
Machine Learning, 31, 55–85 (1998)
c© 1998 Kluwer Academic Publishers. Manufactured in The Netherlands.

Module-Based Reinforcement Learning:
Experiments with a Real Robot*

ZSOLT KALMÁR kalmar@mindmaker.kfkipark.hu
Department of Informatics, “J́ozsef Attila” University of Szeged,
Szeged, Aradi vrt. tere 1, Hungary H-6720

CSABA SZEPESVÁRI szepes@mindmaker.kfkipark.hu
Research Group on Artificial Intelligence, “József Attila” University of Szeged
Szeged, Aradi vrt. tere 1, Hungary H-6720

ANDRÁS LŐRINCZ lorincz@mindmaker.kfkipark.hu
Department of Adaptive Systems, “József Attila” University of Szeged
Szeged, Aradi vrt. tere 1, Hungary H-6720

Editors: Henry Hexmoor and Maja Matari´c

Abstract. The behavior of reinforcement learning (RL) algorithms is best understood in completely observable,
discrete-time controlled Markov chains with finite state and action spaces. In contrast, robot-learning domains are
inherently continuous both in time and space, and moreover are partially observable. Here we suggest a systematic
approach to solve such problems in which the available qualitative and quantitative knowledge is used to reduce
the complexity of learning task. The steps of the design process are to:i) decompose the task into subtasks using
the qualitative knowledge at hand;ii) design local controllers to solve the subtasks using the available quantitative
knowledge andiii) learn a coordination of these controllers by means of reinforcement learning. It is argued
that the approach enables fast, semi-automatic, but still high quality robot-control as no fine-tuning of the local
controllers is needed. The approach was verified on a non-trivial real-life robot task. SeveralRL algorithms
were compared byANOVA and it was found that the model-based approach worked significantly better than the
model-free approach. The learnt switching strategy performed comparably to a handcrafted version. Moreover,
the learnt strategy seemed to exploit certain properties of the environment which were not foreseen in advance,
thus supporting the view that adaptive algorithms are advantageous to non-adaptive ones in complex environments.

Keywords: reinforcement learning, module-basedRL, robot learning, problem decomposition, Markovian De-
cision Problems, feature space, subgoals, local control, switching control

1. Introduction

Reinforcement learning (RL) is the process of learning the coordination of concurrent be-
haviors and their timing so as to optimize some performance cost, where the cost is a function
of the reinforcement signals communicated to the learner in each time step. A few years ago
Markovian Decision Problems (MDPs) were proposed as the model for the analysis ofRL
(Werbös, 1977, Sutton, 1984) and since then, a mathematically well-founded theory has
been constructed for a large class ofRL algorithms. These algorithms are based on modi-
fications of the two basic dynamic-programming algorithms used to solve MDPs, namely
the value- and policy-iteration algorithms (Watkins & Dayan, 1992, Jaakkola et al., 1994,
Littman & Szepesv´ari, 1996, Tsitsiklis & Van Roy, 1996, Sutton, 1996). TheRL algo-

* Present address of all authors: Associative Computing Ltd.. Budapest 1121, Konkoly Thege M. ´ut 29–33

56 ZS. KALMÁR, CS. SZEPESVÁRI AND A. LŐRINCZ

rithms learn via experience, gradually building an estimate of the optimal value function,
which is known to encompass all the knowledge needed to behave in an optimal way ac-
cording to a fixed criterion, usually the expected total discounted-cost criterion. The basic
limitations of all of the early theoretical results of these algorithms was that these assumed
finite state- and action-spaces, and discrete-time models in which the state was assumed to
be available for measurement. In a real-life problem, however, the state- and action-spaces
are infinite, usually non-discrete, time is continuous and the system’s state is not measur-
able (i.e., with the latter property, the process is only partially observable as opposed to
being completely observable) (Kalm´ar et al., 1997). Recognizing the serious drawbacks
of the simple theoretical case, researchers have begun looking at the more interesting yet
theoretically more difficult cases (see e.g., Chrisman, 1992, McCallum, 1993, Singh et al.,
1995, Tsitsiklis & Van Roy, 1995, Munos, 1997) . To date, however, no complete and
theoretically sound solution has been found to deal with such involved problems. In fact
the above-mentioned learning problem is indeed intractable owing to partial observability.
This result follows from a theorem of Littman’s (Littman, 1996).

One of the most promising approaches, originally suggested to deal with large, but observ-
able problems, is based on the idea of decomposing the task into smaller subtasks. This very
basic idea can be traced back at least to the idea of using abstractions, macro-operators and
subgoals (P´olya, 1945) which was studied by Newell and Simon (1972) and Korf (1985a)
in planning domains. The attractive property of this decomposition is that if it is done in a
hierarchical manner then it can reduce exponential complexity to linear (Korf, 1987). In the
framework of planning with MDPs the plan acceleration aspect of using macro-operators
has recently received some attention (e.g., Precup et al., 1997). On the other hand, the
learning of macro-operators, which can be interpreted as learning control modules, has a
longer history (Korf, 1985b, Mahadevan & Connell, 1992, Singh, 1992). The third aspect
is the learning of the switching of the particular controllers, which has been studied among
others by Singh (1992) and more recently by Parr and Russell (1997) in hierarchical mod-
els; by Matarić (1997) who used a modifiedRL algorithm; and by Koza and Rice (1992)
and Dorigo and Colombetti (1994) who made use of a genetic algorithms, to mention just
a few examples. Inventing subgoals, macro-operators and hierarchies turns to be a more
difficult problem. Some results in this direction include those of Schwartz (1995) and
Tóth et al., (1995) whose algorithms learn skills useful in multiple tasks, or Wiering and
Schmidhuber (1997) who deal with partial observability and follow a divide and conquer
approach. Switching controls have also received considerable attention among traditional
control theorists under the name hybrid control (Brockett, 1993, Grossman et al., 1993),
but they usually focused on more basic properties like existence or stability of solutions
(see, Branicky, Borkar, and Mitter (1994) and the references therein), or the existence of
optimal controls (Zabczyk, 1973). Recently, the existence of optimal switching strategies
was proved by Branicky (1995) for a fairly broad class of systems.

In this article, we propose a systematic approach to solve real-world robotic tasks which
builds on the above mentioned works. In order to keep the problems tractable we suggest
to incorporatea priori knowledge when available and use learning only when it is really
needed. Namely, we suggest that high-level, abstractqualitative knowledge, which is
often available, can and should be used in the planning phase to identify subgoals and
macro-operators;quantitative, but still rough knowledge can and should be used to design

MODULE-BASED REINFORCEMENT LEARNING 57

controllers that safely implement the macro-operators under some well defined conditions
which should be made measurable from the observation process; and learning should be
used to resolve conflicts when the operating condition of more than one controller is met.
Since we know in advance that learning will be used to find the appropriate switching
function we may bravely incorporate alternative solutions to the same subtask. Another
goal to be taken into account in the design phase is that the task to be solved by the learning
algorithm should have a finite (small) state & action space, and be a completely observable
task.

In the first part of the article (Section 2), in addition to discussing the above design prin-
ciples in detail, some theoretical tools are put forth which can be used to determine if a
given subtask decomposition is proper, i.e., if it results in a solution to the original problem.
Also convergence issues of the learning algorithms are touched upon. In the second part
(Section 3), the approach is demonstrated via areal-lifeexample. We provide a detailed sta-
tistical comparison of severalRL methods combined with different exploration strategies,
such as Adaptive Dynamic Programming (ADP), Adaptive Real-Time Dynamic Program-
ming (ARTDP) and Q-learning, with Boltzmann exploration started from different initial
“temperatures”. The relationship of our work to that of others is described in more detail
in Section 4, and then finally our conclusions and possible directions for further research
are given in Section 5.

2. Module-based reinforcement learning

First of all, we will briefly overview Markovian Decision Problems (MDPs), a value-
function-approximation-basedRL algorithm to learn solutions for MDPs and their associ-
ated theory. Next, the concept of recursive features and time-discretization based on these
features are elaborated upon. This is then followed by a sensible definition and principles
of module-design, together with a brief explanation of why the modular approach can prove
successful in practice.

2.1. Markovian decision problems

RL is the process by which an agent improves its behavior from observing its own in-
teractions with the environment. One particularly well-studiedRL scenario is that of a
single agent minimizing the expected discounted total cost in a discrete-time finite-state,
finite-action environment, in which the theory of MDPs can be used as the underlying
mathematical model. A finiteMDP is defined by the 4-tuple〈S, A, p, c〉, whereS is a
finite set of states,A is a finite set of actions,p is a matrix of transition probabilities, and
c is the so-called immediate cost function. The ultimate objective of learning is identify-
ing an optimal policy. A policy is some function that tells the agent which set of actions
should be chosen under which circumstances. A policyπ is optimal under theexpected
discounted total-cost criterionif, with respect to the space of all possible policies,π results
in a minimum expected discounted total cost for all states. The optimal policy can be found
by identifying the optimal value function, defined recursively by

58 ZS. KALMÁR, CS. SZEPESVÁRI AND A. LŐRINCZ

v∗ (s) = min
a∈U(s)

(
c (s, a) + γ

∑
s′

p (s, a, s′) v∗ (s′)

)

for all statess ∈ S, wherec (s, a) is the immediate cost for taking actiona from states, γ is
the discount factor, andp (s, a, s′) is the probability that states′ is reached from states when
actiona is chosen.U (s) is the set of admissible actions in states. The policy which for each
state selects the action that minimizes the right-hand side of the above fixed-point equation
constitutes an optimal policy. This yields the result that to identify an optimal policy it is
sufficient just to find the optimal value functionv∗. The above simultaneous non-linear
equations (non-linear because of the presence of the minimization operator), also known as
theBellman equations(Bellman, 1957), can be solved by various dynamic-programming
methods such as the value- or policy-iteration methods (Ross, 1970).

RL algorithms are generalizations of the DP methods to the case when the transition
probabilities and immediate costs are unknown. The class ofRL algorithms of interest
here can be viewed as variants of the value-iteration method: these algorithms gradually
improve an estimate of the optimal value-function via learning from the interactions with
the environment. There are two possible ways to learn the optimal value function. One is
to estimate the model (i.e., the transition probabilities and immediate costs) while the other
is to estimate the optimal action-values directly. The optimal action-value of an actiona
given a states is defined as the total expected discounted cost of executing the action from
the given state and proceeding in an optimal fashion afterwards:

Q∗(s, a) = c(s, a) + γ
∑
s′

p(s, a, s′)v∗(s′). (1)

The general structure of value-function-approximation basedRL algorithms is given in
Table 1.

