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Abstract. During a project examining the use of machine learning techniques for oil spill detection, we encountered
several essential questions that we believe deserve the attention of the research community. We use our particular
case study to illustrate such issues as problem formulation, selection of evaluation measures, and data preparation.
We relate these issues to properties of the oil spill application, such as its imbalanced class distribution, that
are shown to be common to many applications. Our solutions to these issues are implemented in the Canadian
Environmental Hazards Detection System (CEHDS), which is about to undergo field testing.
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1. Introduction

In this paper we describe an application of machine learning to an important environmental
problem: detection of oil spills from radar images of the sea surface. We cover the applica-
tion cycle from the problem formulation phase to the delivery of a system for field testing.
The company that sponsored this work, Macdonald Dettwiler Associates, has just begun
the final phases of the cycle—field testing, marketing, and deployment. This paper focuses
on the research issues that arose during the development of the Canadian Environmental
Hazards Detection System (CEHDS). These issues cover the entire gamut of activities re-
lated to machine learning, from initial problem formulation, through methodology design,
to the usual technical activities. For most of the issues, including the technical ones, we
found few pertinent studies in the research literature. The related work we did find was
usually by others working on a particular application. The primary purpose of this paper
is to present to the machine learning research community a set of open research issues that
are of general importance in machine learning applications. We also present the approach
taken to these issues in our application.

* Current affiliation/address: Center for Advanced Computer Studies, The University of Southwestern Louisiana,
Lafayette, LA 70504-4330, and Computer Science Department, Southern University at Baton Rouge, Baton Rouge,
LA 70813-0400, U.S.A., mkubat@cacs.usl.edu
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Figure 1. An example of a radar image of the sea surface

1.1. The Application Domain

Only about 10% of oil spills originate from natural sources such as leakage from sea beds.
Much more prevalent is pollution caused intentionally by ships that want to dispose cheaply
of oil residues in their tanks. Radar images from satellites such asRADARSAT andERS-

1 provide an opportunity for monitoring coastal waters day and night, regardless of weather
conditions. Oil slicks are less reflective of radar than the average ocean surface, so they
appear dark in an image. An oil slick’s shape and size vary in time depending on weather
and sea conditions. A spill usually starts out as one or two slicks that later break up into
several smaller slicks. Several natural phenomena (e.g., rain, algae) can closely resemble
oil slicks in radar images. They are calledlookalikes.

Figure 1 shows a fragment of aSAR (Synthetic Aperture Radar) image of the North
Sea with an oil slick in it. The full image consists of 8,000x8,000 pixels, with each pixel
representing a square of 30x30m; the fragment shown here is approximately70 × 50
kilometers. The oil slick is the prominent elongated dark region in the upper right of the
picture. The dark regions in the middle of the picture and the lower left are lookalikes, most
probably wind slicks (winds with speeds exceeding 10m/sec decrease the reflectance of the
radar, hence the affected area looks darker in a radar image).

1.2. Previous Work on Oil Spill Detection

Since the early days of satellite technology andSAR there have been attempts to detect oil
spills from radar images. The state of the art is represented by the preoperational service
for identifying oil spills inERS-1 images that has been offered since 1994 by the Tromsø
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Satellite Station (TSS) in Norway. This service is entirely manual; humans are trained to
distinguish oil spills from nonspills in satellite images.TSS recognizes the desirability of
having an automatic system to reduce and prioritize the workload of the human inspectors,
and has supported research to develop systems for this purpose. This research has recently
produced two systems (Solberg & Solberg, 1996; Solberg & Volden, 1997), but neither has
yet been incorporated intoTSS’s service. Our system was developed in parallel with, and
independently of, these two systems.

The system described by Solberg and Solberg (1996) uses learning to produce a classifier in
the form of a decision tree. As this system is similar to ours in many ways, it will be reviewed
in detail in the discussion of our results.TSS’s most recent automatic classification system
(Solberg & Volden, 1997) is more knowledge intensive. The classifier is a statistical system
in which the prior probability of a region being an oil spill is computed using a domain
theory that relates features of the region to the prior. The prior is then combined with a
Gaussian classifier that has been learned from training data. The system performs very
well, correctly classifying 94% of the oil spills and 99% of the nonspills. The system relies
heavily on the knowledge of the wind conditions in the image, and it was necessary for
theTSS team to develop techniques for inferring this from the image. This crucial piece
of information is not available to our system, as we do not at present have methods for
inferring wind conditions.

Elsewhere a group of environmental scientists and remote sensing experts have developed
a preliminary model of properties of an oil spill image. The model, expressed as a decision
tree (Hovland, Johannessen & Digranes, 1994), uses attributes such as the shape and size
of the dark regions in the image, the wind speed at the time when the image was taken, the
incidence angle of the radar beam, proximity to land, etc. The model has been evaluated on
artificial data from a controlled experimental slick, as well as on data from aSAR image
of a real slick. The conclusion was that the model performed well on the artificial data,
but was inconsistent with the current physical theory of slick reflectance, and did not agree
with theSAR images.

A similar problem of classification of ice imagery into age groups has received attention
in the image processing and remote sensing literature. Heerman and Khazenie (1992) used
a neural network trained by backpropagation to classify Arctic ice into “new” and “old.”
Haverkamp, Tsatsoulis and Gogineni (1994) developed a rule based expert system in which
the rules were acquired from experienced human experts. The performance of this system
exceeded by some 10% the accuracy of previous systems which relied on the brightness
of pixels for classification without any use of symbolic features describing higher level
attributes of the classified objects.

