the present teacher stability, but to
one already corrected by the effect of the drift~η. It seems natural to concentrate on cases
where the drift and the input vectors are uncorrelated (CSη = 0).

The optimization under different conditions of information availability, i.e., different
specifications of the setsV andH, leads to different learning algorithms. This can be seen
by performing the appropriate averages in (17), as we proceed to show:
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Figure 2. Modulation functions exemplified forρ = 0.9 with noise levelsχ = 0 (top) andχ = 0.1 (bottom):
Annealed Hebb (dots), Step (dashes), Symmetric (dashes-dots) and Optimal (solid).

Annealed Hebb Algorithm: Suppose that the available information is limited to the cor-
rupted teacher output. This corresponds to the learning situation such thatH =
{y, ~η, |x|, σJ} andV = {σ̃B}. The optimal algorithm for this situation is given by
the following modulation function (see appendix A for a detailed derivation):

WAH(σ̃B ; ρ, χ) =

√
2
π
λ2ρ(1− χ) . (18)

The weight changes are proportional to the Hebb factor, but the modulation function does
not depend on the example stability∆ (see Figure 2). Hence the name Hebb. However
this function is not constant in time, the temporal evolution (annealing) is automatically
incorporated into the modulation function. Optimal annealing is achieved by having
the modulation function depend on the parameterρ, the normalized overlap between
the studentJ and the conceptB. Since this quantity is certainly not available to the
student, there will be a need to complement the learning algorithm with an efficient
estimator of the present level of performance by the student (see Section 4).

Step Algorithm (Copelli, 1997): This algorithm, obtained under the restriction
H = {y, ~η, |x|} andV = {σ̃B , σJ}, is a close relative to Rosenblatt’s original per-
ceptron algorithm, which works by error correcting and treats all the errors in the same
manner. There are two important differences, however, since correct answers also cause
(smaller) corrections and furthermore, the size of the corrections evolves in time in a
similar manner to the annealed Hebb algorithm.
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The modulation function is

WStep(σ̃B , σJ ; ρ, χ) =
1√
2π
λ2ρ(1− χ)

1[
χ
2 + (1−χ)

π arccos(−ρσ̃BσJ)
] . (19)

Note that the step algorithm has access to the student’s output and can differentiate
between right (∆ > 0) and wrong (∆ < 0) classifications. The name arises from the
form of its modulation function (Figure 2). The annealing increases the height of the
step, i.e., the difference between right and wrong, as the overlapρ goes to one.

Symmetric Weight Algorithm (see (Kinouchi & Caticha, 1992a)): This is the optimal
algorithm for the learning situation described byH = {y, ~η, σJ} andV = {σ̃B , |x|}.
The resulting modulation function is given by:

WSW (σ̃B , |x|; ρ, χ) =

√
2
π
λ(1− χ)e−x

2/2λ2
. (20)

That algorithm cannot discern between wrong and right classifications, but only differ-
entiates between “easy” (large| ∆ |) and “hard” (small| ∆ |) classifications, concen-
trating the learning in “hard” examples (Figure 2).

Optimal Algorithm (see Kinouchi & Caticha, 1992b; Biehl et al., 1995;
Copelli et al., 1996b)):When all the available information is used we have the learning
situation described byH = {y, ~η} andV = {σ̃B , |x|, σJ}. The optimal algorithm is
then given by:

WOPT (∆ = σ̃Bx; ρ, χ) =
1√
2π
λ(1− χ)

e−∆2/2λ2

χ/2 + (1− χ)H(−∆/λ)
. (21)

In the presence of noise, a crossover is built into the optimal modulation function.
This crossover is from a regime where the student classification is not strongly defined
(∆ negative but small)—and the information from the teacher is taken seriously—to a
regime where the student is confident on its own answer and any strong disagreement
(very negative∆) with the teacher will be attributed to noise, and thus effectively
disregarded. The scale of the stabilities where the crossover occurs depends on the
level of performanceρ and therefore is also annealed.

The learning mechanisms are highly adaptive and remain the same in the case of drifting
rules, where the common features described above, mainly theρ dependent annealing, lead
automatically to a forgetting mechanism without the need to impose it, based on heuristic
expectations, in anad hocmanner.