In theRL algorithms, various models are utilized along with an update ruleFt and action-
selection ruleSt. In the case of the Adaptive Real-Time Dynamic Programming (ARTDP)
algorithm the model consists(Mt) of the estimates of the transition probabilities and costs,
the update-ruleFt being implemented, e.g., through the equations

pt+1(st, at, s) =
(

1 − 1
nt(st, at)

)
pt(st, at, s) +

1
nt(st, at)

δ(st+1, s),

ct+1(st, at) =
(

1 − 1
nt(st, at)

)
ct(st, at) +

1
nt(st, at)

ct,

whereδ(i, j) is the Kronecker-function,nt(s, a) is the number of times the state-action pair
(s, a) was visited by the process{(st,at)}t before timet plus one, and values not shown are
left unchanged. Instead of the optimal Q-function, the optimal value function is estimated
and stored to spare storage space, and the Q-values are then computed by replacing the true
transition probabilities, costs and the optimal value function in Eq. 1 by their estimates. An
update of the estimate for the optimal value function is implemented by an asynchronous
dynamic-programming algorithm using an inner loop in Step 2 of the algorithm. In each
step of this loop, a subset of the states,F t

j , is selected and the value estimates of the states
in F t

j are updated via

MODULE-BASED REINFORCEMENT LEARNING 59

Table 1. The structure of value-function-approximation-basedRL algorithms. Specific forms for the model
update operatorsFt and the action selection operatorSt are defined in the examples presented below.

1. Let t = 0, and initialize the utilized model(M0) and the Q-function(Q0)

2. Repeat forever

(A) Observe the next statest+1 and reinforcement signalct.

(B) Incorporate the new experience(st, at, st+1, ct) into the model and into the esti-
mate of the optimal Q-function:

(Mt+1, Qt+1) = Ft(Mt, Qt, (st, at, st+1, ct)),

whereFt is the model update operator.

(C) Choose the next action to be executed based on(Mt+1, Qt+1):

at+1 = St(Mt+1, Qt+1, st+1)

and execute the selected action, whereSt is the action selection operator.

(D) t := t + 1.

v(s) := min
a∈U(s)

(
ct+1(s, a) + γ

∑
s′

pt+1(s, a, s′)v(s′)

)
,

v being initialized tovt at the beginning of the loop and lettingvt+1 = v at the end of
the loop. Algorithms where the value of the actual state is updated are called “real time”
(Barto et al., 1995). If, in each step, all the states are updated(F t

j = S), and the inner
loop is run until convergence is reached, the resulting algorithm will be called Adaptive
Dynamic Programming (ADP). Another popularRL algorithm is Q-learning, which does
not employ a model but instead the Q-values are updated directly according to the iteration
procedure (Watkins & Dayan, 1992)

Qt+1(st, at) = (1 − αt(st, at))Qt(st, at) + αt(st, at)
(
ct + γ min

a
Qt(st+1, a)

)
,

whereαt(st, at) ≥ 0,

∞∑
t=1

αt(s, a)δ(s, st)δ(a, at) = ∞

and
∞∑

t=1

α2
t (s, a)δ(s, st)δ(a, at) < ∞.

For example, one might setαt(s, a) = 1
nt(s,a) but often in practiceαt(s, a) = const is

employed, which, while yielding increased adaptivity, no longer ensures convergence.

60 ZS. KALMÁR, CS. SZEPESVÁRI AND A. LŐRINCZ

Both algorithms mentioned previously are guaranteed to converge to the optimal value/Q
function if each state-action pair is updated infinitely often (Jaakkola et al., 1994, Tsitsiklis,
1994). The action-selection procedureSt should be carefully chosen so that it fits the
dynamics of the controlled process in a way that the condition is met. For example, the
execution of random actions meets this “sufficient-exploration” condition when theMDP
is communicating. However, if on-line performance is important, then more sophisticated
exploration is needed, which, in addition to ensuring sufficient exploratory behavior, exploits
accumulated knowledge. If the Q-values were already exact, then, according to what was
explained above, the optimal action in states would beargmina Qt(s, a); the choice of
such actions corresponding topure exploitation. Unfortunately, pure exploitation applied
from the beginning of learning will not work in general (a noteworthy exception being the
case of the worst-case cost-criterion (Szepesv´ari, 1997a)). Typical suggestions to overcome
these difficulties include choosing random actions occasionally and exploiting actions at
other times, or to select actions that minimize some kind of artificially biased Q-values,
where the bias is such that the biased Q-values of less often visited state-action pairs become
smaller (for a survey of such methods see, e.g., Kumar (1985)). The most popular of these
is randomization when the exploiting action is chosen with a probability smaller than one,
while having this probability converge slowly to one with time. Recently, it has been
shown that if the probability of selecting non-exploiting actions summed up in time equals
infinity (for example, when this probability is proportional to1/nt(s), wherent(s) is the
number of times the states was visited before timet increased by1), then, on the one
hand, sufficient exploration is ensured while on the other, the whole process eventually
converges to optimality (Singh et al., 1997, Szepesv´ari, 1997b). The most common form
of randomized action selection is called “Boltzmann exploration”, where the probability of
choosing actiona in states equals

eQt(s,a)/T (s,t)∑
a∈U(s) eQt(s,a)/T (s,t)

,

where T (s, t) is a “temperature” parameter whose rate of decrease witht should be
bounded from below byo(1/ ln(nt(s))) if one wants to ensure sufficient exploration
(Singh et al., 1997).

2.2. Recursive features and feature-based time discretization

In the case of a real-life robot-learning task, the dynamics cannot be formulated exactly as a
finiteMDP, nor is the state information available for measurement. This latter restriction is
modeled by Partially Observable MDPs (POMDPs) where (in the simplest case) one extends
anMDP with anobservation functionh, which maps the set of statesS into a setX, called
the observation set (which is usually non-countable, just likeS). The defining assumption
of aPOMDP is that the full states can be observed only through the observation function,
i.e., onlyh(s) is available as input and this information alone is usually insufficient for
efficient control sinceh is usually a non-injection (i.e.,h may map different states to the
same observations).Featureswhich mathematically are just well-designed observation
functions, are known to be efficient in dealing with the problem of infinite state spaces.

MODULE-BASED REINFORCEMENT LEARNING 61

Moreover, when their definitions are extended in a sensible way, they become efficient in
dealing with partial observability.

It is well known that in the partial observable case optimal policies can depend on their
whole past histories. This leads us to a generalization of features, such that the feature’s
values can depend on all past observations, i.e., mathematically a feature becomes an infinite
sequence of mappings(f0, f1, . . . f t, . . .), with f t : (X × A)t × X → F , whereF and
X are the feature- and observation-spaces. SinceRL is supposed to work on the output
of features, andRL requires finite spaces it means thatF should be finite. Features that
require infinite memory are clearly impossible to implement, so features used in practice
should be restricted in such a way that they require a finite “memory”. For example, besides
stationary features, which take the form(f0, f0, . . . , f0, . . .) (i.e., f t = f0 for all t ≥ 1)
and are calledsensor-basedfeatures,recursivefeatures (in control theory these are called
filters or state-estimators) are those that can be implemented using a finite memory.1 For
example, in the case of a one-depth recursive feature the value at thetth step is given by
ft = R(xt, at−1, ft−1), whereR : X×A×F → F defines the recursion andf0 = f0(x0)
for some functionf0 : X → F . Features whose values depend on the past observations of
a finite window form a special class of recursive filters.2

A very simple one-step recursive feature is the switching feature (of Boolean type) whose
value depends on two disjoint sets of observation-action pairs, those of “on-pairs” and “off-
pairs”. The feature’s value is one (or‘on’), if the last observed observation-action pair
which was either an on-pair or off-pair is an on-pair, otherwise it is zero (‘off’). In other
words, the feature’s value does not change as long as the observation is outside the union
of the sets of “on-pairs” and “off-pairs” and the feature’s value is reset to the label of these
sets when the observation data gets into either of them. In Section 3.2.2 we will give an
example of such a feature.

Instead of relying on a single feature, it is usually more convenient to define and employ
a set of features, each of which indicates a certain event of interest. Note that a finite set
of features can always be replaced by a single feature whose output space is the Cartesian
product of the output spaces of the individual features and whose values can be computed
componentwise by the individual single features. That is to say, the new feature’s values
are the ‘concatenated’ values of the individual features.

Since the feature space is finite, a natural discretization of time can be obtained. The new
time counter clicks only when the feature value jumps in the feature space.3 This makes it
useful to think of such features as event-indicators which represent the actuality of certain
conditions of interest. This interpretation gives us an idea of how to define features in such
a way that the dynamics at the level of the new counter be simplified.

2.3. Modules

So far, we have realized that the new “state space” (the feature space) and “time” can be made
discrete. However, the action space may still be infinite. Uniform discretization which lacks
a priori knowledge would again be impractical in most of the cases (especially when the
action space is unbounded), so we would rather consider an idea motivated by a technique
that is often applied in artificial intelligence (AI) to solve large search problems efficiently.
The method in question follows a kind of “divide-and-conquer” approach which divides the

62 ZS. KALMÁR, CS. SZEPESVÁRI AND A. LŐRINCZ

problem into smaller subproblems that in turn are divided into even smaller subproblems,
etc., then at the end routines are provided that deal with the resulting mini-problems. The
solution of the entire problem is then obtained by working backwards: the routines that
solve mini-problems are combined to get larger routines, then these are combined again
to get even larger routines, and this is repeated until the root of the hierarchy is reached.
In planning domains the combined routines are called macro-actions. The actual solution
of the original problem can be obtained if the macro-action corresponding to the actual
state of the search problem is applied (Newell & Simon, 1972, Sacerdoti, 1974). To put
it another way, the problem solver defines a set of sub-goals, sub-sub-subgoals, etc. in
such a way that if one of the sub-goals is satisfied then the resolution of the main goal
will be easier to achieve. It turns out that hierarchical subgoal decomposition can reduce
the problem complexity from exponential to linear if the decomposition scheme is optimal
(Korf, 1987). Also in robotic domains sometimes it is convinent to define a subgoals by
means of specifying a ‘desired beavior’ pattern.

In control tasks the same decomposition can usually be done with respect to the main
control objective without any difficulty provided that aqualitativelycorrect model of the
plant is available. A model is said to be qualitatively correct if it leads to designs which
when extended with learning in later stages result in a proper solution of the task, i.e., we do
not require that a proper solution of the task could be obtained on the basis of a qualitatively
correct model. So qualitatively correct models should be much easier to obtain than ones
which are actually used for control. Human are usually good at obtaining a decomposition
if they have sufficient knowledge about the controls and sensors. Note that this model
should ideally be low level, i.e., it should describe the dynamics of sensors and the plant,
but at the same time it should hide details which are unimportant from the point of view of
planning. A naive physics description of the problem seems to be suitable if one wanted to
automate this step using a planner. Qualitative modelling has a long tradition in artificial
intelligence (de Kleer & Seely, 1984, Say & Selahattin, 1996, Brafman & Moshe, 1997).