2. Task Description

An oil spill detection system based on satellite images could be an effective early warning
system, and possibly a deterrent of illegal dumping, and could have significant environ-
mental impact. Oil spill detection currently requires a highly trained human operator to
assess each region in each image. A system that reduced and prioritized the operator’s
workload would be of great benefit, and the purpose of our project was to produce such a
system.CEHDS is not intended for one specific end user. It is to be marketed worldwide
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to a wide variety of end users (e.g., government agencies, companies) with different objec-
tives, applications, and localities of interest. It was therefore essential that the system be
readily customizable to each user’s particular needs and circumstances. This requirement
motivates the use of machine learning. The system will be customized by training on ex-
amples of spills and nonspills provided by the user, and by allowing the user to control the
tradeoff between false positives and false negatives. Unlike many other machine learning
applications (e.g., the fielded applications described by Langley and Simon (1995)), where
machine learning is used to develop a classifier which is then deployed, in our application
it is the machine learning algorithm itself that will be deployed.

The input toCEHDS is a raw pixel image from a radar satellite. Image processing
techniques are used to normalize the image in certain ways (e.g., to correct for the radar
beam’s incidence angle), to identify suspicious dark regions, and to extract features (e.g.,
size, average brightness) of each region that can help distinguish oil spills from lookalikes.
This part of the system was developed by Macdonald Dettwiler Associates, a company
specializing in remote sensing and image processing. The output of the image processing
is a fixed-length feature vector for each suspicious region. During normal operation, these
feature vectors are fed into a classifier to decide which images, and which regions within an
image, to present for human inspection. The operator then makes the final decision about
what response is appropriate.

The classifier is created by the learning algorithm distributed as part ofCEHDS. It is
the development of this learning system that is the focus of this paper. The learner’s input
is the set of feature vectors describing the dark regions produced by the image processing
subsystem. During training the regions are classified by a human expert as oil slicks and
lookalikes. These classifications are imperfect. On some occasions, the expert was not quite
sure whether or not the region was an oil slick, and the class labels can thus be erroneous.
The learner’s output is a classifier capable of deciding whether or not a specific dark region
is an oil spill.

The system’s interface was determined primarily by the requirements set by Macdonald
Dettwiler Associates. Early in the design process it was decided that a unit of output
will be a satellite image, with the regions classified as spills highlighted with a colored
borderline. The total number of images presented for inspection must not be too large. On
the other hand, the fewer images presented, the greater the risk that an actual oil slick will
be missed. Users should therefore have control over the system, so they can easily vary the
number of images presented to them. The classifier should be provided with a parameter
whose one extreme value ensures that the user sees all images (no matter whether they
contain oil slicks or not), and whose other extreme value totally blocks the inspection.
The intermediate values represent the degree of “confidence” the system must have in the
classification of a particular region before the entire image containing the region will be
presented for inspection. When an image is presented, the system highlights all the regions
in it whose likelihood of being a spill exceeds the parameter value. Learning is not required
to be rapid or incremental; training data that becomes available in the future may be used
to create a new training set so that the system can induce a new classifier.
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3. Key Problem Characteristics

In developing the machine learning component of the system, the main design decisions
were critically affected by certain key features of the oil spill detection problem. Many
(though not all) of these features concern characteristics of the oil slick data. Brodley and
Smyth (1995) refer to these aspects of a system’s design as “application factors.”

The first critical feature is thescarcityof data. Although satellites are continually pro-
ducing images, most of these images contain no oil spills, and we did not have access to
an automatic system for identifying those that do (theTSS data and systems reported by
Solberg and collaborators were produced in parallel with our project and, in addition, are
proprietary). A human expert therefore has to view each image, detect suspicious regions,
and classify these regions as positive and negative examples. In addition to the genuine
infrequency of oil spills and the limited time of the expert, the data available is restricted by
financial considerations: images cost hundreds, sometimes thousands of dollars each. We
currently have 9 carefully selected images containing a total of 41 oil slicks. While many
applications work with large amounts of available data (Catlett, 1991), our domain applica-
tion is certainly not unique in its data scarcity. For example, in the drug activity application
reported by Dietterich, Lathrop and Lozano-Perez (1997) the two datasets contain 47 and
39 positive examples respectively.

The second critical feature of the oil spill domain can be called animbalanced training set:
there are very many more negative examples (lookalikes) than positive examples (oil slicks).
Against the 41 positive examples we have 896 negative examples; the majority class thus
comprises almost 96% of the data. Highly imbalanced training sets occur in applications
where the classifier is to detect a rare but important event, such as fraudulent telephone calls
(Fawcett & Provost, 1997), unreliable telecommunications customers (Ezawa, Singh &
Norton, 1996), failures or delays in a manufacturing process (Riddle, Segal & Etzioni, 1994),
rare diagnoses such as the thyroid diseases in the UCI repository (Murphy & Aha, 1994),
or carcinogenicity of chemical compounds (Lee, Buchanan & Aronis, 1998). Extremely
imbalanced classes also arise in information retrieval and filtering tasks. In the domain
studies by Lewis and Catlett (1994), only 0.2% (1 in 500) examples are positive. In the
high-energy physics learning problem reported by Clearwater and Stern (1991), only 1
example in a million is positive.