It is interesting to note that the heuristically proposed algorithms are approximations
of these optimized modulation functions. For instance, the simple Hebb rule is the an-
nealed Hebb when~η = 0, since it can be shown in this case thatWJ = 1, and cor-
responds to theρ → 0 regime of all the optimized algorithms; Rosenblatt’s perceptron
algorithm is qualitatively similar to the step algorithm; Adatron (Anlauf & Biehl, 1989;
Watkin et al., 1993) approximates the optimal algorithm forχ = 0 andρ → 1; OLGA
(Kim & Sompolinsky, 1996) and thermal perceptron (Frean, 1992) algorithms resemble
the optimal modulation withχ > 0.
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3. Learning Drifting Concepts

The important result from last section is that, under the assumption of uncorrelated drift and
input vectors, the modulation functions do not depend on the drift parameters (in contrast to
the explicit dependence on the examples’ noise levelχ). So, they are expected to be robust
to continuous or abrupt, random or deterministic, concept changes. In this section simple
instances of drifting concepts are examined; abrupt changes are studied in Section 5.

3.1. Random Drift

In this scenario, the concept weight vectorB performs a random walk on the surface of a
N -dimensional unit sphere. The drift vector has random components with zero mean and
variance2D,

〈ηµi ηνj 〉 = 2Dδijδµν , (22)

The conditionBµ+1 ·Bµ+1 = 1 is imposed in (12) by considering thatB0 ·B0 = 1 and
with the choiceΛ = ~η ·B +D.

The order of magnitude of the scaling of the drift vector withN is important since it gives
the correct time scale for non-trivial behavior: if smaller, the drift would be irrelevant in
the time scale of learning, while if larger it would not allow any tracking. In the relevant
regime, the task is nontrivial also in another sense: the autocorrelation of the concept vector
decays exponentially in theα-scale,〈B(α)B(α′)〉 ∝ e−D(α−α′).

For the optimized algorithms, the equation forρ decouples from the equation forJ . After
the proper averages, the learning equation for this type of drift reduces to

dρ

dα
= ρ

〈
W

(
yσ̃B
ρ
−∆

)
− 1

2
W 2

〉
− ρD , (23)

This equation can be solved for each particular modulation functionW . The general-
ization errorseG = 1

π arccos(ρ) for the several algorithms described in the last section
are compared in Figure 3 for the noiseless case. Solid curves refer to integrations of the
above learning equation and symbols correspond to simulation results. Although the rule
is continuously changing, it can be tracked within a stationary errore∞G which depends on
the drift amplitudeD. The functionse∞G (D) for the various algorithms can be found from
the conditiondρ/dα = 0 and are shown in Figure 4.

The behavior for small drift is shown in Table 1. Note the abrupt change in the exponents
due to the inclusion of more information than the outputσ̃B .

Table 1.Small drift exponents: Random case.

e∞G (D) eG(D = 0, χ = 0)

Annealed Hebb
(
D
π3

)1/4 ≈ 0.42D1/4 0.40 α−1/2

Symmetric
(√

2
π2

)1/3

D1/3 ≈ 0.52D1/3 1.41 α−1

Step (4)1/3

π
D1/3 ≈ 0.51D1/3 1.27 α−1

Optimal
(

2
π2A2

)1/3
D1/3 ≈ 0.45D1/3 0.88 α−1
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Figure 3. Integration of learning equations and simulation results (N = 5000) for random driftD = 0.1:
Annealed Hebb (triangles), Symmetric (white circles), Step (black circles) and Optimal (white squares). The
self-averaging property is clear since the simulation results refer to only one run.
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Figure 4. Asymptotic errore∞G (D) for random drift: Annealed Hebb (triangles), Symmetric (white circles), Step
(black circles) and Optimal (white squares).
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3.2. Deterministic Drift

In the learning scenario considered so far, the worst case drift will occur when at each time
step the concept is changed deterministically so that the overlap with the current student
vector is minimized. In this situation, previously examined by Biehl & Schwarze (1993),
the new concept is chosen by minimizingBµ+1 · Jµ subject to the conditions

Bµ+1 ·Bµ = 1− D

N2
, (24)

Bµ+1 ·Bµ+1 = 1 ,

where nowD is the drift amplitude for the deterministic case. Note the different scaling
with N for non trivial behavior.

Clearly Bµ+1 lies in the same plane which containsBµ andJµ. The solution of this
constrained minimization problem is

Bµ+1 = aBµ − bJµ , (25)

a = 1− D

N2
+ bJρ,

b =
1
JN

[
2D − (D/N)2

1− ρ2

]1/2

.