Nevertheless, regardless of what representation and method is used, we end up with a set of
macro-actions and their associated subgoals. In the next step the designer should implement
the macro-actions as closed-loop local controllers which achieve the associated subgoal.
In order to be successful at this task, in general more detailed,quantitativeknowledge of
the plant is needed (see Figure 1). A quantitatively correct model should be suitable for
designing local controllers which work as intended under well defined (and observable)
conditions. Note that having a quantitatively correct model still does not mean that we can
solve the control task without any further refinements. If there is considerable uncertainty
in the quantitative model then these local controllers may also have to be learnt by an
adaptive method, such as e.g., an adaptive control technique, iterative learning or even by
reinforcement learning. Even when using some kind of adaption or robustification, one
cannot expect that the resulting controller will work reliably under all possible conditions
that can occur. The other reason to restrict theoperating conditionsof the controllers is that,
for example, in the case of serializable subgoals (Korf, 1987) in order the application of the
macro-action to make sense the previous subgoal must be met. The operating conditions
should be given as measurable quantities. The controllers together with their operating
conditions, which may also serve as a basic set of features, will be calledmodules. The
process of breaking up the problem into small subtasks should be repeated several times

MODULE-BASED REINFORCEMENT LEARNING 63

recursively before the actual controllers are designed, so that the complexity of the individual
controllers can be kept low.

In complex problems, it may happen that a particular controller proves to be useful in
accomplishing several subtasks. For example, in a mobile-robot task such a general-purpose
controller could be that which ’rescues’ the robot when it becomes stuck.

In principle, a consistent transfer of theAI decomposition yields the result that the
operating conditions of the situation are exclusive and cover every situation. However,
such a solution would be very sensitive to perturbations and unmodeled dynamics and is
hard to achieve due to the ambiguities in the plant models. A more robust solution can
be obtained by considering broader operating conditions or designing alternate modes to
solve the problem. This, however, yields that more than one controller can be applied at the
same time, under the same conditions. This calls for the introduction of a mechanism, the
switching function, that determines which controller has to be activated if there are more
than one available. This decision should, however, be made solely on the basis of the state
of operating conditions and some some possible additional auxiliary filters. These together
compose the feature vector available for the switching mechanism.

Subtask A Subtask B

Quantitative World Model

Qualitative World Model

Subtask C Goal

Controller A

Op. Cond. A

Controller B

Op. Cond. B

Controller C

Op. Cond. C

Planning

Learning

Design

Phases of
Robot Programming

Reinforcement

State Space

Op. Cond. A
Op. Cond. B

Op. Cond. C

Figure 1. Illustration of the proposed robot programming method. The main task is divided into subtasks
to reduce complexity of design and learning at lower levels. Each subtask has a controller associated to it and
the controllers have operating conditions under which the controller can safely accomplish the given subtask.
Controllers and their operating conditions, which are referred together as modules, can be designed by hand on
the basis of available quantitative knowledge. Operating conditions of different controllers may overlap in which
case more than one controller may be applied at the same time. Reinforcement learning is applied to remove this
ambiguity in an optimal way.

So the switching functionS maps feature vectors to the index of the module that should
be activated when the actual feature vector under consideration is observed. Of course,
only those modules can be activated whose operating conditions are satisfied.4 The oper-
ation of the whole mechanism is then the following. A controller remains active until the

64 ZS. KALMÁR, CS. SZEPESVÁRI AND A. LŐRINCZ

switching function switches to another controller. Since the switching function depends on
the observed feature values, the controllers will certainly remain active until a change in the
feature vector is observed. We further allow the controllers to manipulate the observation
process. In this the controllers may inhibit an observation from occurring and thus may
hold up their activity for a while, i.e., the controller works then in an open-loop mode. This
yields a rougher time-discretization, which reduces the problem complexity again (since
less number of decisions is needed). The working mechanism is illustrated in Figure 2.

Controller A
Auxiliary Features

Feature VectorReinforcement

Op. Cond. A

Environment

Controller B

Op. Cond. B

Reinforcement Learning

Controller C

Op. Cond. C

Figure 2. The control and learning mechanisms.At any time one and only one controller controls the plant. This
controller is selected by the switching function learnt byRL. Switching can occur only when the feature vector
changes which is the concatenation of the operating conditions of the controllers and some auxiliary features.
The reinforcement signal is also a function of this feature vector. Controllers can only be activated when their
associated operating conditions are observed.

2.4. Accessibility decision problems

The goal of the design procedure is to set up the modules and additional features in such
a way that there exists a switching controllerS : F → {1, 2, . . . , n}, which for any given
history results in a closed-loop behavior that fulfills the “goal” of control in time. It can
be extremely hard to prove even theexistenceof such a valid switching controller. One
approach is to use a so-calledaccessibility decision problemfor this purpose, which is a 5-
tuple〈X, A, r, T ,A〉, whereX is the state-space,A is the action space,r : X×A×X → R

gives the immediate reward associated with transitions,T : X×A → P (X) is the transition
mapping determining the states which are accessible from any given state-action pair, and
A : X → A gives us the admissible actions for any statex.

In our case the state space isF (the possible values of the composed feature-vector), the
action space is{1, 2, . . . , n}, the indices of the controllers, and the transition mapping is
defined in the following way. The states that are accessible from feature-statef when using
action i are those elementsf ′ of F for which there exists a history compatible with the
featuref , such that when assuming the given history and using the controller indexed byi
the next observed feature different fromf will be f ′. This means that the utilized controllers
should be designed such that their operating conditions should not remain satisfied forever.5

MODULE-BASED REINFORCEMENT LEARNING 65

However, this is quite a natural condition since when translated back to the level of design
it just means that each subtask should be completed in finite time.6

There are two ways of meeting this finite-finishing-time requirement. First, design each
controller with special attention to the problem, or second employ special features such as
operating conditions, which, once “activated”, terminate in some finite time. Continuing
with the definition of the accessibility decision problem, the set of admissible “actions”
corresponding to a feature-vectorf consists of the index of those modules whose operating
conditions are satisfied inf . Assume that the ultimate goal of control is to reach a certain
subset ofF (for this, goal-indicator features should be provided). Let us now set up a reward
functionr as a function of the features such thatr(f) = 1only if f is in the goal set, otherwise
r(f) = 0. In the context of hybrid control, Sastry et al., noted the following: If there
exists a controller for the above accessibility decision problem where the cumulated worst-
case reward is non-zero (i.e., during evaluations only worst-case transitions are considered
(Heger, 1996)) then there exists a switching controller that can solve the original problem
(Lygeros et al., 1997). Such a controller will be called proper in the worst-case sense.
The reverse of the above implication is not necessarily true and this makes the analysis
somewhat limited. Besides this, the exact accessibility decision problem can be very
difficult to construct – usually it is easier to construct a slightly broader one, which has
additional transitions in it. Another problem is that the exact transitions may well already
revoke the existence of a controller that is proper in the above worst-case sense.

A weaker condition to the above, which may seem somewhat artificial at a first glance,
is that the total probability of reaching the goal for all possibleaccessibility-compatible
transition probabilities should equal one. The idea behind it is that under certain conditions,
such as ergodicity, we may assume that transitions can be modeled probabilistically. A
transition-probability matrix is called accessibility-compatible if the transition-probability
associated with a given transition(f, i, f ′) is non-zero if and only iff ′ is accessible from
f usingi in the sense of the definition given in the previous paragraph. Clearly, if there is a
path in the graph underlying the accessibility transitions from each non-goal statef to one of
the goal states, then there exists a switching policy under which the probability of reaching
the goal states is one for each accessibility-compatible transition-probability matrix. Such
a switching strategy will be called analmost surely properswitching. Notice that due to
the finiteness of the problem the expected number of steps to reach the goal will almost
certainly be finite under any proper switching. If we knew that transitions take bounded
physical time (this is not immediately obvious since the same transition may happen under
an infinite number of different conditions because the process has an infinite state space
and also transitions can depend on the history of the process – another infinite set), then the
expected total physical time will also be bounded.

Of course, since the definitions of the modules and features depend on the designer, it
is reasonable to assume that by clever design a satisfactory decomposition and controllers
could be found even if only qualitative properties of the controlled object were known.RL
could then be used for two purposes: either to find the best switching function assuming
that at least two proper switching functions exist, or to decide empirically whether a valid
switching controller exists at all. The first kind of application ofRL arises as result of the
desire to guarantee the existence of a proper switching function through the introduction
of more modules and features than is minimally needed. But then good switching that

66 ZS. KALMÁR, CS. SZEPESVÁRI AND A. LŐRINCZ

exploits the capabilities of all the available modules could well become too complicated to
find manually.

2.5. RL andε-stationary decision problems

If the accessibility decision problem were extendible with transition-probabilities to turn
it to anMDP7 thenRL could be rightly applied to find the best switching function. For
example if one uses a fixed (maybe stochastic) stationary switching policy and provided
that the system dynamics can be formulated as anMDP, then there is a theoretically well-
founded way of introducing transition-probabilities (see Singh et al., 1995). Unfortunately,
the resulting probabilities may well depend on the switching policy which can prevent the
convergence of theRL algorithms.

However, the following “stability” theorem shows that the difference of the cost of optimal
policies corresponding to different transition probabilities is proportional to the extent
the transition probabilities differ, so we may expect that a slight change in the transition
probabilities does not result in completely different optimal switching policies and hence,
as will be explained shortly after the theorem, we may expectRL to work properly, after
all.

Theorem 1 Assume that two MDPs differ only in their transition-probability matrices,
and let these two matrices be denoted byp1 andp2. Let the corresponding optimal cost
functions bev∗

1 andv∗2 . Then

||v∗
1 − v∗2 || ≤ γ

nC||p1 − p2||
(1 − γ)2

,

whereC = ||c|| is the maximum of the immediate costs,|| · || denotes the supremum norm
andn is the size of the state space.

Proof: Let Ti be the optimal cost operator corresponding to the transition-probability
matrixpi, i.e.,

(Tiv)(s) = min
a∈U(x)

(
c(s, a) + γ

∑
s′∈X

pi(s, a, s′)v(s′)

)
, v : S → <, i = 1, 2.

Proceeding with standard fixed point and contraction arguments (see e.g., (Littman &
Szepesv´ari, 1996)) we get that‖v∗1 − v∗2‖ ≤ ‖T1v

∗
1 −T1v

∗
2‖+‖T1v

∗
2 −T2v

∗
2‖ and sinceT1

is a contraction with indexγ, and the inequality‖T1v−T2v‖ ≤ γ‖p1−p2‖
∑

y∈X |v(y)|we
obtainδ = ‖v∗

1−v∗2‖ ≤ γδ+γ‖p1−p2‖|X|C/(1 − γ), where‖v∗
2‖ ≤ C/(1−γ) has been

employed (Ross, 1970). Rearranging the inequality in terms ofδ then yields Theorem 1.