The third critical feature is that examples are naturally grouped inbatches.The examples
drawn from the same image constitute a single batch. Whenever data is collected in batches,
there is a possibility that the batches systematically differ from one another, or that there is
a much greater similarity of examples within a batch than between batches. In our domain,
for example, the exact parameter settings of the radar imaging system or low-level image
processing are necessarily the same for examples within a batch but could be different for
different batches. Clearly, in our case, the classifier will be learned from one set of images,
and it will be applied on images that were not part of this set. This fact should be taken into
account in the evaluation of the system.

This problem has been mentioned by several other authors, including Burl et al. (1998),
Cherkauer and Shavlik (1994), Ezawa et al. (1996), Fawcett and Provost (1997), Kubat,
Pfurtscheller and Flotzinger (1994), and Pfurtscheller, Flotzinger and Kalcher (1992). For
instance, in theSKICAT system (Fayyad, Weir & Djorgovski, 1993), the “batches” were
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plates, from which image regions were selected. When the system trained on images from
one plate was applied to images from another plate, the classification accuracy dropped
well below that of manual classification. The solution used inSKICAT was to normalize
some of the original features.

The final critical feature relates to theperformance task.The classifier will be used as
a filter—it will decide which images to present to a human. This requirement is quite
pervasive in real-world applications. Fraud detection, credit scoring, targeted marketing,
evaluation ofEEG signals—all of these domains require that a human expert be able to
decide how many “suspicious” cases to pursue. The system must provide the user with a
convenient means of varying “specificity” (higher specificity means fewer false alarms at
the cost of increased risk of missing a genuine oil spill).

4. Problem Formulation Issues

Machine learning research usually assumes the existence of carefully prepared data that is
then subjected only to minor, if any, further processing; an attribute or two might be deleted,
missing values filled in, some classes merged or dropped. In applications, the situation is
not that straightforward (Langley & Simon, 1995). In our case we did not have a precise
statement of the problem, much less a data file prepared in a standard format.

This section briefly discusses issues related to problem formulation. Based on the initial
vague description of the given problem, a successful designer of a learning system must
make crucial decisions about the choice of the learning paradigm, about the representation
and selection of the training examples, and about the categories into which the examples
are going to be classified.

These choices must be made in all applications and they undoubtedly have a profound
effect on the success, or appropriateness, of learning. Yet the exact nature of this effect is
unknown and a systematic study of these aspects is needed.

1. The first decision concernedgranularity. In our application three different approaches
are possible. One of them works with the whole image, and its output simply states
whether the given image contains an oil slick. The second approach works with the
dark regions detected in the images, and provides the user with coordinates of those
regions that are considered as oil spills. Finally, the third approach classifies individual
pixels (“this pixel is part of an oil slick”), for instance as has been done by Ossen,
Zamzow, Oswald and Fleck (1994). The approach operating with pixels represents the
finest granularity, whereas the approach operating with images represents the coarsest
granularity.

Finer granularity provides more examples—compare the millions of pixels, with the
937 regions and 9 images. Moreover, in our application a higher misclassification rate
can be tolerated at the pixel level. 80% accuracy on the pixels in oil slicks is likely to
identify more than 80% of the oil slicks. On the other hand, pixels can be described
only with an impoverished set of features, and the result need not necessarily seem
coherent to the user (e.g., if pixels are classified individually there is no guarantee that
the “oil slick” pixels will form coherent regions in an image). We decided the system
would classify regions.
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Table 1.Confusion matrix

guessed:
negative positive

true: negative a b
positive c d

The need to choose the degree of granularity arises naturally in many applications. For
instance in semiconductor manufacturing (Turney, 1995), circuits are manufactured
in batches of wafers, and the system can be required to classify an entire batch, or
each wafer, or to operate at even lower levels. Likewise, the text-to-speech mapping
discussed by Dietterich, Hild and Bakiri (1995) can be addressed at four distinct levels
of granularity.

Our decision to classify regions had important consequences for the general design
of the system. Together with the granularity of the interface, which according to
Macdonald Dettwiler’s requirement was at the image level, it has constrained the options
concerning the output of our system. We could not have ranked regions according to
their probability of being an oil spill, because our unit of output was an image. We
could not have classified images, because our system was to support decisions about
regions, rather than images.

2. Another question was how many and which categories to define. Should all lookalikes
be treated as a single category? Does it make sense to establish separate categories for
different kinds of lookalikes? Discussions with the expert who classified the training
examples have revealed that she might be able to place many lookalikes into subcat-
egories like rain cells, wind, ship wakes, schools of herrings, red tide (plankton) and
some others. Information about which categories are more prone to be misclassified
could provide us with a clue for a better choice of training examples. Unfortunately,
we overlooked this possibility during the initial data collection and so have been forced
to have just one nonspill class. Solberg and Solberg (1996) divide their oil spills into
subclasses based on shape. We decided not to do this because our dataset contained too
few oil spills. We therefore have a two class learning problem.

5. Performance Measure

Once the initial decisions have been made, the designers must consider how to assess
the merits of different variants of the learning system. To define performance criteria,
researchers use aconfusion matrix,such as the one in Table 1. Here,a is the number
of true negatives (correctly classified negative examples),d is the number of true positives
(correctly classified positive examples),c is the number of false negatives (positive examples
incorrectly classified as negative), andb is the number of false positives (negative examples
incorrectly classified as positive).