In terms ofΛ and~η of eq. 4 is

Λ = (1− a)N , ~η = −bJN . (26)

The learning equation reduces to

dρ

dα
= ρ

〈
W

(
yσ̃B
ρ
−∆

)
− 1

2
W 2

〉
−
√

2D(1− ρ2) , (27)

and the analysis is similar to the previous subsection. Theoretical error curves confirmed
by simulations are shown in Figure 5 for the different algorithms with fixed drift amplitude.
The stationary tracking errore∞G (D) is shown in Figure 6.

Table 2.Small drift exponents: Deterministic case.

e∞G (D) eG(D = 0, χ = 0)

Annealed Hebb
(√

2D
π2

)1/3

≈ 0.52D1/6 0.40 α−1/2

Symmetric
(

4D
π2

)1/4 ≈ 0.80D1/4 1.41 α−1

Step 25/4

π
D1/4 ≈ 0.76D1/4 1.27 α−1

Optimal
(

8D
A2

)1/4 ≈ 0.63D1/4 0.88 α−1

The behavior for small driftD is shown in Table 2. Again we can note the occurrence of
an abrupt change in the exponents after the inclusion of information on the student’s fields.
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Figure 5. Integration of learning equations and simulation results (N = 5000) for deterministic driftD = 0.01:
Annealed Hebb (triangles), Symmetric (white circles), Step (black circles) and Optimal (white squares).
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Figure 6. Asymptotic errore∞G (D) for deterministic drift: Annealed Hebb (triangles), Symmetric (white circles),
Step (black circles) and Optimal (white squares).
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3.3. Asymptotic Behavior: Critical Exponents and Universality Classes for Unlearnable
Problems

A simple, although partial, measure of the performance of a learning algorithm can be given
by the asymptotic decay of the generalization error in the driftless case and alternatively
by the residual error dependence onD in the presence of drift. These are not independent
aspects, but rather linked in a manner reminiscent of the relations between the different
exponents that describe power law behavior in critical phenomena.

In the absence of concept drift, the generalization error decays to zero whenα ap-
proachesαc (which here happens to be infinity but may have a finite value in other situations
(Watkin et al., 1993)) as a power law of the number of examples with the so calledlearning
or static exponentβ,

eG ∝ τβ , (28)

whereτ ≡ 1
α − 1

αc
. Thus, we may think ofeG as a kind oforder parameterin the sense

that it is a quantity which changes from zero to a finite value atτ = 0. We may think of
1/α as the analog of thecontrol parameterT (temperature) in critical phenomena.

Any amount of drift in the concept changes the problem from a learnable to an unlearnable
one, with a residual errore∞G ≡ eG(τ = 0). We have seen that this behavior at the critical
point τ = 0 also obeys a power law

e∞G ∝ D1/δ , (29)

whereδ has been called thedrift exponent.
In principle, we can classify different unlearnable situations (due to say, various kinds of

concept drift), by the two exponentsβ andδ. Different algorithms and learning situations
may have the same exponents. We can thus define, in a spirit similar to that in the study
of critical phenomena, the so-calleduniversality classesof behavior. In this paper we have
seen four classes of behavior summarized in Table 3. In the absence of drift,β = 1/2
for the Hebb algorithm andβ = 1 for the symmetric, step and optimal algorithms we
have introduced above. There exist, however, other classes. For example, for the standard
Rosenblatt perceptron algorithm with fixed learning rate,β = 1/3.

Table 3.Universality classes.

algorithm β randomδ deterministicδ
Rosenblatt 1/3 5 8

AH 1/2 4 6
SW, Step, OPT 1 3 4

We have observed that, in general, the two exponents are independent. However, if a
simple condition holds, then there exists a relation connectingβ andδ for each kind of drift.
It can be shown that for the scenarios we have presented:

δ =
1
β

+ 2 , (random drift) (30)

δ =
2
β

+ 2 , (deterministic drift).
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The reader interested in the details of how to derive the above relations is referred to
(Kinouchi & Caticha, 1993) and appendix B.