Motivated by the previous theorem, we defineε-stationary MDPs as the 4-tuple
〈S, A, p, c〉, whereS, A andc are as before butp, the transition probability matrix, may vary
in time but with||pt − p∗|| ≤ ε holding for all t > 0. Our expectations are that although
the transitions cannot be modeled with a fixed transition probability matrix (i.e., stationary

MODULE-BASED REINFORCEMENT LEARNING 67

MDP), they can be modeled by anε-stationary one even if the switching functions are
arbitrarily varied.

By still assuming that a stationaryMDP corresponds to a fixed switching, we obtain,
if a set (maybe stochastic) switching policy is followed during learning, that the values
learnt byRL will converge somewhere. However, on-lineRL will change the exploration-
policy continuously, which may result in oscillating transition-probabilities. We conjecture
that the method developed by Szepesv´ari and Littman (Littman & Szepesv´ari, 1996) can
still be applied, but now with a reduced goal to show that if during learning the transition
probabilities were oscillating slightly (say remaining within a set of diameterε) thenRL
methods would result in oscillating estimates of the optimal value function, but with the
oscillation being asymptotically proportional toε. Again this is an incomplete result as
it leaves open the question of whether the oscillations in the transition probabilities are
asymptotically small, which can be hard to answer since the actual policy executed during
learning usually depends on the estimated values of the optimal cost function, and the
transition probabilities may depend on the learnt values, which all go to close the circle. A
possible way out of this vicious circle is to make use of an assumption like, say, that the
transition probabilities corresponding to different policies should not differ too much at all,
i.e., to assume that theMDP is ε-stationary. This property was clearly observed in our
experiments, which we will now describe.

3. Experiments

The validity of the proposed method was checked with actual experiments carried out
using a Khepera robot. After the specification of the task the modules were designed and
then severalRL algorithms were tried and compared. The description of the robot, the
experimental setup, general specifications of the modules, and the results are all presented
in this section. We would expect similar results for other robots, too.

3.1. The robot and its environment

The mobile robot employed in the experiments is shown in Figure 3.
It is a Khepera8 robot equipped with eightIR sensors, six in the front and two at the

back, the IR sensors measuring the proximity of objects in the range 0-5 cm. The robot
has two wheels driven by two independentDC motors and a gripper that has two degrees
of freedom and is equipped with a resistivity sensor and an object-presence sensor. The
vision turret is mounted on the top of the robot as shown. It is an image sensor giving a
linear image of the horizontal view of the environment with a resolution of 64 pixels and
256 levels of gray. The horizontal viewing angle is limited to about 36 degrees. This sensor
is designed to detect objects in front of the robot situated at a distance spanning 5 to 50 cm.
The image sensor has no tilt angle, so the robot observes only those things whose height is
exceeds 5 cm.

The learning task was defined as follows: find a ball in an arena, bring it to one of the
corners marked by a stick and hit the stick with the ball. The robot’s environment is shown
in Figure 3. The size of the arena was 50 cm x 50 cm with a black colored floor and
white colored walls. The stick was black and 7 cm long, while three white-colored balls

68 ZS. KALMÁR, CS. SZEPESVÁRI AND A. LŐRINCZ

Figure 3. The Khepera and the experimental environment.The top-left sub-figure shows a close-up on the
Khepera robot. The robot has two independent wheels, a gripper, a vision turret on the top of it (this can be better
observed in the third sub-figure) and proximity sensors. The task was to grasp a ball and hit the stick with it. The
top-right sub-figure shows a phase when the robot is searching for a ball, while the third sub-figure shows a case
when the robot is just about to hit the stick by the ball. The umbilical cord can also be seen in the figures.

with diameter 3.5 cm were scattered about in the arena. The environment is highly chaotic
because the balls move in an unpredictable manner and so the outcome of certain actions is
not completely predictable, e.g., a grasped ball may easily slip out from the gripper. Note
also that the task is quite complex compared to the tasks considered in the mobile learning
literature (see e.g., Birk and Demiris, 1998).

3.2. The modules

3.2.1. Subtask decompositionFirstly, according to the principles laid down in Section
2, the task was decomposed into subtasks. The following subtasks emerged naturally (see
Figure 4): (T1) to find a ball, (T2) grasp it, (T3) bring it to the stick, and (T4) hit the stick
with the grasped ball. Subtask (T3) was further broken into two subtasks, that of (T3.1)

MODULE-BASED REINFORCEMENT LEARNING 69

‘safe wandering’ and (T3.2) ‘go to the stick’, since the robot cannot see the stick from every
position and direction. Similarly, because of the robot’s limited sensing capabilities, subtask
(T1) was replaced by safe wandering and subtask (T2) was refined to ‘when an object nearby
is sensed examine it and grasp it if it is a ball’. Notice that subtask ‘safe wandering’ is used
for two purposes (to find a ball or the stick). The operating conditions of the corresponding
controllers arose naturally as (T2) – an object should be nearby, (T3.2) – the stick should
be detected, (T4) – the stick should be in front of the robot, and (T1,T3.1) – no condition.
Since the behavior of the robot must differ before and after locating a ball, an additional
feature indicating when a ball was held was supplied. As the robot’s gripper is equipped
with an ‘object-presence’ sensor the ‘the ball is held’ feature was easy to implement. If
there had not been such a sensor then this feature still could have been implemented as
a switching feature: the value of the feature would be‘on’ from the time instant when
the robot used the grasping behavior until it uses the hitting behavior. An ‘rescue’ subtask
and corresponding controller were also included since the robot sometimes got stuck. Of
course yet another feature is included for the detection of “goal states”. The corresponding
feature indicates when the stick was hit by the ball. This feature’s value is‘on’ iff the
gripper is half-closed but the object presence sensor does not give a signal. Because of
the implementation of the grasping module (the gripper was closed only after the grasping
module was executed) this implementation of the “stick has been hit by the ball” feature
was satisfactory for our purposes, although sometimes the ball slipped out from the gripper
in which case the feature turned ‘on’ even though the robot did not actually reach the goal.
Fortunately, this situation did not happen too often, and, thus did not affect learning.

explore

can not see
a ball and

does not hold
a ball

hit the stick with
the ball

has a ball and
the stick
is near

hit the stick

find the stick

has a ball and
does not see

the stick

get a ball
hit the stick
with the ball

does not have
a ball

have a ball

find a
ball

hit the stick

Reward

Bingo!

find a ball

does not
have a ball

and an object
is near examine/

grasp

grasp a ball go to the stick

has a ball and
can see
the stick

go to the stickexplore

Figure 4. Subtask decomposition example. The main task of hitting the stick with a ball is first broken up into
two subproblems: get a ball and then hit the stick with the ball. Then these are again decomposed into smaller
subtasks which can already be accomplished by simple controllers. The bubbles show the subtask, the rectangles
with rounded corners show the conditions under which the solution of the given subtask is sensible and the shaded
rectangles show the macro-actions. The arrows show the ideal flow of working, in practice other transitions are
also possible and do exist. Note that the “explore” macro-action is used twice in the ideal flow of working. One
particular “maintenance subtask” is not shown to preserve the clarity of the figure. This is the “rescue” subtask.

70 ZS. KALMÁR, CS. SZEPESVÁRI AND A. LŐRINCZ

3.2.2. Features and controllers The resulting list of modules and features, each of which
we now elaborate upon, is shown in Table 2. The dynamics of the controller associated with
Module 1 was based on the maximization of a function that depended on the proximity
of objects and the speed of both motors.9 If there were no obstacles near the robot, this
module made the robot go forward. This controller could thus serve as one for exploring
the environment.Module 2 was applicable only if the stick was in the viewing angle of
the robot, which could be detected in an unambiguous way because the only black thing that
could get into the view of the robot was the stick. The range of allowed behavior associated
with this module was implemented as a proportional controller that drove the robot in such
a way that the angle difference between the direction of motion and line of sight to the stick
was reduced. The behavior associated withModule 3 was applicable only if there was
an object next to the robot, which was defined as a function of the immediate values of IR
sensors. The associated behavior was the following: the robot turned to a direction that
brought it to point directly at the object, then the gripper was lowered. If the object-presence
sensor attached to the gripper gave a signal, then the robot judged that the object sensed
was a ball and not the fence, so the robot closed the gripper and picked the object up. If
the object-presence sensor did not signal the robot lifted up the gripper, then turned to a
random direction and started going forward. The observation process was switched off
until the whole procedure was finished.Module 4 was the “hitting” module. Its feature
function was‘on’ when the stick was near, i.e., the total activity of the linear-eye sensors
exceeded a given constant10, otherwise it was‘off’ . The associated behavior was to let
the gripper down and then raise it anew. This module was independent of whether there
was a ball in the gripper or not, which entailed the robot having to learn that this module
wasn’t needed unless the ball was grasped.Module 5, as noted earlier, was created to
handle stuck situations. This module makes the robot going backward and is applicable if
the robot has not been able to move the wheels into the desired position for a while. This
condition is a typical time-window-based feature. The sixth feature indicated the presence
of the ball, which was‘on’ if a ball was held, whileFeature 7 was the goal-detection
feature described earlier.

The operating conditions of controllers were not exclusive; on the contrary, there were
many “states” when more than one behavior was simultaneously applicable. On the other
hand, some features were totally independent of each other. For example, if the robot
was stuck then there must have been an object nearby, i.e., ifFeature 2 = ‘on’ then
Feature 4 = ‘on’ as well. These dependencies mean that the “actual” state space was
much smaller than27 (= 128), the total number of possible states.

Simple case-analysis shows that there is no switching controller that can reach the goal
with complete certainty within finite time (in the worst case, the robot could return acci-
dentally to state “10000000” from any state when the goal feature was‘off’), but this
argument also shows that an almost-sure switching strategy, and therefore one which attains
the goal in finite expected time, should always exist. This is simply because the goal state
can be reached from the state “10000000” with positive probability under a simple action
sequence.

MODULE-BASED REINFORCEMENT LEARNING 71

Table 2.Description of the features and the modules. ‘FNo.’ means feature number.
Note that features 1-5 are the operating conditions of their associated controllers. In
the column labeled by ‘on’ the conditions under which the respective feature’s value is
‘on’ are listed, while the last column lists the controllers associated with the respective
feature (if any).