The standard performance measure in machine learning isaccuracy, calculated asacc =
a+d

a+b+c+d . In other words, accuracy is the percentage of examples correctly classified. This
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Figure 2. An ROC curve

measure is inappropriate in applications where the classes are unequally represented in the
training set. To see this, consider our case where the relative frequency of lookalikes is
96%. A classifier that labels all regions as lookalikes will achieve an accuracy of 96%.
Although this looks high, the classifier would be useless because it totally fails to achieve
the fundamental goal of oil spill detection. By contrast, a system achieving 94% on spills
and 94% on nonspills will have a worse accuracy and yet be deemed highly successful; very
few spills would be missed and the number of false alarms would be small.

Informally, we want to present to the user as many spills as possible provided that the total
number of false alarms is not too large. Curves used to visualize the tradeoff between these
two requirements are calledROC curves (Swets, 1988). Figure 2 shows a typicalROC

curve. It is a plot with the percentage of correctly classified positive examples (d
c+d ) on the

y-axis and the false positive rate (ba+b ) on thex-axis. The perfect classifier corresponds
to the point (0,100): 0 false positives (i.e., 0% error on the negative examples) and 100%
accuracy on the positive examples. The extreme points of the curve, (0,0) and (100,100),
correspond to classifiers that classify all examples as negative and positive, respectively.

Many classifiers, including the one described below, make it possible to move along this
curve, for instance by adjusting the bias of an output neuron in a multilayer perceptron.
The number of correctly recognized positive examples can thus be increased at the cost of
increased number of false alarms, or vice versa. Provost and Fawcett (1997) argue thatROC

curves are good indicators of the classifier’s performance in many reasonable applications.
Swets (1988) proposes to measure the performance by the area under theROC curve.
Another issue is how to compareROC curves for different classifiers. Provost and Fawcett
(1997) have recently proposed an interesting geometric method (theROC convex hull)
which makes possible classifier comparison, as well as a principled choice (or rejection) of
a classifier.

To measure performance in environments with imbalanced classes, the information re-
trieval community works withrecall (r = d

c+d ) andprecision(p = d
b+d ) and combines

them by way of a geometric mean (
√
r · p) or the more sophisticated F-measure (Lewis
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& Gale, 1994). Other measures have been suggested (van Rijsbergen, 1979, Chapter 7),
including an information theoretic formula suggested by Kononenko and Bratko (1991).

The standard decision theoretic approach to defining the “optimal” tradeoff between false
and true positives is to assign relative costs to errors of omission and errors of commission,
and to make the classification that minimizes expected cost (Pazzani et al., 1994). One
deterrent to using this approach is that the costs are often hard to determine and may involve
multiple considerations whose units are incommensurable (e.g., monetary cost, pollution
levels, international reputation). Decision analysis techniques have been developed to cope
with this difficulty (von Winterfeldt & Edwards, 1986; Keeney & Raiffa, 1993). But
these techniques, which involve the eliciting of subjective judgements from the end user
by a trained decision analyst, are awkward to use with a system such as ours which is
not targeted at a particular end user. Moreover, MacDonald Dettwiler Associates required
the system to be readily customizable to each user; this precludes the labour intensive
knowledge elicitation techniques of decision analysis or knowledge based systems.

We decided that in the version of the system that will be delivered to end users there
will not be a preprogrammed way of condensing theROC curve to a single performance
measure. Instead, the user will be able to move along the curve and choose the point that
best meets his/her current needs. In this way, the user perceives the performance in terms
of two parameters (the frequency of true positives and of false positives). This is typical
of fielded systems. As pointed out by Saitta, Giordana and Neri (1995), systems that serve
as tools for users confronting a specific decision (e.g., whether to send an aircraft to verify
a spill and document the incident) should not be constrained to use a scalar performance
measure. The user needs to be able to tune the system’s behavior so as to trade off various
conflicting needs.

Although, in general, the challenge is to build a system that can produce classifiers across
a maximally broad range of itsROC curve, in the course of development we did not have
access to the users that would tune the system to their particular circumstances. However,
we needed a performance measure to provide immediate feedback (in terms of a single
value) on our design decisions. This measure would have to address the clear inadequacy
of accuracy, which is unuseable in our problem. To this end, we have mainly used the
geometric mean (g −mean), g =

√
acc+× acc−, whereacc+ = d

c+d is the accuracy on
the positive examples, andacc− = a

a+b , is the accuracy on the negative examples. This
measure has the distinctive property of being independent of the distribution of examples
between classes, and is thus robust in circumstances where this distribution might change
with time or be different in the training and testing sets. Another important and distinctive
property is thatg − mean is nonlinear. A change ofp percentage points inacc+ (or
acc−) has a different effect ong − mean depending on the magnitude ofacc+: the
smaller the value ofacc+, the greater the change ofg − mean. This property means
that the “cost” of misclassifying each positive example increases the more often positive
examples are misclassified. A learning system based ong − mean is thereby forced to
produce hypotheses that correctly classify a non-negligible fraction of the positive training
examples. On the other hand,g − mean is less than ideal for filtering tasks, because it
ignores precision.



204 M. KUBAT, R. HOLTE, AND S. MATWIN

6. Methodological Issues

After the problem formulation and the choice of the performance measure, the designer of
a learning system must turn his or her attention to the specific idiosyncracies of the data
available for learning. In the oil spill detection problem we faced the following issues.

1. Examples come in small batches, each with different characteristics.

2. The data is sparse and the training set is imbalanced.

3. There is no guarantee that the examples available for the system development are
representative of the examples that will arise after deployment.