4. Practical Considerations

The most important question that arises in the implementation of the variational ideas as
a guide to construct algorithms is how to measure the several unavailable quantities that
go into the construction of the modulation function. The problem of inferring the example
distribution will not be considered and only a simple method to measure the student-
teacher overlapρ will be presented. This is done by adding a ‘module’ to the perceptron in
order to estimate online the generalization error, as studied in (Kinouchi & Caticha, 1993).
Algorithms that rely on this kind of module are quite robust with respect to changes in the
distribution of examples and even to lack of statistical independence (Kuva et al., in press).
Consider an online estimator (a ‘running average’) which uses the instantaneous error
εµ = (1− σµBσ

µ
J )/2 to update the current estimate of the generalization error:

ê
(µ+1)
G = (1− ω

N
)ê(µ)
G +

ω

N
εµ . (31)

This estimator incorporates exponential memory loss through theω parameter. In the
perceptron, due to the factorλ = tan(πeG) that appears in the modulation function,
fluctuations aroundeG ≈ 1

2 may lead to spurious divergences. Therefore it is natural to
consider the truncated Taylor expansion

λ̂k = tan(k)(πêG) = πêG +
1
3

(πêG)3 +
2
15

(πêG)5 + · · ·+ ck(πêG)k . (32)

Then, the modulation function for an adaptive algorithm inspired by the noiseless optimal
algorithm is

W (λ̂k,∆µ) =
1√
2π

λ̂k

H(−∆µ

λ̂k
)

exp(−
∆2
µ

2λ̂2
k

) . (33)

In Figure 7 we present the results of applying this algorithm to a problem where the
drift itself is non-stationary. We have dubbed this non-stationaritydrift acceleration. The
algorithm is quite uninterested in the particular type of drift acceleration, and as an illus-
tration we chose a drift given byD = D0 sin2(2πνt). The adaptive algorithm makesno
use of this knowledge. There has been no attempt at optimizing the estimator itself, but a
reasonable and robust choice isω = 2 andk = 3. Simulations were done forN = 1000,
a size regime where, for all practical purposes, the central limit theorem holds. Note that
the Hebb algorithm is not able to keep track of the rule since it has no internal forgetting
mechanism.

We have not studied the mixed case of drift in the presence of noise. The nature of the noise
process corrupting the data is essential in determining the asymptotic learning exponent
(β). While multiplicative (flip) noise does not alterβ for the optimized algorithms, additive
(weight) noise does. This extension deserves a separate study. See (Biehl et al., 1995) for
the behavior of the optimized algorithm and noise level estimation in the presence ofnoise
accelerationin the absence of drift; see also (Heskes, 1994) where it is shown that learning
is possible even in the mixed drift-noise case.
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Figure 7. a) Oscillating drift levelD = D0 sin2(2πνt) forD0 = 0.5, ν = 0.1. b) Integration of the differential
equation for the oscillating caseD0 = 0.5, ν = 0.1 (thick solid). Adaptive optimal algorithm withω = 2 and
k = 3 (black circles) and simple Hebb algorithm (white circles).

5. The Wisconsin Test for Perceptrons: Piecewise Constant Rules

How do the algorithms studied in the previous sections perform in the case of abrupt changes
(piecewise constant rules)? The interest is in determining how the optimal algorithms fare
in a task for which they were not optimized. The Wisconsin test (WT) for perceptrons
(WTP) to be studied here is used in the diagnostics of pre-frontal lobe (PFL) syndrome in
human patients and will now be described very briefly (for details see e.g., (Shallice, 1988;
Levine et al., 1992)).

Consider a deck of cards, each one having a set of pictures. The cards can be arranged into
two categories in several different ways. The different possible classifications can be done
according to, e.g., color (black or red pictures), parity (even or odd number of figures in the
picture), sharpness (figures can be round or pointed) etc. The examiner chooses a rule and
a patient is shown a sequence of cards and asked to classify them. The information whether
the patient’s classification is correct or not is made available before the next presentation.
After a few trials (5-10) normal subjects are able to infer the desired rule. PFL patients are
reported to infer correctly the rule after as little as 15 trials. Now a new rule is chosen at
random by the examiner but the patient is not informed about the change. Normal patients
are quick to pick up the change and after a small number of trials (5-10) are again able to
correctly classify the cards. PFL patients are reported to persevere in the old rule and after
as much as 60 trials still insist in the old classification rule.

Our WTP is designed as a direct implementation of these ideas, by considering learning
from a piecewise constant teacher, without resetting the couplings totabula rasa, i.e.,
without letting the patient know that the rule has changed.
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Figure 8. Simulations forN = 500 in single runs. Bottom line: lower bound given by the optimal algorithm
with the true values ofλ. Symbols: optimal algorithm (white squares), step algorithm (black circles), symmetric
weight algorithm (white circles), annealed Hebb (white triangles), all withω = 2 andk = 3 estimator, and Hebb
(black triangles). The rule is piecewise constant, it changes abruptly atα = 10 andα = 20.