FNo. ‘on‘ Behavior

1 always explore while avoiding obstacles

2 if the stick is in the viewing angle go to the stick

3 if an object is near examine the object grasp it if it is a ball

4 if the stick is near hit the stick

5 if the robot is stuck go backward

6 if the ball is grasped -

7 if the stick is hit with the ball -

3.3. The cost structure

In order to promote fast learning usingRL one must design the immediate costs in a careful
manner. A dense cost structure was applied: the cost of using each behavior was one
except when the goal was reached, which had a cost of zero. Costs were discounted at
a rate ofγ = 0.99. Note that from time to time the robot by chance became stuck (the
robot’s ‘stuck feature’ was‘on’), and the robot tried to execute a module which could
not change the value of the feature vector. This meant that the robot did not have a second
option to try another module since by definition the robot could only make decisions if
the feature-representation changed. As a result the robot could sometimes get stuck in a
“perpetual” or so-called “jammed” state. To prevent this from happening, we built in an
additional rule which was to stop and reinitialize the robot when it got stuck and could not
unjam itself after 50 sensory measurements. A cost equivalent to the cost of never reaching
the goal, i.e., a cost of11−γ (= 100) was then communicated to the robot, which mimicked
in effect that such actions virtually last forever.

3.4. The details of learning

Experiments were fully automated and organized in trials. Each trial run lasted until
the robot reached the goal or the number of decisions exceeded150 (a number that was
determined experimentally), or until the robot became jammed. The ‘stick was hit’ event
was registered by checking the state of the gripper (see also the description ofFeature 7).

During learning, the Boltzmann-exploration strategy was employed where the temperature
was reduced byTt+1 = 0.999 Tt uniformly for all states (Barto et al., 1995).11 During the
experiments, the cumulative number of successful trials were measured and compared to

72 ZS. KALMÁR, CS. SZEPESVÁRI AND A. LŐRINCZ

the total number of trials done so far, together with the average number of decisions made
in a trial.

3.5. Results

Two sets of experiments were conducted. The first set was performed to check the validity
of the module-based approach, while the second was carried out to compare differentRL
algorithms. In the first set, the starting exploration parameterT0 was set to100 and the
experiment lasted for100 trials. These values were chosen in such a way that the robot could
learn a good switching policy, the results of these experiments being shown in Figure 5. One

0

0.2

0.4

0.6

0.8

1

10 20 30 40 50 60 70 80 90 100

Pe
rc

. o
f

Su
cc

. T
ri

al
s

Number of Trials

Handc.

ADP

25

50

75

100

125

150

10 20 30 40 50 60 70 80 90 100

N
um

. o
f

D
ec

is
io

ns

Number of Trials

Handc.

ADP

Figure 5. Learning curves. In the first graph, the percentage of successful trials out of ten are shown as a function
of the number of trials. In the second graph, the number of decisions taken by the robot and averaged over ten
trials is shown, also as a function of the number of learning trials. Results are shown for both the rules obtained
by ADP and handcraft.

might conclude from the left subgraph, which shows the percentage of task completions
in different stages of learning, that the robot could solve the task after50 trials fairly well.
Late fluctuations were attributable to unsuccessful ball searches: as the robot could not see
the balls if they were far from it, the robot had to explore to find one and the exploration

MODULE-BASED REINFORCEMENT LEARNING 73

sometimes took more than150 decisions, yielding trials which were categorized as being
failures. At the very beginning of learning, the robot tried out the appropriate types of
behavior almost completely randomly, resulting in a large number of decisions per trial.
The evaluation of behavior coordination is also observed in the second subgraph, which
shows the number of decisions per trial as a function of time. The reason for later fluctuations
is again due to a ticklish ball search. The performance of a handcrafted switching policy
is shown on the graphs as well. As can be seen the differences between the respective
performances of the handcrafted and learnt switching functions are negligible. In order to
get a more precise evaluation of the differences the average number of steps to reach the goal
was computed for both switchings over 300 trials, together with their standard deviations.
The averages were 46.61 and 48.37 for the learnt and the handcrafted switching functions
respectively, with nearly equal standard deviations of 34.78 and 34.82, respectively.

One part of the learned policy is shown in Table 3, where 10 states were selected from the
25 explored ones together with their learned associated behaviors. Theoretically, the total

Table 3. One part of the learned policy. The six
middle entries of the rows are the feature values cor-
responding to those features listed and numbered in
Table 2. (The values ofFeature 7 are not shown
as these are always zero here). The column marked
by the label ‘Mid’ denotes the number of the module
that was chosen by a pure exploitation policy under
the conditions described by the respective feature
values. A handcrafted policy is shown in the col-
umn labeled by ‘Hand’. For example, in State 3
the robot would use the module “examine object”
(Controller 3) under the pure exploitation strategy
and the controller “go backward” under the hand-
crafted policy.

No. 1 2 3 4 5 6 Mid Hand

1 1 0 1 0 0 0 3 3

2 1 1 0 0 0 0 2 1

3 1 1 1 1 1 0 3 5

4 1 0 1 0 1 0 5 5

5 1 1 0 1 0 0 2 1

6 1 0 1 0 0 1 1 1

7 1 1 0 0 0 1 2 2

8 1 1 1 1 1 1 4 4

9 1 0 1 0 1 1 5 5

10 1 1 0 1 0 1 4 4

number of states is27 = 128, but as learning concentrates on feature configurations that
really occur, this number happened to be just25 here. The expected difference between

74 ZS. KALMÁR, CS. SZEPESVÁRI AND A. LŐRINCZ

the robot’s behavior before and after finding a ball can readily be seen. For example, in
State 5 the robot moves towards the stick (compare Tables 2 and 3), because it has realized
that this behavior leads to an object with high confidence that usually happens to be a ball.
In the dual state, State 10, which differs from State 5 only in that ball is now held, the
robot properly chose the hitting action. Note that the learned policy was always consistent
with the handcrafted rules, but in certain cases the learned rules are more refined than their
handcrafted counterparts. One part of the handcrafted rules are shown in the Table 3. For
example, as the above example shows the robot learned to exploit the fact that the arena
was not completely level and as a result balls were biased towards the stick. The learned
actions in States 3 and 4 reveal another unexpected result: when the robot was stuck, the
presence of the stick made a difference. If the stick was in the viewing angle the robot
chose the object-examination behavior, otherwise it went backwards. This difference is
again due to the fact that the balls are frequently situated around the stick and consequently
the object-examination behavior in a stuck state, and when the robot was close to the stick,
would often lead to the gripping of a ball while simultaneously freeing the robot with high
probability – so it was worth trying the object-examination behavior in states like State 3.

In the rest of the experiments, we compared two versions ofARTDP and three versions
of real-time Q-learning(RTQL). The two variants ofARTDP wereADP, andARTDP
with the single case whenFt := {st} and only one iteration in the inner cycle of the
algorithm was performed. Note that due to the small number of states and module-based
time, discretization evenADP could be run in real time. But variants ofRTQL differ in the
choice of the learning rate’s time dependence. RTQL:SC refers to the choice of the so-called
search-then-convergemethod, whereαk (s, a) = 50

100+nk(s,a) , nk (s, a) being the number
of times the event(s, a) = (st, at) happened before timek plus one (the parameters 50
and 100 were determined experimentally as being the best choices). In the other two cases
(the corresponding algorithms were denoted by RTQL:0,1 and RTQL:0,25 respectively),
constant learning rates (0.1 and0.25, respectively) were utilized.

The online performances of the algorithms were measured as the cumulative number of
successful trials. An example of the time-dependence of these values are depicted in Figure

0

20

40

60

80

25 50 75 100

C
um

. N
um

. o
f

Su
cc

. T
ri

al
s

Number of Trials

Handc.

ADP

RTQL:0,25

Figure 6. The cumulative number of successful trialsin the case of learning withADP and RTQL:0,25, and
Boltzmann exploration with initial temperatureT0 = 50. The results for the handcrafted rule are also shown.

MODULE-BASED REINFORCEMENT LEARNING 75

Table 4. The table shows the statistics used inANOVA. In each cell the sample mean and the
sums of squares (SS) are shown for a given initial temperature and an algorithm type. The initial
temperatures are shown in the first column, while the acronyms for algorithms are shown in the first
row. The numbers in the last column give the sample mean and the sums of squares for a given initial
temperature and, similarly, the numbers in the last row give the same statistics for a given algorithm
type.

ADP ARTDP RTQL:SC RTQL:0,25 RTQL:0,1 Total Rows

T0 = 100 60.4;449.3 67;376.5 76.8;245.2 84.2;62.2 87;116.5 75.08;314.33

T0 = 50 53.8;306.7 64;502.5 67.4;62.3 83.8;391.7 80.2;194.7 69.84;367.89

T0 = 25 44.8;154.7 68.6;191.3 71.8;368.7 68.6;460.8 83.2;150.2 67.4;384

T0 = 0 54.8; 702.7 45.6;277.3 68.8;152.7 82.8;383.7 79;270 66.2;506.17

Total Columns 53.45;372.58 61.3;373.06 71.2;188.17 79.85;318.03 82.35;164.03

6 during the learning procedure, and for the learning cases withADP and RTQL:0,25.
The starting exploration constant was set toT0 = 50, a slope of45◦ meaning that all of
the trials were successful. Again, late drops in the graphs can be ascribed to unlucky ball
searches. The bigger the curve slope, the faster was the rate of learning, i.e., the smaller
is the regret of learning. By definition, the regretRt at timet is the difference between
the performance of an optimal agent (robot) and that of the learning agent accumulated
up to trial t, i.e., it is the price of learning up to timet. If s (t) denotes the number of
successful trials out of the firstt trials and the robot learns to behave “optimally” after
trial numbert0 (i.e., it is able to hit the stick with the ball in every trial after timet0) then
R = Rt = t − s(t) = t0 − s (t0) is the total regret assuming that the optimal agent can
reach the goal in every trial (this assumption is relevant since the handcrafted agent could
almost achieve this performance). All algorithms were examined with all the four different
exploration parameters (T0 = 100, T0 = 50, T0 = 25, T0 = 0) since the same exploration
rate may well result in different regrets for different algorithms, as was also confirmed
in the experiments. For each algorithm and temperature 5 independent experiments were
performed. (Altogether5 × 4 × 5 experiments were conducted which took a total of 40
days and nights.) The results are evaluated by the analysis of variance (ANOVA).