4. Feature engineering is required.

5. System development is done in a dynamically changing environment.

Let us look at these issues in turn. The first issue is how to learn and experiment with
batchedexamples. Table 2 gives some details about our data. The nine images (batches)
contain a total of 41 positive examples and 896 negative examples, and the characteristics of
the individual images can vary considerably. The images all come from the same satellite
and the same general geographical location (strait of Juan de Fuca between Vancouver
Island and the northern tip of Washington state), but the times when they were obtained are
different. One can thus expect that the images contain oil spills of different origin and of
different types.

One possible approach is to view the individual batches in the training set as coming from
a different “context” and use a context sensitive learning algorithm as suggested by Turney
(1993), Widmer and Kubat (1996), and Kubat and Widmer (1996). However, our initial
experiments with simple contextual normalization techniques were not entirely successful
(partly because of the scarcity of the data), so we decided not to pursue context sensitive
learning. Moreover, we do not always know what the contextual parameters are. Even
when we know that in reality there is a contextual variable that influences the classifier (e.g.
the wind speed), often we have no way to compute the value of this variable.

An alternative approach is to combine all the examples into one large dataset in the hope
that the learning algorithm will be able to detect systematic differences between batches
and react by creating a disjunctive definition with a disjunct, say, for each batch. However,
if the individual batches have a relatively small number of positive examples such a system
will be prone to the problem of small disjuncts (Holte, Acker & Porter, 1989). Moreover,
the batches that have many examples (e.g., images 2 and 9) will dominate those that have
few (e.g., image 1).

Batched examples also raise an issue about experimental methodology. Suppose that all
examples are mixed in one data file from which a random subset is selected for training,
leaving the rest for testing. This means that examples from the same batch can appear both
in the training and testing sets. As a result, the observed performance will be optimistic
compared to the deployed system’s actual performance on completely unseen batches. This
phenomenon will be experimentally demonstrated below. There really is no valid alternative
but to separate the batches used for training from those for testing, as has been done by Burl
et al. (1998), Cherkauer and Shavlik (1994), Ezawa et al. (1996), and Fawcett and Provost
(1997). The particular testing method we use is “leave-one-batch-out” (LOBO), which is



DETECTION OF OIL SPILLS 205

Table 2.The numbers of positive and negative examples in the images

image 1 2 3 4 5 6 7 8 9 all

positives 8 4 2 6 2 4 3 5 7 41
negatives 3 180 101 129 60 70 76 80 197 896
total 11 184 103 135 62 74 79 85 204 937

the same as the traditional leave-one-out methodology except that one whole batch is left
out on each iteration rather than just one example.

Overfitting is a term normally applied to a learning algorithm that constructs a hypothesis
that “fits” the training data “too well.” Dietterich et al. (1997) use “overfitting” in a different
sense. They apply the term when an algorithm developer tunes a learning algorithm, or
its parameter settings, to optimize its performance on all the available data. This type of
overfitting, which we callovertuning, is a danger whenever all available data is used for
algorithm development/tuning. Like ordinary overfitting, overtuning can be detected, if not
avoided, by using only part of the data for algorithm development and using the remainder
of the data for final system testing, as was done by Lubinsky (1994). If data is not held out
for final system testing, the observed performance of the system cannot be confidently used
as an estimate of the expected performance of the deployed system. Unfortunately, we had
too little oil spill data to hold any out for final system testing in the development phase of
the project. The system will be tested on fresh data in the field trials that are scheduled for
winter 1998.

Dietterich et al. (1997) circumvented their lack of data by modeling some key character-
istics of the data and generating a large artificial dataset, an idea proposed by Aha (1992).
The point is to use the synthetic data for system development, and to return to the real data
only for final system testing. We were hampered in using this method by the fact that our
data comes in small batches which were fairly dissimilar. We would have had to model both
the within-batch characteristics and the across-batch characteristics, and we simply did not
have enough data or batches to do this with any certainty. To try to ensure that our learning
algorithm is not specific to our particular dataset, we have tested it on other datasets having
similar characteristics (Kubat, Holte & Matwin, 1997).

Another issue is theimbalanceof the dataset’s class distribution. This issue has two
facets. The first, discussed above, is that when working with imbalanced datasets it is
desirable to use a performance measure other than accuracy. The second facet, shown by
Kubat et al. (1997) and by Kubat and Matwin (1997), is that learning systems designed to
optimize accuracy, such asC4.5 (Quinlan, 1993) and the 1-nearest-neighbor rule (1-NN),
can behave poorly if the training set is highly imbalanced. The induced classifiers tend
to be highly accurate on negative examples but usually misclassify many of the positives.
This will be demonstrated in the experimental part of this paper.

Two approaches promise to solve this problem. The first attempts tobalancethe classes.
One way to do this is to discard those examples that are considered harmful. As early
as the late sixties, Hart (1968) presented a mechanism that removes redundant examples
and, somewhat later, Tomek (1976) introduced a simple method to detect borderline and
noisy examples. In machine learning the best known sampling technique is windowing
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(Catlett, 1991). For more recent alternatives, see, for instance, Aha, Kibler and Albert
(1991), Zhang (1992), Skalak (1994), Floyd and Warmuth (1995), and Lewis and Catlett
(1994). Variations of data reduction techniques, namely those that remove only negative
examples, are analyzed by Kubat and Matwin (1997). Conversely, the training set can be
balanced by duplicating the training examples of the minority class or by creating new
examples by corrupting existing ones with artificial noise (DeRouin et al., 1991). Solberg
and Solberg (1996) do both; positives are duplicated and negatives are randomly sampled.
Honda, Motizuki, Ho, and Okumura (1997) reduce the imbalance by doing classification in
two stages. In the first stage, the negatives most similar to the positives are included in the
positive class. The second stage distinguishes these negatives from the true positives. This
can be seen as a special case of multitask learning (Caruana, 1993), the more general idea
being to define supplementary classification tasks in which the classes are more equally
balanced. Pazzani et al. (1994) assign different weights to examples of different classes,
Fawcett and Provost (1997) prune the possibly overfit rule set learned from an imbalanced
set, and Ezawa et al. (1996) force the learner to consider relationships between certain
attributes above others.

