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Abstract. Concept learning in robotics is an extremely challenging problem: sensory data is often high-
dimensional, and noisy due to specularities and other irregularities. In this paper, we investigate two general
strategies to speed up learning, based on spatial decomposition of the sensory representation, and simultaneous
learning of multiple classes using a shared structure. We study two concept learning scenarios: a hallway naviga-
tion problem, where the robot has to induce features such as “opening” or “wall”. The second task is recycling,
where the robot has to learn to recognize objects, such as a “trash can”. We use a common underlying function
approximator in both studies in the form of a feedforward neural network, with several hundred input units and
multiple output units. Despite the high degree of freedom afforded by such an approximator, we show the two
strategies provide sufficient bias to achieve rapid learning. We provide detailed experimental studies on an actual
mobile robot called PAVLOV to illustrate the effectiveness of this approach.

Keywords: robot learning, concept learning, neural networks

1. Introduction

Programming mobile robots to successfully operate in unstructured environments, including
offices and homes, is tedious and difficult. Easing this programming burden seems necessary
to realize many of the possible applications of mobile robot technology (Engleberger, 1989).
One promising avenue towards smarter and easier-to-program robots is to equip them with
the ability tolearnnew concepts and behaviors. In particular, robots that have the capability
of learning concepts could be programmed or instructed more readily than their non-learning
counterparts. For example, a robot that could be trained to recognize landmarks, such as
“doors” and “intersections”, would enable a more flexible navigation system. Similarly, a
recycling robot, which could be trained to find objects such as “trash cans” or “soda cans”,
could be adapted to new circumstances much more easily than non-learning robots (for
example, new objects or containers could be easily accommodated by additional training).

Robot learningis currently an active area of research (e.g., see (Connell & Mahadevan,
1993, Dorigo, 1996, Franklin, Mitchell & Thrun, 1996, Mahadevan, 1994)). Many different
approaches to this problem are being investigated, ranging from supervised learning of
concepts and behaviors (Pomerleau, 1990), to learning behaviors from scalar feedback
(Mahadevan & Connell, 1992). While a detailed comparison of the different approaches
to robot learning is beyond the scope of this paper (see (Mahadevan, 1996)), it is arguable
that in the short term, robots are going to be dependent on human trainers for much of their
learning. Specifically, a pragmatic approach to robot learning is one where a human designer
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provides the basic ingredients of the solution (e.g., the overall control architecture), with
the missing components being filled in by additional training. Also, approaches involving
considerable trial-and-error, such as reinforcement learning (Sutton & Barto, 1998), are
difficult to use in many circumstances, because they require long training times, or because
they expose the robot to dangerous situations. For these reasons, we adopt the framework
of supervised learning, where a human trainer provides the robot with labeled examples of
the desired concept.

Supervised concept learning from labeled examples is probably the most well-studied
form of learning (Mitchell, 1997). Among the most successful approaches are decision trees
(Quinlan, 1986) and neural networks (McClelland & Rumelhart, 1986). Concept learning
in robotics is an extremely challenging problem, for several reasons. Sensory data is often
very high-dimensional (e.g., even a coarsely subsampled image can contain millions of
pixels), noisy due to specularities and other irregularities, and typically data collection
requires the robot to move to different parts of its environment. Under these conditions, it
seems clear that some form of a priori knowledge orbias is necessary for robots to be able
to successfully learn interesting concepts.

In this paper, we investigate two general approaches to bias sensory concept learning for
mobile robots. The first is based onspatial decompositionof the sensor representation.
The idea here is to partition a high-dimensional sensor representation, such as a local
occupancy grid or a visual image, into multiple quadrants, and learn independently from
each quadrant. The second form of bias investigated here is to learn multiple concepts using
a shared representation. We investigate the effectiveness of these two approaches on two
realistic tasks, navigation and recycling. Both these tasks are studied on a real robot called
PAVLOV (see Figure 1). In both problems, we use a standardized function approximator,
in the form of a feedforward neural net, to represent concepts, although we believe the bias
strategies studied here would be applicable to other approximators (e.g., decision trees or
instance-based methods).