SinceANOVA requires the normality of the data and that the within group variances are
equal we performed the following tests: Denote the data obtained from thekth experiment
(1 ≤ k ≤ 5 = n) for algorithm indexi and temperature indexj by ξijk, denote the
sample average ofξijk for fixed i, j and variablek by ξij·, the empirical variance of the
same data bys2

ij·. If ξijk are independent and for fixed(i, j) and variablek they are
normal from the same distribution, then

√
n − 1

(
ξijk − ξij·

)
/sij·, i, j, 1 ≤ k ≤ 4 are

independent andt-distributed with parameter4. The Kolmogorov test was performed to
check this. The obtained statistic was0.1067, which corresponds to ap-level of 0.32
sincen = 5 × 4 × 4 = 80, which means that only if we allow a larger than 32% error-
probability on the test can the null-hypothesis (i.e., that the data is normal) be rejected.
Second, we computed the Bartlett-statistics to check the equality of within group variances

76 ZS. KALMÁR, CS. SZEPESVÁRI AND A. LŐRINCZ

and obtainedK2 = 13, 2786 which corresponds to a probability of0, 82 with f = 19
being the degrees of freedom, thus the hypothesis on the equality of variances can be
accepted. After thisANOVA was performed. The variance table is shown in Table
4. The results of theANOVA are shown in Table 5. The main conclusions of this
analysis are that with a 90% confidence i) there is no interaction in between the temperature
and the algorithms, i.e., the effects of these are can be decoupled (p = 0.74); ii) the
regret is not effected by the temperature (p = 0.27), but iii) the choice of algorithms
influences the regret (p = 0). Considering the average regrets for the different algorithms
one gets the ordering (ADP,ARTDP,RTQL:SC,RTQL:0,25,RTQL:0,1) in terms of
increasing regret. Further analysis showed that thep-levels for the differences between
the means areADP-ARTDP:0,44,ARTDP-RTQL:SC: 0,37,RTQL:SC-RTQL:0,1:
0,41,RTQL:0,1-RTQL:0,25: 0,77, i.e., the model-based algorithms have a significant
advantage over the model-free ones, among which the best algorithm which uses the search-
and-then-converge learning rate schedule performs significantly better than the others with
constant learning rates.

We have also tested another exploration strategy which Thrun found the best among
several undirected methods12 (Thrun, 1992). These runs reinforced our previous findings
that estimating a model (i.e., runningADP orARTDP instead of Q-learning) could reduce
the regret rate by as much as 50%.

Table 5. The table shows the results ofANOVA at the confidence level
of 90%. The rows give the same statistics for different groups of data. SS is
the sum of squares, df is the degrees of freedom for the F-statistics, MS is the
empirical variance, F is the obtained F-statistics andFcrit. is the critical F-value
at the confidence level 90%. IfF ≥ Fcrit.then the null-hypothesis that the given
factor doesnot influence the variances must berejectedat the given level.

Factors\Statistics SS df MS F p-value Fcrit.

Temperature 1162.11 3 387.37 1.331237 0.270082 2.718785

Algorithm 11997.86 4 2999.465 10.30797 0 2.485883

Between groups 2460.54 12 205.045 0.704658 0.742507 1.875261

Within group 23278.8 80 290.985

Total 38899.31 99

4. Related work

There are two main research tracks that influenced our work. The first was the in-
troduction of features inRL. Learning while using features was studied by Tsitsiklis
and Van Roy to deal with large finite state spaces, and also to deal with infinite state
spaces (Tsitsiklis & Van Roy, 1995). Working on the output of features can well make
the problem partially observable, so one should not expect thatRL algorithms that in-
volve optimization will work in general (the theoretical results of Tsitsiklis and Van Roy
concern only estimation types of algorithms, such as TD(λ), or non-adaptive algorithms

MODULE-BASED REINFORCEMENT LEARNING 77

(Tsitsiklis & Van Roy, 1996)). Issues of learning in partially observable environments have
been discussed by Singh et al., (1995).

The second track is related to the use of local controllers together with a switching function
that selects the controller to be activated at any arbitrary time. In connection with this topic,
very recently and independently of us, Sastry proposed the use of a hybrid-control approach
to solve complex problems like highway-traffic control (Sastry, 1997). He proposed the
design of several controllers, such as a car-following controller and an overtaking-controller,
among others, which are imagined to work under different and well-specified conditions.
He assumed that the system dynamics were known and so the main concern of his approach
was to find a switching controller that switched between the different controllers and that
met certain requirements such as safety, maximal comfort (of the passengers) and maximal
throughput (of the highway), the criteria importance having been ordered in this way. He
used analytical tools to derive the accessibility decision problem and suggested worst-case
analysis to prove feasibility. Clearly, in contrast with his, we assume here only a qualitative
knowledge of the system-dynamics, which nevertheless enables us to design the modules
and perform a preliminary feasibility analysis. Further, we let let the system itself find a
good switching strategy by adapting to the actual environment.

A different approach was taken by Connell and Mahadevan whose work complements
ours in that they set up subtasks to be learned byRL and fixed the switching controller
(Mahadevan & Connell, 1992). The main aim of their work was to prove thatRL could be
applied to learn good controllers at the noisy and unreliable sensor-actuator level, where
also the state and action spaces were infinite. They found that statistics-based clustering
combined withRL could solve this problem. Dorigo and Colombetti (1994) also considered
the learning controllers using genetic algorithms. In future, we plan to extend our work
in this direction, i.e., only the subtask decomposition and the features will be designed
by hand, andRL will then be employed to learn both the low-level controllers and the
switching controller, possibly simultaneously (for other hierarchicalRL studies see the
survey (Kaebling et al., 1996) and the references therein).

Asada et al., considered many aspects of mobile-robot learning. They applied a vision-
based state-estimation approach and defined “macro-actions” similar to our controllers
(Asada et al., 1996). In one of their papers, they describe a goal-shooting problem in which
a mobile robot shot a goal while avoiding another robot (Uchibe et al., 1996). First, the
robot learned two behaviors separately: the “shoot” and “avoid” behaviors. Then, the two
behaviors were synthesized by a handcrafted rule and later this rule was refined viaRL.
The learned action values of the two behaviors were reused in the learning process while
the combination of rules took place at the level of state variables.

Matarić considered a multi-robot learning task where each robot had the same set of
behaviors and features (Matari´c, 1997). Although the features of Matari´c could clearly
be interpreted as operating conditions of behaviors she did not restrict the applicability of
the behaviors to the appropriate subspaces, which increased the complexity of the decision
problem unnecessarily. Just as in our case, her goal was to learn a good switching function
byRL. She considered the case when each of the robots learned separately and the ultimate
goal was that learning should lead to a good collective behavior, i.e., she concentrated mainly
on the more involved multi-agent perspective of learning. She found that Q-learning worked
badly compared to her “shaped reinforcement” approach, which she found to be comparable

78 ZS. KALMÁR, CS. SZEPESVÁRI AND A. LŐRINCZ

to a handcrafted rule. In her approach, time averages of summed and appropriately defined
immediate reinforcements served as the basis of decisions, i.e., the handcrafted immediate
reinforcements balanced the different aspects of the task and helped encode the structure
of the switching function. This design required a lot ofa priori knowledge and experience,
and seemed to be costly compared to the design of a good switching function. In her
experiments with Q-learning, Matari´c used a sparse reward structure, a unit reward was
communicated to the learner when it reached the goal, otherwise a reward of zero was
given. However, it is well known that dense rewards facilitate clever exploration rather than
sparse ones. (If dense rewards are used, the agent will be able to differentiate between tried
and untried actions independently of whether the goal is reached or not, which can reduce
the search complexity in the trials considerably (Koenig & Simmons, 1997)). In contrast to
her work, we followed a more engineering-oriented approach when we suggested designing
the modules based on well-articulated and simple principles. Contrary to her findings, we
discovered thatRL (with a dense-reward structure) can indeed work well at the modular
level.

In the AI community, there is an interesting approach to mobile-robot control called
Behavior-Based Artificial Intelligence in which “competence” modules or behaviors have
been proposed as the building blocks of “creatures” (Maes, 1991b, Brooks, 1991b). Each
of these modules has a list of preconditions similar to our own operating conditions cited
here. The decision-making procedure is, on the other hand, usually quite different from
ours. Maes, for example, proposed what she called a local-computation scheme. The
modules were linked together through different channels and may inhibit or excite each
other. Activation was spread along the channels and accumulated at the most relevant
behavior nodes. The behavior whose activation first went above threshold was selected and
executed. After finishing the behavior, the activation level of the behavior was reset to zero
and the whole process repeated. Like every ad hoc method, this method required careful
tuning. Tyrrell found that, in a complex decision task aimed to simulate the task faced by
a zebra living in the African Savannah, the decision-making mechanism by Maes could
not work well compared to other action-selection mechanisms. Moreover, he added that
there might be theoretical reasons behind this failure (Tyrrell, 1993). Maes later pointed
out that Tyrrell’s findings could be debated (Maes, 1991a). In another work of hers, she
also proposed the learning of links between the modules (Maes, 1992) and she also tried
out this on a real-robot (Maes & Brooks, 1990).

Yet another main direction of automatic robot programming research uses genetic algo-
rithms to find good robotic programs (see e.g., Brooks, 1991a, Koza and Rich 1992) in a
space of possible programs. Alternatively basic behaviors, including their coordination,
can be learned by using a classifier systems’ approach (Dorigo, 1995) and genetic algo-
rithm. Like us, Dorigo also emphasized that design and learning should be well balanced
and outlined a general “methodology for behavior engineering” (Colombetti et al., 1996).
Here we have gone further as we suggested specific tools which link the design issues
to theoretically well based disciplines such as planning inAI systems, classical control
designs and reinforcement learning. In this way a consistent view of the design issues
has been developed and so the role of different components (models, planning, subgoals,
behaviors, operating conditions, features, filters, modules, reinforcement, learning, etc.)
becomes clear. Nevertheless, Dorigo touched some issues which are outside the scope

MODULE-BASED REINFORCEMENT LEARNING 79

of our work. For example, he considered some further complex relationships between
behaviors, such as the combination, ‘independent sum’ and sequences of controllers, i.e.,
respectively: the superposition of control signals coming from different local controllers;
different local controllers operating simultaneously but affecting a disjoint set of actuators;
and the operation where controllers are only used sequentially, each controller waiting for
the preceding controller to ’finish’ before acting. Sequencing can be viewed as a tool to
resolve problems related to partial observability. It is a form of implicit memory usage and
could be easily incorporated in our framework by adding a feature which becomes activated
only when a controller finishes working. The other two relationships can be viewed as tools
to exploit different properties of the task, such as a superposition property of control in the
case of combination and subgoal independence (Korf, 1987) in the case of ‘independent
sum’.

A more involved problem related to subgoal independence has recently been explored by
Singh and Cohn (1997) who considered the problem of finding an optimal policy in the direct
product of a finite set of MDPs with asingleaction set (the state space of the productMDP
is the direct product of the state spaces of the individual MDPs, the transition probabilities
are also multiplied, but the rewards are summed up). True subgoal independence could be
modeled in this way if the action sets were independent.13 As noted in (Korf, 1987), the
importance of independent subgoals should not be underestimated:i) independent subgoals
reduce the branching factor by allowing the problem solver to focus on only a subset of
actions at any given time andii) most goals that we try to satisfy in our everyday life
are almost independent. In the case of ii), think of the independence of actions needed to
accomplish chores, job-related tasks, and recreational or social objectives related tasks. The
only dependence between these tasks is the limited resources (time or money) available.
Note that this dependence is quite weak until we reach the limit of these resources. As we
do not have any restrictions on the kind of subgoals to be used, independent subgoals can
indeed be utilized in our design, however the notion of composite actions are not currently
supported.