Figure 8 shows the results of simulations with the adaptive algorithm of (33). The rule
is constant up toα = 10, it then suddenly jumps to another, uncorrelated vector and stays
again unchanged untilα = 20 and so on. The most striking feature is that the perceptron
with pure Hebbian algorithm works quite efficiently for the first rule but perseveres in that
state and adapts poorly to a change. It can not detect performance degradation and is not
surprised by the errors. The reason for that is that the scale of the weight changes is the
same independently of the length of theJ vector. The other algorithms are able to adapt to
the new conditions as they incorporate the estimate of the performance of the student.

6. Conclusions

The necessary ingredients for the online tracking of drifting concepts, adaptation to non-
stationary noise etc., emerge naturally and in an integrated way in the optimized algo-
rithms. These ingredients have beentheoretically derivedrather than heuristically intro-
duced. Many of the current ideas in machine learning of changing concepts can be viewed
as playing a role similar to the ideal features discussed here for the perceptron. Among the
important ideas arising from the variational approach are:

• Learning algorithms from first principles: For each one of these simple learning sce-
narios an ideal and optimal learning algorithm can be found from first principles. These
optimized algorithms do not have arbitrary parameters like learning rates, acceptance
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thresholds, parameters of learning schedules, forgetting factors, etc. Instead, they have
a set of features which play similar roles to those heuristic procedures. The exact form
of these features may suggest new mechanisms for better learning.

• Learn to learn in changing environments: The optimal modulation functionW
indeed represents a parametric family of functions, the (non-free) parameters being the
same as those present in the probability distribution of the learning problem:J , ρ, χ,
etc. The modulation function changes during learning, that is, the algorithm moves
in this parametric space during the learning process. The student “learns to learn” by
online estimation of the necessary parameters of its modulation function.

• Robustness of optimized algorithms:Historically, a multitude of learning algorithms
has been suggested for the perceptron: Rosenblatt’s perceptron, Adaline, Hebb, Ada-
tron, thermal perceptron, OLGA, etc. From the variational perspective, these practical
algorithms can be viewed as more or less reliable approximations of the ideal ones in
the TL. For example, simple Hebb corresponds to the optimal algorithm in the limit
ρ → 0; the Adatron (relaxation) algorithm is related to the limitρ → 1; OLGA
(Kim & Sompolinsky, 1996) and Thermal Perceptron (Frean, 1992) include an accep-
tance threshold which mimics the optimal algorithm in the presence of multiplicative
noiseχ. Thus, although the optimal algorithms are derived for very specific distribu-
tions of examples, it does not mean that they are fragile, non-robust when applied in
other environments. They are indeed very robust (Kuva et al., in press), at least for the
environments in which the standard algorithms work, since these practical algorithms
are ‘particular cases’ of a more general modulation function. But since new learning
situations (new types of noise, drifting processes, general non-stationarity, etc.) can be
theoretically examined from the variational viewpoint, it is possible that new features
emerge, and that these suggest new practical ideas for more robust and efficient learning.

• Emergence of ‘cognitive’ modules:Do the variational ideas have any relevance to
‘biological machine learning’? Probably not for the biologicalstructures, which are
produced by opportunistic ‘evolution bricolage’, but perhaps they might apply in un-
derstanding biological cognitivefunctions. The variational approach brings forth a
suggestion that, even if not new, acquires a more concrete form due to the transpar-
ent nature of the simple models studied:optimization of the learning ability leads to
the emergence of ‘cognitive functional modules’, here defined as components of the
modulation function and accessory estimators of relevant quantities of the probabil-
ity distribution related to the learning situation. A tentative list of such estimators
suggested by the variational approach may be: a) amismatch(surprise) module for
detection of discrepant examples; b) an emotional/attentional module for providing
differential memory weight for these discrepant examples; c) ‘constructivist’ filters
which accommodate or downplay the highly discrepant data; d) noise level estimators
for tuning these filters; e) a working memory system for online estimation of current
performance which enables detection of environmental changes. In conclusion, the
variational approach suggests that thenecessityof certaincognitive functionsmay be
related to statistical inference principles already present in simple learning machines.
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• Extensions:All the results presented here have been obtained under a rather severe set
of restrictions from a practical point of view. The main points concern the TL; noise,
order parameter and example distribution estimation; larger architecture complexity.
At present we don’t know how to handle finite size effects. That the parameter esti-
mation problem is probably easier than the others is suggested by the robustness found
in (Copelli et al., 1996a). The extension of the variatonal program to experimentally
more relevant architectures, such as those that include hidden units and/or soft transfer
functions is possible (Vicente & Caticha, 1997; Rattray & Saad, 1997). This extension
is however a difficult task, since the evaluation of the appropriate modulation functions
requires a rapidly increasing amount of work when the number of hidden units grows.
The effects that drift may have are not known, but it could even induce faster breaking of
the permutation symmetry among the hidden nodes, thus affecting the plateau structure.