In the navigation task, PAVLOV is required to traverse across an entire floor of the engi-
neering building (see Figure 10). The navigational system uses a hybrid two-layered archi-
tecture, combining a probabilistic planning and execution layer with a reactive behavior-
based layer. The planning layer requires the robot to map sensory values into high-level
features, such as “doors” and “openings”. These observations are used in state estimation to
localize the robot, and are critical to successful navigation despite noisy sensing and actions.
We study how PAVLOV can be trained to recognize these features from local occupancy
grid data. We also show that spatial decomposition and multiple category learning provide
a relatively rapid training phase.

In the recycling task, PAVLOV is required to find items of trash (e.g., soda cans and
other litter) and deposit them in a specified trash receptacle. The trash receptacles are color
coded, to make recognition easier. Here, we study how PAVLOV can be trained to recognize
and find trash receptacles from color images. The data is very high dimensional, but once
again, spatial decomposition and multi-category learning are able to sufficiently constrain
the hypothesis space to yield fast learning.

The rest of the paper is organized as follows. We begin in Section 2 by describing the
two robotics tasks where we investigated sensory concept learning. Section 3 describes the
two general forms of bias, decomposition and sharing, used to make the concept learning
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problem tractable. Section 4 describes the experimental results obtained on a real robot
platform. Section 5 discusses the limitations of our approach and proposes some directions
for further work. Section 6 discusses some related work. Finally, Section 7 summarizes
the paper.

2. Two Example Tasks

We begin by describing the real robot testbed, followed by a discussion of two tasks involving
learning sensory concepts from high-dimensional sensor data. The philosophy adopted in
this work is that the human designer specifies most of the control architecture for solving the
task, and the purpose of sensory concept learning is to fill in some details of the controller.

2.1. PAVLOV: A Real Robot

Figure 1 shows our robot PAVLOV1, a Nomad 200 mobile robot base, which was used in the
experiments described below. The sensors used on PAVLOV include 16 ultrasound sonar
and infra-red (IR) sensors, arranged radially in a ring. Two sets of bumper switches are also
provided. In addition, PAVLOV has a color camera and frame-grabber. Communication is
provided using a wireless Ethernet system, although most of the experiments reported in
this paper were run onboard the robot’s Pentium processor.

Figure 1. The experiments were carried out on PAVLOV, a Nomad 200 platform.

2.2. Navigation

Robot navigation is a very well-studied topic (Borenstein, 1996). However, it continues to
be an active topic for research since there is much room for improvement in current systems.
Navigation is challenging because it requires dealing with significant sensor and actuator
errors (e.g., sonar is prone to numerous specular errors, and odometry is also unreliable due
to wheel slippage, uneven floors, etc.).
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We will be using a navigation system based on a probabilistic framework, formally
called partially-observable Markov decision processes (POMDPs) (Cassandra, Kaelbling
& Kurien, 1996, Koenig & Simmons, 1997, Nourbakhsh, 1995). This framework uses
an explicit probabilistic model of actuator and sensor uncertainty, which allows a robot to
maintain belief estimates of its location in its environment. The POMDP approach uses a
state estimation procedure that takes into account both sensor and actuator uncertainty to
determine the approximate location of the robot. This state estimation procedure is more
powerful than traditional state estimators, such as Kalman filters (Kosaka & Kak, 1992),
because it can represent discontinuous distributions, such as when the robot believes it could
be in either a north-south corridor or an adjacent east-west corridor.

For state estimation using POMDPs, the robot must map the current sensor values into
a few high level observations. In particular, in our system, the robot generates four obser-
vations (one for each direction). Each observation can be one of four possibilities:door,
wall, opening, or undefined. These observations are generated from a local occupancy grid
representation computed by integrating over multiple sonar readings.

Figure 2 illustrates the navigation system onboard PAVLOV, which combines a high level
planner with a reactive layer. The route planner and execution system used is novel in that it
uses a discrete-event probabilistic model, unlike previous approaches which use a discrete-
time model. However, as the focus of this paper is on learning the feature detectors, we
restrict the presentation here to explaining the use of feature detectors in state estimation,
and refer the reader to other sources for details of the navigation system (Khaleeli, 1997).