The second approach is to develop an algorithm that isintrinsically insensitiveto the class
distribution in the training set. Extreme examples of this are algorithms that learn from
positive examples only. A less extreme approach is to learn from positive and negative
examples but to learn only rules that predict the positive class, as is done byBRUTE

(Riddle et al., 1994). By measuring performance only of the positive predicting rules,
BRUTE is not influenced by the invariably high accuracy on the negative examples that
are not covered by the positive predicting rules. OurSHRINK algorithm (Kubat et al.,
1997) follows the same general principle—find the rule that best summarizes the positive
examples—but uses a definition of “best” (g−mean) that takes into account performance
of the negative predicting rules as well as the positive predicting ones. In section 7, we
describeSHRINK and demonstrate empirically that its performance does not change as
imbalance grows.

The third methodological issue is thevalidity of the data selection.We deliberately ac-
quired only images containing oil slicks so as to maximize the number of positive examples
in our dataset. However, this means that the distribution of examples in our dataset is dif-
ferent from the distribution that will arise naturally when the system is fielded. Fortunately,
in our domain, all the lookalikes are natural phenomena whose presence in an image is
independent of the presence of an oil slick. It is only because of this fact that we can have
confidence that our performance on the acquired images will extend to “normal” images,
which mostly will not contain slicks.

Another methodological issue isfeature engineering.We did not do any large scale
constructive induction, as, for example, was done by Cherkauer and Shavlik (1994). Instead
we relied on our domain experts to define useful features. The importance of good features
was impressed upon them from the outset, and a significant fraction of their energy has
been invested in this direction. Some features are generic while others are motivated by
theoretical considerations and therefore implicitly represent domain knowledge. In the
final feature set, a region is described by 49 features representing characteristics such as
the position of the region’s centroid point, the region’s shape, its area, its intensity, the
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sharpness and jaggedness of its edges, its proximity to other regions, and information about
the background (the sea) in the image containing the region.

Our approach to feature construction has not been entirely successful. Many of the
features for which the experts had high expectations have not proven particularly helpful
for classification. An open research issue is whether the domain knowledge used to define
these features could have been used to better advantage if it had been captured explicitly
and used to guide learning as suggested by Clark and Matwin (1993) or perhaps to guide
constructive induction as investigated by Ioerger, Rendell and Subramanian (1995).

The discriminating power of our features is significantly influenced by the parameter
settings of the low-level image processing. Unfortunately, the settings that extract the
greatest number of oil spills do not optimize the features’ discriminating power, and we
decided it was most important to maximize the number of oil spills. If we had had more
images, we would have been able to improve our learning algorithm’s performance by
setting the image processing parameters to optimize the features. On the positive side,
machine learning provided valuable feedback to the experts about the direct impact of a
new feature on the performance measure and about the role played by the feature in the
induced classifier. It was important that the feature’s contribution to a decision be consistent
with the experts’ expectations (Lee et al., 1998).

The final methodological issue relates to our working in a highly dynamic environment.
The set of images and the set of features for each image changed throughout the project,
as did the exact details of the low-level image processing. Each of these changes produced
a new dataset. The learning algorithms, too, were under constant development, and the
experimental method changed several times before settling onLOBO. The constant flux
demanded careful bookkeeping about the exact versions of the datasets, algorithms, and
methodology used in each experiment. This was done manually. A tool for this bookkeep-
ing, for example an extension of the data preparation tool reported by Rieger (1995), would
be a valuable contribution to applications of this kind.

7. Experimental Results

In this section we present experimental studies of two of the central research issues that
arose in our application: (1) imbalanced training sets, and (2) batched examples.

Figure 3 illustrates the problem of imbalanced training sets. It shows the performance
achieved byC4.5and the 1-nearest-neighbor (1-NN) rule, for varying numbers of randomly
sampled lookalikes while the set of oil spills remains unchanged. The curves represent
average values obtained from 5 random runs of 10-fold cross-validation (for 5 different
selections of negative examples). The figure shows that severe imbalance in the class
distribution can have a detrimental effect on the quality of the resulting classifier. The
g −mean and the accuracy on the positives both decrease considerably as the number of
negative examples increases.

The behavior depicted in Figure 3 suggested a simple mechanism to alleviate the problem:
induce the classifier using only a small subset of the existing negative examples. However,
since not all negative examples have the same merit, Kubat and Matwin (1997) proposed a
simple technique (one-sided selection) that reduces the number of negative examples. Their
approach is to identify among negative examples those that are likely noisy or redundant.
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Figure 3.Performance ofC4.5 (left) and the 1-nearest-neighbor rule (right) achieved on the testing set for different
numbers of randomly sampled negative examples. Solid:g −mean; dashed: accuracy on negative examples;
dotted: accuracy on positive examples.