Important remaining questions concern whether the variational approach can be success-
fully applied to other learning models (radial basis functions, mixture models, etc.). The
answers will help in determining the difference between universal and particular features
of the learning systems.
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Appendix A

In this appendix we exemplify the derivation of the annealed Hebb algorithm. This algorithm
is optimal when the learning situation is given byH = {y, ~η, |x|, σJ} andV = {σ̃B}.
Considering thatCSη = 0, we need to perform the average:

W ∗(σ̃B) =
σ̃B
ρ
〈y − ρx〉{x,y}|σ̃B , (A.1)

which involves
∫
dy y P (y | σ̃B) ;

∫
dx x P (x | σ̃B) . The probability distributions are

easily obtained using Bayes theorem:

P (y | σ̃B) =
P (σ̃B | y)P (y)∫
dy P (σ̃B | y)

. (A.2)

By the central limit theorem we know that, in the TL,P (y) andP (x) are Gaussians with
unit variance and it is not difficult to verify, using (1), that :

P (σ̃B | y) =
χ

2
+ (1− χ)Θ(σ̃By); P (σ̃B | x) =

χ

2
+ (1− χ)H(− σ̃Bx

λ
), (A.3)

whereλ =
√

1− ρ2/ρ andH(x) =
∫∞
x

dt√
2π
e−t

2/2.
It follows that
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〈y〉{x,y}|σ̃B =

√
2
π
σ̃B(1− χ); 〈ρx〉{x,y}|σ̃B =

√
2
π
σ̃B(1− χ)ρ2. (A.4)

Combining the above results in (A.1) finally gives:

WAH(σ̃B ; ρ, χ) =

√
2
π
λ2ρ(1− χ) . (A.5)

Appendix B

To derive the relations between the exponents we remember thateG ∝
√

1− ρ2 when
ρ→ 1, so that we may write in this limit the learning equation as

deG
dα
≈ CDme−nG − C1(D)en1

G − C2(D)en2
G − . . . , (B.1)

whereC is a constant,Ck(D) are functions ofD andn andnk are positive numbers. Now,
denote byC∗(D) the first function which survives in the limitD → 0, C∗(D → 0) = C∗.
Then, the learning equation is

deg
dα

≈ −C∗en∗G , (B.2)

eG(α) ≈ (C∗(n∗ − 1)α)−1/(n∗−1) (n∗ > 1) ,
eG(α) ∝ e−C∗α (n∗ = 1) . (B.3)

Thus,

β = 1/(n∗ − 1) , (B.4)

with β →∞ denoting exponential decay.
In the presence of small drift, we may writeC1(D) ∝ Dm1 . The stationary condition

deG/dα = 0 leads to

e∞G (D) ≈ D
m−m1
n1+n , (B.5)

δ =
n1 + n

m−m1
. (B.6)

This shows that, in principle, the two exponents are independent. However, if it happens
that the first surviving function isC∗(D) = C1(D) (which seems to be a very common
situation), thenn∗ = n1 andm1 = 0, so that

δ =
1
m

(
1
β

+ (1 + n)
)
. (B.7)

The relations given by Eq. (30) follow from the fact thatn = 1,m = 1 for random drift
andn = 0 andm = 1/2 for deterministic drift. Other drift scenarios may define other
universality classes.
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In the case whereC∗ 6= C1, we only can conclude that

δ >
1
m

(
1
β

+ (1 + n)
)
. (B.8)

It is important to note that an exponential decay of the error(β =∞) leads to the limiting
valueδ = 2 both for deterministic and random drift. It is known that the error cannot decay
faster than exponential in these learning problems.
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