Figure 2. A hybrid declarative-reactive architecture for robot navigation. The neural net feature detectors (shaded
box) are trained using spatial decomposition and multi-task learning.

The robot maintains at every step abelief state, which is a discrete probability distribution
on the underlying state space (e.g., in our environment, the belief state is a 1200-dimensional
vector). If the current belief state distribution isαprior, the belief state distributionαpost,
after the execution of an abstract actiona, is given by2

αpost(s) =
1

scale

∑

s′∈S|a∈A(s′)

P (s|s′, a)αprior(s′), ∀s ∈ S (1)
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This updated state distribution now serves asαprior when the state distribution is updated
to αpost, after an abstract observationo

αpost(s) =
1

scale
O(o|s)αprior(s), ∀s ∈ S (2)

Here,O(o | s) is the probability that observationo will be made in states (see Section 2.3
for details of how this probability is estimated). In both updates,scale is a normalization
constant that ensures that

∑

s∈S

αpost(s) = 1

This is necessary since not every action is defined in every state (for example, the action
go-forwardis not defined in states where the robot is facing a wall).

2.3. Abstract Observations

In each state, the robot is able to make an abstract observation. This is facilitated through the
modeling of four virtual sensors that can perceive features in the nominal directions front,
left, back and right. Each sensor is capable of determining if a percept is awall, anopening,
adooror if it is undefined. An abstract observation is a combination of the percepts in each
direction, and thus there are 256 possible abstract observations. The observation model
specifies, for each state in the environment, the probability that a particular observation will
be made. Table 1 shows the conditional probabilities for the abstract features, obtained
empirically. The columns indicate groups of states where the robot should perceive a
particular feature (e.g., a wall). The rows specify the probability that this feature might be
confused with another feature (e.g., door).

Table 1.Conditional Observational Probabilities

Feature
Percept wall opening door undefined

wall 0.75 0.20 0.15 0.00
opening 0.20 0.70 0.15 0.00

door 0.00 0.00 0.69 0.00
undefined 0.05 0.10 0.01 1.00

Denote the set of virtual sensors byI and the set of features that sensori ∈ I can report on
byQ(i). The sensor model is specified by the probabilitiesvi(f |s) for all i ∈ I, f ∈ Q(i),
ands ∈ S, encoding the sensor uncertainty.vi(f | s) is the probability with which sensor
i reports featuref in states. An observationo is the aggregate of the reports from each
sensor (i.e., each observationo is a vector of four features, each reported by one of the
astract (front, left, right, back) sensors). This is not explicitly represented. We calculate
only the observation probability. Thus, if sensori reports featuref , then

O(o|s) =
∏

i∈I

vi(f |s) (3)
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Given the state, this assumes sensor reports from different sensors are independent. Assume
that the robot somewhere in a north-south corridor, oriented north. In the ideal case, the
sensor report should be:

(front opening) (left wall) (back opening) (right wall)

However, the actual sensor report might read:

(front wall) (left undefined) (back opening) (right wall)

The individual sensor probabilities are then:

vfront(wall|opening) = 0.20
vleft(undefined|wall) = 0.05

vright(opening|opening) = 0.70
vback(wall|wall) = 0.75

The product of these probabilities produces the observation probability.

2.4. Recycling

The second task we study is one where the robot has to find and pick up litter lying on
the floor (e.g., soda cans and other junk) and deposit it in a colored trash receptacle (see
Figure 3). This task involves several component abilities, such as locating and picking up
the trash, and also subservient behaviors (such as avoiding obstacles etc.). However, for
the purposes of this paper, we will mainly focus on the task of detecting a trash can from
the current camera image, and moving the robot till it is located adjacent to the trash can.

Figure 3. Image of a trash can, which is color coded to facilitate recognition (this can is colored yellow).

The recycling task is accomplished using a behavior-based architecture (Brooks, 1986),
as illustrated in Figure 4. Only one of the behaviors, “camera turn” is improved by the
sensory concept learning methods described here, in particular, by learning how to detect
and move towards the trash can. The other behaviors implement a collection of obstacle
avoidance algorithms, which are not learned.
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Figure 4. Behavior-based architecture for recycling task. The focus of sensory concept learning here is to improve
“camera turn” behavior by learning how to detect and move towards trash cans.