Sometimes dependence of subgoals is explicit and clear. For example, Dorigo and Colom-
betti (1994) implicitly use dependent subgoals to define useful behaviors, e.g., in their def-
inition of Chase/Feed/Escape behavior when they declare that in this behavior the subgoal
of escaping from a predator has precedence over the subgoal of feeding which again has
precedence over chasing moving objects. In MDPs such precedence relations can be cap-
tured by certain vector-valued evaluation functions (Henig, 1983) and alsoRL algorithms
can be derived which take into account the predefined precedences (G´abor et al., 1998).

Our module concept (operating conditions together with controllers) fits well with the
skill concept of Thrun and Schwartz (1995) who derived an algorithm that learns “skills”
useful to complete a set of tasks. The algorithm minimizes the sum of the loss due to
the use of skills (instead of the low level actions) and the storage size needed to represent
the policies using the acquired skills. They note that skills are also needed in certain
single tasks. Here we would like to note that multiple task problems usually correspond to
a subgoal decomposition of a single task (with e.g., independent, or serializable, or block
serializable subgoals). We find this view fascinating since this is why it becomes meaningful
to speak about the interplay of the subtasks! The algorithm of Thrun and Schwartz (1995)
saves memory since a skill has a single associated value for each (sub)task independently

80 ZS. KALMÁR, CS. SZEPESVÁRI AND A. LŐRINCZ

of the actual state of the system. Skills also have domains which can be identified with
our operating conditions – only those skills can be activated whose domain indicator are
triggered by the actual state. In Thrun & Schwartz (1995) the probability of choosing an
available skill is proportional to its squared value. The learned domains of skills could
provide a very useful way of doing state-space abstraction when a trueRL algorithm would
work on the top of the feature space induced by these domains, as in our case where theRL
algorithm worked on the feature space induced by the operating conditions. Restricting the
decisions to be only dependant on the features’ values introduces deviations from optimality
but enables the introduction of hierarchies of modules (more precisely, a lattice structure
over the modules): every module can activate any other module at a lower level in the
hierarchy (the hierarchy prevents infinite cycles) or a low level action. A method similar to
that of Thrun and Schwartz (1995) could then be used to invent operating conditions and/or
the relationships among the modules, i.e., their coordination. The operating conditions
of a controller could also be learned by relying on their definitions. Another application
could be to directly use the algorithm of (Thrun & Schwartz, 1995) in the planning phase
provided that the qualitative plant model is given as aMDP. This is the subject of our future
research. Note that, in contrast to the macro-action utilization of (Precup et al., 1997), where
the macro actions are used in a transparent manner (i.e., the computed policy can eventually
be given purely by simple actions) to facilitate planning, we suggest to transfer information
about subgoal decompositions to the actual control level also. This serves the purpose of
task-oriented abstracting space, time and action. The idea of (Precup et al., 1997) (and also
that of Thrun and Schwartz (1995)) could be utilized in the planning phase of our method
to initialize the coordination of behavior modules.

It is very important to note that the qualitative knowledge of the plant can be represented by
any method, such as dynamical equation, symbolic rules, and is not restricted to MDPs. This
may mean a very compact representation and may enable different kind of algorithms to work
at the planning phase. Earlier, we suggested a method to learn a rule based representation
on the top of anMDP representation (Kalm´ar et al., 1994, Kalm´ar et al., 1995). This
algorithms relies on a ‘triplet’ representation of MDPs (see Szepesv´ari and Löincz, 1994,
Szepesv´ari, 1994) when transitions are represented and evaluated instead of state-action
pairs or states. Transitions are then interpreted as rules that apply to specific situations and
are combined to get new, more general rules which apply to a larger set of situations. We
argued that the algorithm works well in deterministic problems (Kalm´ar et al., 1995). Such
an algorithm, when only the most probable transitions are kept, could well be used to derive
the qualitative representation needed in the planning phase of the method presented here.

5. Summary and conclusions

Following the traditions ofRL based robot programming, an approach to module-based
reinforcement learning was proposed to solve the coordination of multiple “behaviors” or
controllers. Extended features (filters) served as the basis of time and space discretization
as well as specifying the operating conditions of the modules. The construction principles
of the modules were to:i) decompose the problem into subtasks using a qualitative model
of the plant;ii) for each subtask, design controllers and specify the controllers’ operating
conditions using a more detailed model of the plant;iii) check if the problem could be

MODULE-BASED REINFORCEMENT LEARNING 81

solved by the controllers under the operating and observability conditions, add additional
features or modules if necessary;iv) set up the reinforcement function and learn a switching
function from experience. Although individual elements of our methods existed previously
in the literature, we have combined them into a single, coherent, framework.

One particularly important motivation behind our approach was that a partially observable
decision problem can usually be transformed into a completely observable one if appropriate
features and local controllers are employed. Of course, somea priori knowledge of the task
and robot is required to find those features and controllers. However, it is important to note
that because of the adaptive part, the controllers and the interactions among them need not
to be fine-tuned which allows quick and easy development of robot programming. It was
argued thatRL could work well even if the resulting problem was only almost stationary.

The design principles were applied to a fairly complex real-life robot learning problem and
severalRL-algorithms were compared in practice using the Analysis of Variance. We found
that estimating the model and solving the optimality equation at each step (which could be
done owing to the economic, feature-based time-discretization) yielded significantly better
results than other approaches. The robot learned the task after 700 decisions, which usually
took less than 15 minutes in real-time. We conjecture that using a rough initial model good
initial solutions could be computed off-line that could further decrease the time required to
learn the optimal solution for the task.

The main difference between earlier works and our approach here is that we have es-
tablished principles for the design modules and found that our subsequent design and
simpleRL worked splendidly. Plans for future research include extending the method via
automatic subtask decomposition mechanisms, the learning of modules and operating con-
ditions, and even by the learning of qualitatively correct world models which can be used
in the planning phase to invent the subtask decomposition. These would reduce the amount
of a priori human knowledge which is important when human knowledge is unavailable
such as in industrial process control. Also the analysis of almost stationarity in decision
problems would be important to consider since this notation may provide a bridge between
the theory, when we consider probabilistic models and practice, which corresponds to a
deterministic, but chaotic world.

Acknowledgments

The authors would like to thank Zolt´an Gábor for his efforts of building the experimental
environment. This work was supported by the CSEM Centre Suisse d’Electronique et de
Microtechnique, Switzerland, OTKA Grants No. F20132 and T017110, and the Hungarian
Ministry of Education Grant No. FKFP 1354/1997.

Notes

1. If the state space is infinite then not all sensor-based features can be realized in practice.

2. If time is continuous, then recursive features should be replaced by features that admit continuous-time
dynamics such aṡf = R(x, a, f). In order to have a finite-space output, such features should be used
together with discretization mappings, i.e., the output of the feature is given byhR(f) instead off , where
hR : F0 → F is a discretization mapping,F0 being a suitable subset of a vector space (such as a connected
subset of<) andF the finite feature space.

82 ZS. KALMÁR, CS. SZEPESVÁRI AND A. LŐRINCZ

3. For continuous-time systems some additional care is needed since arbitrarily fast transitions cannot be observed
in practice. This places restrictions on the dynamics of the system and its features, but we do not concern
ourselves with such structural questions here. In digital control, time is already discretized, but the introduction
of feature-jump based clocks is still worth the effort since the complexity of the feature-level “dynamics” might
be a great deal simpler than the original one.

4. This is a very important restriction: It reduces the problem complexity hugely, by a factor of1/22n(1+o(1)),
wheren is the number of operating conditions.

5. One exception may be a controller whose purpose is just to maintain the “goal state”.

6. Again, the goal state may be retained for an infinitely long period of time.

7. Note that as the original control problem is deterministic it is not immediate when the introduction of proba-
bilities can be justified. One idea is to refer to the ergodicity of the control problem.

8. The Khepera was designed and built at Laboratory of Microcomputing, Swiss Federal Institute of Technology,
Lausanne, Switzerland.

9. Modules are numbered by the identification number of their features.

10. All the feature functions of the modules could be implemented as a threshold sum of the measurements of one
sensor modality. The thresholds were chosen in such a way that the task remained solvable, but no additional
fine-tuning of these parameters was performed. Nevertheless, the values of these parameters could influence
the resulting performance.

11. The theoretically-funded inverse logarithmic decrease was tried as well, but it was found to yield worse on-line
performances than the faster geometric decrease, which, in this particular specific case, seemed to guarantee
the sufficiency of exploration.

12. An exploration strategy is calledundirectedwhen the exploration does not depend on the number of visits to
the state-action pairs.

13. Korf’s definition would also require that only one action is chosen at each time step from the union of the
disjoint action sets (Korf, 1987), but this is unnecessarily restricting in our case.

References

Asada, M., Noda, S., Tawaratsumida, S. & Hosoda, K. (1996). Purposive behavior acquisition for a real robot by
vision-based reinforcement learning.Machine Learning, 23:279–303.

Barto, A.G., Bradtke, S.J. & Singh, S.P. (1995). Learning to act using real-time dynamic programming.Artificial
Intelligence, 1(72):81–138.

Bellman, R. (1957).Dynamic Programming. Princeton University Press, Princeton, New Jersey.
Birk, A. & Demiris, J. (1998). Sixth European Workshop on Learning Robots. Lecture Notes in Artificial

Intelligence. Springer, Berlin, 1998.
Brafman, R.I. & Moshe, T. (1997). Modeling agents as qualitative decision makers.Artificial Intelligence, 94

(1):217–268.
Branicky, M.S. (1995).Studies in Hybrid Systems: Modeling, Analysis, and Control. PhD thesis, Laboratory of

Information and Decision, MIT, 77 Massachusetts Avenue, Cambridge, MA 02139-4307 USA.
Branicky, M.S., Borkar, V.S. & Mitter, S.K. (1994). A unified framework for hybrid control: Background,

model, and theory. Technical report lids-p-2239, Laboratory for Information and Decision Systems, MIT, 77
Massachusetts Avenue, Cambridge, MA 02139-4307 USA.

Brockett, R.W. (1993). Hybrid models for motion control systems. InEssays in Control: Perspectives in the
Theory and its Applications, pages 29–53. Birkh¨auser, Boston.

Brooks, R. (1991a). Artificial life and real robots. InProceedings of the First European Conference on Artificial
Life (ECAL), pages 3–10. MIT Press.

Brooks, R.A. (1991b). Elephants don’t play chess. InDesigning Autonomous Agents. Bradford-MIT Press,
1991.

Chrisman, L. (1992). Reinforcement learning with perceptual aliasing: The perceptual distinctions approach. In
Proceedings of the Tenth National Conference on Artificial Intelligence, pages 183–188, San Jose, CA. AAAI
Press.

Colombetti, M., Dorigo, M. & Borghi, G. (1996). Behavior analysis and training: A methodology for behavior
engineering.IEEE Transactions on Systems, Man, and Cybernetics-Part B, 26(3):365–380.