Table 3.Accuracies achieved withC4.5

and1-NN after one-sided selection

classifier g −mean acc+ acc-

C4.5 81.1 76.0 86.6
1-NN 67.2 54.0 83.4

A heuristic measure, introduced by Tomek (1976), is used to identify noisy examples,
while the potentially redundant ones are determined using an approach adapted from Hart
(1968). One-sided selection removes from the training set redundant and noisy negative
examples. The results achieved using one-sided selection are summarized in Table 3. These
results were obtained using 5 random runs of 10-fold cross-validation starting with all the
examples; in each run, the training set was reduced using the one-sided selection before
theC4.5 or 1-NN rule was applied.C4.5 clearly benefited from this data reduction, both
on the positive and on the negative examples (the improvement is statistically significant
according to a t-test). However, in the case of the1-NN rule, one-sided selection produced
no significant improvement.

One-sided selection is a method for altering an imbalanced training dataset so that
accuracy-based systems will perform reasonably well. An alternative approach is to de-
velop an algorithm that is insensitive to imbalance. With this aim in mind, we developed
theSHRINK algorithm.

Three principles underlieSHRINK’s design. First, if positive examples are rare, do not
subdivide them when learning—dividing a small number of positive examples into two or
three groups would make reliable generalization over each group impossible. The second
principle is to induce a classifier of very low complexity. InSHRINK, the classifier is
represented by anetwork of tests. The tests have the formxi ∈ [min ai,max ai] wherei
indexes the attributes. Denote byhi the output of thei-th test, and lethi = 1 if the test
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Figure 4. SHRINK’s performance. Solid:g − mean; dashed: accuracy on negatives; dotted: accuracy on
positives.

suggests a positive label, andhi = −1 otherwise. The example is classified as positive if∑
i hi · wi > θ, wherewi is the weight of thei-th test (see below). The thresholdθ gives

the user the opportunity to relax or tighten the weight of evidence that is necessary for a
region to be classified as an oil spill.

The third principle is to focus exclusively on regions of the instance space where positive
examples occur. In the induction of the tests,SHRINK begins by establishing the “best”
interval along each attribute, starting with the smallest interval containing all positive ex-
amples, and on every iteration shrinking the interval by eliminating either the left or right
endpoint, whichever results in the betterg−mean score. For each attribute, this produces
a set of nested intervals from which the one with the maximumg −mean is selected as
the test. Tests withg −mean g < 0.5 are then discarded. The weight,wi, of thei-th test
is defined to bewi = log(gi/(1 − gi)), wheregi is theg − mean of the i-th test. This
expression assigns higher weights to tests with small errors. The fact that the system uses
only tests withgi > 0.5 ensures that all weights are positive.

Figure 4 showsSHRINK’s performance forθ = 0, expressed in the same terms as
Figure 3 (and using the same experimental methodology). It can be seen thatSHRINK’s
performance is virtually unaffected by the number of negative examples. Comparing its
g−meanwith that of the two conventional learners, we can see thatSHRINK outperforms
the1-NN rule even for a small number of examples, perhaps because of the presence of
many irrelevant attributes. On the other hand,C4.5 outperformsSHRINK if the negative
examples are sampled. When presented with heavily imbalanced training sets,SHRINK

scores better, but this advantage can be eliminated by the use of the one-sided sampling
with C4.5.

The1-NN rule has very high accuracy on negative examples and poor accuracy on the
positive examples.C4.5 is similar except when the number of negatives is most reduced
by one-sided sampling. In that case, its performance is likeSHRINK’s: accuracy on the
positive examples is relatively good, while accuracy on the negatives is relatively poor.
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Figure 5. An exampleROC curve (testing set) obtained fromSHRINK on the oil spill data

Table 4.Leave-one-batch-out (LOBO)
compared to conventional
cross-validation (CV)

g −mean acc+ acc-

CV 70.9 82.5 60.9
LOBO 62.5 78.1 50.1

As mentioned earlier, it is important in our application to be able to explore the tradeoff
between true and false positives dynamically. InSHRINK, the user can move along the
ROC curve by adjusting the thresholdθ. TheROC curve produced in this way is shown
in Figure 5. The operator can thus reduce the frequency of false positives at the cost of
an increased number of false negatives. Note, however, that although the curve shown is
continuous, there are actually only a discrete number of points on the curve that can be
produced by varyingθ.

One of the methodological issues mentioned in the previous sections is the requirement
that the classifier be trained on one set of batches (images) and tested on another set of
batches. Table 4 illustrates this point using some results obtained from experimenting with
SHRINK (θ = 0). The first row (CV) contains the results obtained using the 10-fold
cross-validation (average from 5 random runs) applied to the dataset containing all the
examples from all images (so that examples from the same image can occur in both the
training and the testing sets). These results are clearly superior to those in the second row,
which are obtained using the leave-one-batch-out (LOBO) methodology. The experiment
shows that the images differ systematically, and therefore they cannot be safely combined
into one large dataset.
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8. Comparison with Solberg and Solberg (1996)

As mentioned in the introduction, Solberg and Solberg (1996) use machine learning to
classify oil spills. Their classifier is represented as a decision tree and is learned from
training data using S-plus (Venables & Ripley, 1994). To cope with the imbalanced classes,
Solberg and Solberg (1996) sample, with replacement, 100 examples from each class (four
oil spill classes and a nonspill class). The accuracies reported by Solberg and Solberg
(1996)—86% accuracy on the oil spills, and 96% on the non-spills—are superior to the
accuracies in our most similar experiment (C4.5 with the 100 negative examples and 41
positive examples—see Figure 3). It is instructive to consider the possible causes of the
difference.