3. Accelerating sensory concept learning

Learning sensory concepts is difficult because the data is often very high-dimensional and
noisy. The number of instances is often also limited, since data collection requires running
the robot around. In order to learn useful concepts, under these conditions, requires using
some appropriatebias (Mitchell, 1997) to constrain the set of possible hypotheses.3 The
study of bias is of paramount importance to machine learning, and some researchers have
attempted a taxonomy of different type of bias (e.g., see (Shavlik & Dietterich, 1990)).
Among the main categories of bias studied in machine learning arehypothesis space bias
(which rules out certain hypotheses), andpreference biaswhich ranks one hypotheses over
another (e.g., prefer shallower decision trees over deeper ones).

In the context of robotics, the ALVINN system (Pomerleau, 1990) for autonomous driving
is a good example of the judicious use ofhypotheses biasto speed convergence. Here, for
every human provided example, a dozen or so synthetic examples are constructed by scaling
and rotating the image input to the net, for which the desired output is computed using a
knownpursuitsteering model. We present below two ways of accelerating sensory concept
learning, which can also be viewed as a type of hypotheses space bias.

3.1. Spatial Decomposition

The sensory state space in both tasks described above is huge (of the order of several hundred
real-valued inputs). The number of training examples available is quite limited, e.g., on the
order of a few hundred at most. How is it possible to learn a complex function from such
a large state space, with so little data? We use two general approaches to decompose the
overall function learning problem.

The first idea is simple: partition the state into several distinct regions, and learn subfunc-
tions for each region. The idea is illustrated in Figure 5. This idea is used in the navigation
domain to train four separate feature detectors, one each for the front and back quadrants
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of the local occupancy grid, and one each for the left and right quadrants. There are two
advantages of such a decomposition: each image generates four distinct training examples,
and the input size is halved from the original input (e.g., in the navigation domain, the
number of inputs is 512 rather than 1024).

3.2. Multi-class Learning

The second strategy used in our work to speed sensory concept learning is to learn multiple
categories using a shared structure. This idea is fairly well-known in neural nets, where
the tradeoff between using multiple single output neural nets vs. one multi-output neural
net has been well studied. Work by Caruana (Caruana, 1993) shows that even when the
goal is to learn a single concept, it helps to use a multi-output net to learn related concepts.
Figure 6 illustrates the basic idea. In the recycling domain, for example, the robot learns
not just the concept of “trash can”, but also whether the object is “near” or “far”, on the
“left” or on the “right”. Simultaneously learning these related concepts results in better
performance, as we will show below.

4. Experimental Results

The experiments described below were conducted over a period of several months on our
real robot PAVLOV, either inside the laboratory (for recycling) or in the corridors (for
navigation). We first present the results for the navigation task, and subsequently describe
the results for the recycling task.

4.1. Learning Feature Detectors for Navigation

Given that the walls in our environment were fairly smooth, we found that sonars were
prone to specular reflections in a majority of the environment. This made it difficult to
create hard-coded feature detectors for recognizing sonar signatures. We show below that
using an artificial neural network produced more accurate and consistent results. Not only
was it easy to implement and train, but it is also possible to port it to other environments
and add new features. Figure 7 shows the neural net used in feature detection. The
net was trained using the quickprop method (Fahlman, 1988), an optimized variant of the
backpropagation algorithm.

Sample local occupancy grids were collected by running the robot through the hallways.
Each local occupancy grid was then used to produce 4 training patterns. The neural net was
trained on 872 hand labeled examples. Since all sensors predict the same set of features, it
was only necessary to learn one set of weights. Figure 8 shows the learning curve for the
neural net, using batch update. Starting off with a set of random weights, the total error
over all training examples converged to an acceptable range(< 1) within about 60 training
epochs.

A separate set of data, with 380 labeled patterns, was used to test the net. This would be
approximately the number of examples encountered by the robot, as it navigated the loop in
the Electrical Engineering department (nodes 3-4-5-6 in Figure 10). Feature prediction is
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Figure 5. Spatial decomposition of the original sensory state helps speed learning sensory concepts. Here, the
original sensory space is decomposed into a pair of two disjoint quadrants.