MODULE-BASED REINFORCEMENT LEARNING 83

de Kleer, J. & Seely, B.J. (1984). A qualitative physics based on confluences.Artificial Intelligence, 24(1–3):
7–83.

Dorigo, M. (1995). Alecsys and the autonomouse: Learning to control a real robot by distributed classifier
systems.Machine Learning, 19(3):209–240.

Dorigo, M. & Colombetti, M. (1994). Robot shaping: Developing autonomous agents through learning.Artificial
Intelligence, 71:321–370.

Gábor, Z., Kalmár, Zs. & Szepesv´ari, Cs.. (1998). Multi-criteria reinforcement learning. Technical report
98-115, Research Group on Artificial Intelligence, JATE-MTA.

Grossman, R.L., Nerode, A., Ravn, A. P. & Rischel, H. (1993).Hybrid Systems, volume 736 ofLecture Notes in
Computer Science. Springer-Verlag, New York.

Heger, M. (1996). The loss from imperfect value functions in expectation-based and minimax-based tasks.
Machine Learning, 22:197–225.

Henig, M.I. (1983). Vector-valued dynamic programming.SIAM J. Control and Optimization, 21(3):490–499.
Jaakkola, T., Jordan, M.I. & Singh, S.P. (1994). On the convergence of stochastic iterative dynamic programming

algorithms.Neural Computation, 6(6):1185–1201.
Kaebling, L.P., Littman, M.L. & Moore, A.W. (1996). Reinforcement learning: A survey.Journal of Artificial

Intelligence Research, 4:237–285.
Kalmár, Zs., Szepesv´ari, Cs. & Lőrincz, A. (1994). Generalization in an autonomous agent. InProc. of IEEE

WCCI ICNN’94, volume 3, pages 1815–1817, Orlando, Florida. IEEE Inc.
Kalmár, Zs., Szepesv´ari, Cs. & Lőrincz, A. (1995). Generalized dynamic concept model as a route to construct

adaptive autonomous agents.Neural Network World, 5:353–360.
Kalmár, Zs., Szepesv´ari, Cs. & Lőrincz, A. (1997). Module based reinforcement learning for a real robot. In

Proc. of the 6th European Workshop on Learning Robots, pages 22–32.
Koenig, S. & Simmons, R.G. (1997). Complexity analysis of real-time reinforcement learning applied to finding

shortest paths in deterministic domains.Machine Learning: A Special Issue on Reinforcement Learning, 12:
234–345.

Korf, R.E. (1985a). Learning to solve problems by searching for macro-operators. Pitman Publisher, Mas-
sachusetts.

Korf, R.E. (1985b). Macro-operators: A weak method for learning.Artificial Intelligence, 26:35–77.
Korf, R.E. (1987). Planning as search: A quantitative approach.Artificial Intelligence, 33:65–88.
Koza, J.R. & Rice, J.P. (1992). Automatic programming of robots using genetic programming. InProceedings

of Tenth National Conference on Artificial Intelligence, pages 194–201, Menlo Park, CA. AAAI Press/The MIT
Press.

Kumar, P.R. (1985). A survey of some results in stochastic adaptive controls.SIAM Journal of Control and
Optimization, 23:329–380.

Littman, M.L. (1996).Algorithms for Sequential Decision Making. PhD thesis, Department of Computer Science,
Brown University. Also Technical Report CS-96-09.

Littman, M.L. & Szepesv´ari, Cs. (1996). A Generalized Reinforcement Learning Model: Convergence and
applications. InInt. Conf. on Machine Learning, pages 310–318.

Lygeros, J., Godbole, D.N. & Sastry, S.S. (1997). A design framework for hierarchical, hybrid control.IEEE
Transactions on Automatic Control, special issue on Hybrid Systems. (submitted).

Maes, P. (1991a). Adaptive action selection. InProc. of the Thirteenth Annual Conf. of the Cognitive Science
Society. Lawrence Erlbaum Associates.

Maes, P. (1991b), A bottom-up mechanism for behavior selection in an artificial creature. In J.A. Meyer and
S. Wilson, editors,Proc. of the First International Conference on Simulation of Adaptive Behavior. MIT Press.

Maes, P. (1992). Learning behavior networks from experience. InToward a Practice of Autonomous Systems
(Proc. First European Conference on Artificial Life), pages 48–57. MIT Press, Cambridge, Massachusetts.

Maes, P. & Brooks, R.A. (1990). Learning to coordinate behaviors. InProc. of AAAI-90, pages 796–802, Boston,
MA.

Mahadevan, S. & Connell, J. (1992). Automatic programming of behavior-based robots using reinforcement
learning. Artificial Intelligence, 55:311–365.

Matarić, M. (1997). Reinforcement learning in the multi-robot domain.Autonomous Robots, 4.
McCallum, R.A. (1993). Overcoming incomplete perception with utile distinction memory. InProceedings of

the Tenth International Conference on Machine Learning, pages 190–196, Amherst, Massachusetts. Morgan
Kaufmann.

Munos, R. (1997). Finite-element methods with local triangulation refinement for continuous reinforcement
learning problems. In M.van Someren and G. Widmer, editors,Machine Learning: ECML’97 (9th European

84 ZS. KALMÁR, CS. SZEPESVÁRI AND A. LŐRINCZ

Conf. on Machine Learning, Proceedings), volume 1224 ofLecture Notes in Artificial Intelligence, pages
170–183. Springer, Berlin.

Newell, A. & Simon, H.A. (1972).Human Problem Solving. Prentice-Hall, Englewood Cliffs, NJ.
Parr, R. & Russell, S. (1997). Reinforcement learning with hierarchies of machines. InAdvances in Neural

Information Processing Systems 11, Cambridge, MA. MIT Press. in press.
Pólya, Gy.. (1945).How to solve it?Princeton University Press, Princeton, NJ.
Precup, D., Sutton, R.S. & Singh, S.P. (1997). Planning with closed-loop macro actions. InWorking notes of the

1997 AAAI Fall Symposium on Model-directed Autonomous Systems. AAAI Press/The MIT Press. in press.
Ross, S.M. (1970).Applied Probability Models with Optimization Applications. Holden Day, San Francisco,

California.
Sacerdoti, E.D. (1974). Planning in a hierarchy of abstraction spaces.Artificial Intelligence, 5:115–135.
Sastry, S. (1997). Algorithms for design of hybrid systems. InProc. of Int. Conf. of Information Sciences.
Say, A.C.C. & Selahattin, K. (1996). Qualitative system identification: deriving structure from behavior.Artificial

Intelligence, 83(1):75–141.
Singh, S. & Cohn, D. (1997). How to dynamically merge markov decision processes. InAdvances in Neural

Information Processing Systems 11, Cambridge, MA. MIT Press. in press.
Singh, S., Jaakkola, T., Littman, M.L. & Szepesv´ari, Cs.. (1997). On the convergence of single-step on-policy

reinforcement-learning algorithms.Machine Learning. accepted.
Singh, S.P. (1992). Reinforcement learning with a hierarchy of abstract models. InProceedings of the Tenth

National Conference on Artificial Intelligence, pages 202–207, San Jose, CA. AAAI Press.
Singh, S.P., Jaakkola, T. & Jordan, M.I. (1995). Learning without state-estimation in partially observable

markovian decision processes. InProc. of the Eleventh Machine Learning Conference, pages pp. 284–292.
Sutton, R.S. (1996). Generalization in reinforcement learning: Successful examples using sparse coarse coding.

Advances in Neural Information Processing Systems, 8.
Sutton, R.S. (1984). Temporal Credit Assignment in Reinforcement Learning. PhD thesis, University of

Massachusetts, Amherst, MA.
Szepesv´ari, Cs. (1994). Dynamic Concept Model learns optimal policies. InProc. of IEEE WCCI ICNN’94,

volume 3, pages 1738–1742, Orlando, Florida. IEEE Inc.
Szepesv´ari, Cs. (1997a). Learning and exploitation do not conflict under minimax optimality. In M.van

Someren and G. Widmer, editors,Machine Learning: ECML’97 (9th European Conf. on Machine Learning,
Proceedings), volume 1224 ofLecture Notes in Artificial Intelligence, pages 242–249. Springer, Berlin.

Szepesv´ari, Cs. (1997b). Static and Dynamic Aspects of Optimal Sequential Decision Making. PhD thesis,
Bolyai Institute of Mathematics, University of Szeged, Szeged, Aradi vrt. tere 1, HUNGARY, 6720.

Szepesv´ari, Cs. & Littman, M.L. (1997). Generalized Markov Decision Processes: Dynamic programming and
reinforcement learning algorithms.Neural Computation. in preparation.

Szepesv´ari, Cs. & Lőrincz, A. (1994). Behavior of an adaptive self-organizing autonomous agent working with
cues and competing concepts.Adaptive Behavior, 2(2):131–160.

Thrun, S.B. (1992).The role of exploration in learning control. Van Nostrand Rheinhold, Florence KY.
Thrun, S. & Schwartz, A. (1995). Finding structure in reinforcement learning. In Gerald Tesauro, David S.

Touretzky, and Todd K. Leen, editors,Advances in Neural Information Processing Systems, volume 7, pages
385–392. The MIT Press, Cambridge.

Tóth, G.J., Kovács, Sz. & Lőrincz, A. (1995). Genetic algorithm with alphabet optimization.Biological
Cybernetics, 73:61–68.

Tsitsiklis, J.N. (1994). Asynchronous stochastic approximation and q-learning.Machine Learning, 8(3–4):
257–277.

Tsitsiklis, J.N. & Van Roy, B. (1996). Feature-based methods for large scale dynamic programming.Machine
Learning, 22:59–94.

Tsitsiklis, J.N. & Van Roy, B. (1995). An analysis of temporal difference learning with function approximation.
Technical Report LIDS-P-2322, Laboratory for Information and Decision Systems, Massachusetts Institute of
Technology.

Tyrrell, T. (1993). Computational Mechanisms for Action Selection. PhD thesis, University of Edinburgh.
Uchibe, E., Asada, M. & Hosoda, K. (1996). Behavior coordination for a mobile robot using modular reinforcement

learning. InProc. of IEEE/RSJ Int. Conf. on Intelligent Robot and Sytems, pages 1329–1336.
Watkins, C.J.C.H. & Dayan, P. (1992). Q-learning.Machine Learning, 3(8):279–292.
Werbös, P.J. (1977). Advanced forecasting methods for global crisis warning and models of intelligence.General

Systems Yearbook, 22:25–38.
Wiering, M. & Schmidhuber, J. (1997). HQ-learning.Adaptive Behavior, 6(2).

MODULE-BASED REINFORCEMENT LEARNING 85

Zabczyk, J. (1973). Optimal control by means of switching.Studia Mathematica, 65:161–171.

Received September 1, 1997
Accepted December 30, 1997
Final Manuscript February 1, 1998