The dataset of Solberg and Solberg (1996) is larger than ours, and based on more images
(59, of which 29 contain slicks, compared to our 9), but has about the same number of oil
spills (44 compared to our 41). However, their sampling technique causes nine copies of
each oil spill to be included in the training set, on average, whereas we included just one. In
their images, there often occurred oil platforms or ships; these are bright objects in satellite
radar images and likely sources of oil spills. Thus in their dataset, a bright object being
near a dark region is highly indicative of the region being an oil spill. Over half of their
oil spills have a bright object nearby. Knowing this, they defined a feature, “distance to the
nearest bright object” that considerably improved their results. If this feature is disabled,
their accuracy on the oil spills drops to 73%, which is very similar to ourC4.5 accuracy.

Finally, the experimental method used by Solberg and Solberg (1996) gives optimistic
estimates for nonspills. On each run they hold out one oil spill for testing, then do the
sampling described above to produce the training set. The accuracy of the resulting decision
tree on the nonspillsin the training setis recorded. Because their accuracy on the nonspills
is based on data in the training set, it is optimistic. In a personal communication, Anne
Schistad Solberg has explained that these 1996 experiments were regarded as preliminary
and that attention was focused on the accuracy on the spills. In her subsequent work with
E. Volden (1997), theLOBO methodology is used. These more recent results cannot be
directly compared with ours, because their system is much more knowledge intensive.

9. Conclusions

The oil spill detection workstation has been delivered, under the name ofCEHDS, to
Macdonald Dettwiler Associates and will soon undergo field testing in several European
countries (Spain, France, Portugal, and Italy). It has image processing suites for two
satellites,RADARSAT andERS-1. Two learning algorithms were included:1-NN

with one-sided selection andSHRINK. In the latter case, the user can control the rate of
false alarms, and trade false alarms for missed oil spills. The user can also decide to retrain
the system should more data become available.

In developing the Oil Spill Detection Workstation we faced numerous issues. Most are
not specific to the oil spill detection problem: they are the consequence of properties of
the application that arise frequently in other machine learning applications. Although each
application that has faced these issues has, of necessity, developed some solution, they have
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not yet been the subject of thorough scientific investigation. They are open research issues
of great importance to the applications community.

Perhaps the most important issue is that of imbalanced classes. It arises very often in
applications and considerably reduces the performance of standard techniques. Numerous
methods for coping with imbalanced classes have been proposed, but they are scattered
throughout the literature. At the very least, a large scale comparative study is needed to
assess the relative merits of these methods and how they work in combination. Many
individual methods, theSHRINK algorithm for example, can undoubtedly be improved
by further research. It seems important to study small imbalanced training sets separately
from large ones. In the latter, positive examples are numerous even though they are greatly
outnumbered by negative examples. Some of the published methods for learning from im-
balanced classes, require numerous examples of the minority class. The Bayesian approach
described by Ezawa et al. (1996), for example, works with several thousand examples in
the minority class, while we were limited to fewer than fifty.

Learning from batched examples is another issue which requires further research. With
the resources (manpower, data) available in this project, we were not able to devise a learning
algorithm that could successfully take advantage of the grouping of the training examples
into batches. However, we believe further research could yield such an algorithm. Learning
from batched examples is related to the issues of learning in the presence of context, as the
batches often represent the unknown context in which the training examples were collected.
Learning in context has only recently been recognized as an important problem re-occurring
in applications of machine learning (Kubat & Widmer, 1996).

Various tradeoffs arose in our project which certainly warrant scientific study. In for-
mulating a problem, one must choose the granularity of the examples (images, regions,
or pixels in our application) and the number of classes. Different choices usually lead to
different results. For instance, having several classes instead of just two reduces the number
of training examples per class but also provides additional information to the induction pro-
cess. How can one determine the optimal choice? Another tradeoff that arose was between
the discriminating power of the features and the number of examples.

In machine learning applications, there is no standard measure of performance. Classi-
fication accuracy may be useful in some applications, but it is certainly not ideal for all.
The research challenge is to develop learning systems that can be easily adapted to different
performance measures. For example, cost sensitive learning algorithms work with a param-
eterizedfamily of performance measures. Before running the learning algorithm, the user
selects a specific measure within this family by supplying values for the parameters (i.e., the
costs). A second example is the “wrapper approach” to feature selection (Kohavi & John,
to appear), parameter setting (Kohavi & John, 1995), or inductive bias selection (Provost
& Buchanan, 1995). It can be adapted easily to work with any performance measure. Our
approach was to have the learning system generate hypotheses across the full range of the
ROC curve and permit the user to interactively select among them.

Feature engineering is a topic greatly in need of research. Practitioners always emphasize
the importance of having good features, but there are few guidelines on how to acquire
them. Constructive induction techniques can be applied when there is sufficient data that
overtuning will not occur. An alternative to purely automatic techniques are elicitation
techniques such as structured induction (Shapiro, 1987). More generally, one can elicit
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domain knowledge, as Solberg and Volden (1997) have done, and use a learning algorithm
guided by a weak domain theory as done by Clark and Matwin (1993).

Our experience in this project highlights the fruitful interactions that are possible between
machine learning applications and research. The application greatly benefited from—
indeed would not have succeeded without—many ideas developed in the research commu-
nity. Conversely, the application opened new, fertile research directions. Future research
in these directions will directly benefit the next generation of applications.
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