Figure 6. Learning multiple concepts simultaneously using a shared representation can speed sensory learning.
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Figure 7. A local occupancy grid map, which is decomposed into four equal-sized overlapping quadrants (left,
right, top, bottom), each of which is input to a neural net feature detector. The output of the net is a multi-class
label estimating the likelihood of each possible observation (door, opening, wall, or undefined). The net is trained
on manually labeled real data.

Figure 8. Learning curve for training neural net to recognize features. The net is trained on 872 hand labeled
examples using quickprop.

accomplished by using the output with the maximum value. Out of the 380 test examples,
the neural net correctly predicts features for 322, leading to an accuracy of 85%.
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Figure 9. Sample local occupancy grids generated over an actual run, with observations output by the trained
neural net. Despite significant sensor noise, the net is able to produce fairly reliable observations.

Figure 9 illustrates the variation in observation data, generated during an actual run. In
these occupancy grids, free space is represented by white, while black represents occupied
space. Gray areas indicate that occupancy information is unknown. The figures are labeled
with the virtual sensors and corresponding features, as predicted by the neural net.

Specular reflections occur when a sonar pulse hits a smooth, flat surface angled obliquely
to the transducer. The possibility exists that the sonar pulse will reflect away from the
sensor, and undergo multiple reflections before it is received by the sensor. As a result, the
sensor registers a range that is substantially larger than the actual range. In the occupancy
grids, this results in a physically occupied region having a low occupancy probability. In
Figure 9(a) where the specularities are relatively insignificant, the neural net does an accurate
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job of predicting the features. Effects of the specularities are noticeable in Figure 9(b) and
Figure 9(c). In Figure 9(b) the neural net is able to predict a wall on the left, although it
has been almost totally obscured by specular reflections. The occupancy grid in Figure 9(c)
shows some bleed-through of the sonars. In both examples, the neural net correctly predicts
the high level features. Figure 9(e) and Figure 9(f) are examples of occupancy grids where
the effects of the specularities become very noticeable. In these examples specularities
dominate, almost totally wiping out any useful information, yet the neural net is still able
to correctly predict features.

From the presented examples, it is apparent that the neural net can robustly predict features
in a highly specular environment. Testing the neural net on an unseen set of labeled data
reveals that it is able to correctly predict 85% of the features. In addition, although examples
have not been presented, the neural net is able to accurately predict features even when the
robot is not approximately oriented along one of the allowed compass directions.

The navigation system was tested by running the robot over the entire floor of the engi-
neering building over a period of several months (see Figure 10). The figure also shows an
odometric trace of a particular navigation run, which demonstrates that despite significant
odometric and sensor errors, the robot is still able to complete the task.

4.2. Learning to Find Trash Cans

We now present the experimental findings from the recycling task. In order to implement
a similar neural network approach, we first took various snapshots of the trash can from
different angles and distances using the on-board camera of PAVLOV. The images (100x100
color images) were labeled as to the distance and orientation of the trash can. Six boolean
variables were used to label the images (front, left, right, far, near, very-near).

The inputs to our neural network were pre-processed selected pixels from the 100X100
images, and the outputs were the six boolean variables. The RGB values of the colored
images were transformed into HSI values (Hue, Saturation, Intensity) which are better repre-
sentatives of true color value because they are more invariant to light variations (Jain, 1989).
Using an image processing program we identified the HSI values of the yellow color and
based on those values we thresholded the images into black and white. We then sub-sampled
the images into 400 pixels so that we could have a smaller network with far fewer inputs.
The sub-sampling was done by selecting one pixel in every five.

Figure 11 shows the neural net architecture chosen for the recycling task. Figure 12
shows some sample images, with the output generated by the trained neural net. The neural
net produces a six element vector as its output, with 3 bits indicating the direction of the
trash can (left, front, or right), and 3 bits indicating the distance (far, near, very near). The
figure shows only the output values that were close to 1. Note that the net can generate a
combination of two categories (e.g., near and very-near), or even sometimes a contradictory
labeling (e.g., far/near). In such cases, the camera turn behavior simply chooses one of the
labels, and proceeds with capturing subsequent images, which will eventually resolve the
situation (this is shown in the experiments below). Figure 13 shows the learning curve for
training the trash can net.

Figure 14 shows the experimental setup used to test the effectiveness of the trash can
finder. A single yellow colored trash can was placed in the lab at four different locations. In
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despite significant odometric errors.



20 S. MAHADEVAN, G. THEOCHAROUS AND N. KHALEELI

.

.

.

.

.

.

400 inputs 6 outputs15 hidden units

LEFT 

RIGHT

FRONT

FAR

NEAR

VERY NEAR

Figure 11.A neural net trained to detect trash cans.

a b c

e f

001100 101100

010100

d

001001

001010

100110

Figure 12. Sample images with the output labels generated by the neural neta: front, near.b: front, far. c: left,
front, far. d: right, far. e: left, near, very-near.f: front, very-near.



RAPID CONCEPT LEARNING FOR MOBILE ROBOTS 21

0

20

40

60

80

100

120

140

160

180

200

0 10 20 30 40 50 60 70 80 90 100

E
rr

or

Epochs

Comparing Multi-Output Learning vs. Single Output Learning

"multi-output.err"
"far.err"

"near.err"
"left.err"

"right.err"
"very-near.err"

Figure 13. This graph compares the training time for a multi-output net vs. training a set of single output nets.
Although the multi-output net is slower to converge, it performed better on the test data.

each case, the robot was started at the same location, and its route measured until it stopped
adjacent to the trash can (and announced that it had found the trash can).4 Figure 15 and
Figure 16 show several sample trajectories of the robot as it tried to find the trash can. In
all cases, the robot eventually finds the trash can, although it takes noticeably longer when
the trash can is not directly observable from the starting position.

5. Limitations of the Approach

The results presented above suggest that high-dimensional sensory concepts can be learned
from limited training examples, provided that a human designer carefully structures the
overall learning task. This approach clearly has some definite strengths, as well as some
key limitations.

• Need for a teacher:Supervised concept learning depends on a human teacher for
providing labeled examples of the desired target concept. Previous work on systems
such as ALVINN (Pomerleau, 1990) has clearly demonstrated that there are interesting
tasks where examples can be easily collected. Similarly, for the navigation and recycling
task, we have found that collecting and labeling examples to be a fairly easy (although
somewhat tedious) task. Nevertheless, this approach could not be easily used in domains
where it is difficult for a human teacher to find a sufficiently diverse collection of
examples.
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Figure 14.Environmental setup for finding trash cans.

• Filling in details of a pre-specified architecture:The approach taken in this paper
assumes that the designer has already pre-specified much of the overall control structure
for solving the problem. The purpose of learning is to complete a few missing pieces
of this solution. In the navigation task, for example, the feature detectors are all that
is learned, since the overall planner, reactive behaviors, and state estimator are pre-
programmed. Obviously, this places a somewhat large burden on the human designer.

• Decomposable functions:The sensory concepts being learned in the two tasks were
decomposable in some interesting way (either the input or the output space could be
partitioned). We believe many interesting concepts that robots need to learn have spatial
regularity of some sort that can be exploited to facilitate learning.

6. Related Work

This research builds on a distinguished history of prior work on concept learning from
examples, both in machine learning (Mitchell, 1997) and in robot learning (Connell &
Mahadevan, 1993, Franklin, Mitchell & Thrun, 1996). Here, we focus primarily on the
latter work, and contrast some recent neural-net based approaches with decision-tree based
studies.

ALVINN (Pomerleau, 1990) uses a feedforward neural net to learn a steering behavior
from labeled training examples, collected from actual human drivers. As noted earlier,
ALVINN exploits a pursuit model of steering to synthesize new examples to speed learning.
ALVINN differs from our work in that it directly learns a policy, whereas in our case the robot



RAPID CONCEPT LEARNING FOR MOBILE ROBOTS 23

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

-0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2

S
ou

th

East

Navigation to lab position A

"pose.a1"
"pose.a2"
"pose.a3"

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

-2 -1.5 -1 -0.5 0 0.5

S
ou

th

East

Navigation to lab position B

"pose.b1"
"pose.b2"
"pose.b3"

Figure 15.Three successful traces (starting at 0,0) of the robot navigating to the trash can, placed in positionsA
andB. In both positionsA andB, the trash can was directly observable from the robot starting position.



24 S. MAHADEVAN, G. THEOCHAROUS AND N. KHALEELI

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

S
ou

th

East

Navigation to lab position C

"pose.c1"
"pose.c2"
"pose.c2"
"pose.c3"

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

-2 -1.5 -1 -0.5 0 0.5 1 1.5

S
ou

th

East

Navigation to lab position D

"pose.d1"

Figure 16. Results for learning with trash can in position C and D. The top figure shows three successful traces
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positionD, which is initially unobservable to the robot.



RAPID CONCEPT LEARNING FOR MOBILE ROBOTS 25

learns only feature detectors and recognizers. We believe that directly learning an entire
policy is quite difficult, in general. In fact, in a subsequent across-the-country experiment,
the direct policy learning approach was rejected in favor of a simpler feature-based approach
similar to our work (except the templates were 1-dimensional rather than 2-dimensional, as
in our work).

Thrun and Mitchell (1994) propose alifelong learningapproach, which extends the super-
vised neural-net learning framework to handle transfer across related tasks. Their approach
is based on findinginvariancesacross related functions. For example, given the task of
recognizing many objects using the same camera, invariances based on scaling, rotation,
and image intensity can be exploited to speed up learning. Their work is complementary
to ours, in that we are focusing on rapid within-task learning, and the invariants approach
could be easily combined with the partioning and multi-class approach described here.

Such studies can be contrasted with those using decision trees. For example, Tan (1993)
developed an ID3 decision-tree based algorithm for learning strategies for picking up ob-
jects, based on perceived geometric attributes of the object, such as its height and shape.
Salganicoff et al. (1996) extended the decision-tree approach for learning grasping to an
active learning context, where the robotic system could itself acquire new examples through
exploration.

In general, the decision tree approaches seem more applicable when the data is not high-
dimensional (in both the system just cited, the number of input dimensions is generally
less than 10). By contrast, in our work as well as in the ALVINN system, the input
data has several hundred real-valued input variables, making it difficult to employ a top
decision-tree type approach. The advantage, however, of using decision trees is that the
learned knowledge can be easily converted into symbolic rules, a process that is much more
difficult to do in the case of a neural net.

Symbolic learning methods have also been investigated for sensory concept learning.
Klingspor et al. (1996) describe a relational learning algorithm called GRDT, which infers
a symbolic concept description (e.g., the conceptthru door) by generalizing user labeled
training instances of a sequence of sensor values. A hypothesis space bias is specified by
the user in the form of a grammar, which restrict possible generalizations. A strength of the
GRDT algorithm is that it can learn hierarchical concept descriptions. However, a weakness
of this approach is that it relies on using a logical description of the overall control strategy
(as opposed to using a procedural reactive/declarative structure). Logical representations
incur a computational cost in actual use, and their effectiveness in actual real-time robotics
applications has not been encouraging.

7. Summary

This paper investigated how mobile robots can acquire useful sensory concepts from high-
dimensional and noisy training data. The paper investigated two strategies for speeding up
learning, based on decomposing the sensory input space, and learning multiple concepts
simultaneously using a shared representation. The effectiveness of these strategies was
studied in two tasks: learning feature detectors for probabilistic navigation and learning
to recognize visual objects for recycling. A detailed experimental study was carried out
using a Nomad 200 real robot testbed called PAVLOV. The results suggest that the strategies
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provide sufficient bias to make it feasible to learn high-dimensional concepts from limited
training data.
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Notes

1. PAVLOV is an acronym for Programmable Autonomous Vehicle for Learning Optimal Values.

2. In actuality, the state estimation procedure is more complex since we use an event-basedsemi-Markovmodel
to represent temporally extended actions. However, for the purposes of this paper, we are simplifying the
presentation.

3. Bias is generally defined as any criterion for selecting one generalization over another, other than strict
consistency with the training set. It is easy to show that bias-free learning is impossible, and would amount to
rote learning.

4. Although we do not discuss the details here, the robot employs a further processing phase to extract the rough
geometrical aligment of the trash can opening in order to drop items inside it.
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