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Abstract. This paper discusses the emergence of sensorimotor coordination for ESCHeR, a 4DOF redundant
foveated robot-head, by interaction with its environment. A feedback-error-learning(FEL)-based distributed
control provides the system with explorative abilities with reflexes constraining the learning space. A Kohonen
network, trained at run-time, categorizes the sensorimotor patterns obtained over ESCHeR’s interaction with its
environment, enables the reinforcement of frequently executed actions, thus stabilizing the learning activity over
time. We explain how the development of ESCHeR’s visual abilities (namely gaze fixation and saccadic motion),
from a context-free reflex-based control process to a context-dependent, pattern-based sensorimotor coordination
can be related to the Piagetian ‘stage theory’.

Keywords: foveated active vision, oculomotor control, feedback-error-learning, emergent coordination, sensori-
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1. Introduction

Human babies are born with a rich set of innate behavioral abilities (Thelen & Smith
(1994); Meltzoff & Moore (1989)). Immediately after birth, they are engaged in complex
sensorimotor interaction with the world through their bodies. Through the interaction,
babies acquire novel coordination skills which are used for further exploration of the world,
introducing new classes of interaction. And the cycle goes on. The latter view of the
developmental process was extensively examined by Jean Piaget (1962), who took it to
an extreme and crystallized it as his ‘stage theory’. We do not support Piaget’s uniform
and rigid stage theory. And we do support that innate abilities are much more than what
Piaget assumed. However, we believe that some of his core ideas discussed below are still
valid, useful, and important for adaptive autonomous agents, even in the light of rich innate
abilities.

1.1. Hypotheses on Embodied Sensorimotor Development

This paper focuses on two important learning principles involved in the above bootstrapping
developmental process. First, emergence of coordinated behavior by interacting with the
world through its body, guided by innate reflexes. Second, emergent categorization of
acquired coordinated behavior, which will result in categorical (selective and prototypical,
or entrainment) responses to novel sensorimotor patterns. Together, they constitute one
bootstrapping step for acquiring novel behavior by unsupervised, autonomous exploration
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of embodied interaction with the world. Constraints imposed by innate reflexes and the
body structure are quite important, because on one hand, the world is too complex fortabula
rasalearning, and on the other hand, it is unrealistic to provide complete supervisory signals
for a continuously moving robot exhibiting unpredictable variation of motoric patterns.

Figure 1. Overview of the architecture proposed in this paper. The distributed FEL (Feedback-Error-Learning (see
text)) controllers learn the sensorimotor loop between ESCHeR and the environment by emerging a coordination.
The self-organized sensorimotor memory generate selective responses to a new sensorimotor pattern based on
previous experiences.

Our hypotheses examined in this paper are two-fold:
(1) Coordinated behavior can emerge from a set of distributed adaptive controllers which

are independently interacting with the environment through the shared body. Because the
body imposes consistent constraints on the interaction, the coordination can be achieved
even when there is no explicit internal connections among the controllers. Each adaptive
controller has crude innate knowledge (reflex) which adds a useful constraint for stabilizing
and guiding the unsupervised learning. Section 3 presents our model and experimental
results using distributed FEL(Feedback Error Learning) modules.

(2) Autonomous categorization of thus acquired coordinated behaviors is possible to some
degree, because the body imposes certain consistent structure on the interaction dynamics.
And the categorized representation can be used to generate selective responses to a given
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sensorimotor pattern. This can be used to start the next step of exploration in an effectively
constrained manner. This last step is interesting especially because we use a vision system
as a test-bed. Given a visual motion pattern, such as waving a hand, the system first reacts
by acquired tracking behavior, then categorizes self motion, which in turn can generate an
‘interpreted’ motor response to the initial stimulus. This is a form of behavioral imitation.
And the system has the potential ability to learn how to imitate a novel behavior, which is
an important component of real world intelligence (Kuniyoshi 1994). Section 4 presents
our method and experimental results using a Kohonen SOM (self organizing map).

1.2. Focus of the Paper

As an experimental platform for examining the above hypotheses and corresponding meth-
ods, we chose a binocular robotic head system which is capable of active gaze control
(described in section 2). This system is ideal for exploring the above ideas because it is
a compact but complete system for embodied sensorimotor interaction; it reacts to visual
stimuli by gaze movements, which affects the visual input, thus closing the sensorimotor
loop. Moreover, it has nonlinearity and redundancy which introduces interesting challenges
for sensorimotor coordination which are not present in simple wheeled mobile robots.

Our emphasis in the present paper is on investigating the global hypotheses and principles
discussed above: The component learning algorithms (FEL and SOM) used in this paper
are not novel, because our focus is not on individual learning algorithms, but rather on
how they interact with each other and with the world through the body, leading to an
emergence of novel performance. Although our experimental results show some useful
performance achievements and some inspirations related to biological systems, neither
optimal performance and effectiveness in the engineering sense, nor faithful replication of
a biological system are our main concern.

2. ESCHeR:Etl StereoCompactHead for Robot Vision

As the platform for our experiments, we adopted a robotic vision head, called ESCHeR
(Kuniyoshi, Kita, Rougeaux, & Suehiro, 1995). ESCHeR is a 4 DOF (degrees of freedom)
binocular active vision mechanism: as shown in Fig. 2, it has two CCD cameras which
rotate independently (“vergence”) in a common horizontal plane which can be tilted, and
the whole platform can rotate around the vertical axis (“pan”). All joints are driven by
DC servo motors equipped with rotary encoders. The mechanism partially mimics the
eye mobility of human vision system. ESCHeR is provided with a high performance gaze
mobility (close to humans), which is sufficient for tracking a moving object (“smooth
pursuit”) or to quickly change the focus of attention (“saccade”).

The lowest level control (such as achieving a commanded velocity) of the motors is
done at 500Hz cycles by a servo controller, a dual Transputer (IMS T805) system, which
communicates motion commands and proprioceptive data with higher level controllers via
20Mbps serial communication channels. Real time image processing is implemented using
a DataCube MaxVideo system, a pipeline architecture which does fast preprocessing, and a
KIWIVision system, a distributed transputer system (9CPU’s) which does post processing
and communication with the servo controller. They are connected via MaxBus image data
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bus, and controlled by a MVME167 Motorola 68040 based CPU board running LynxOS, a
real time UNIX. The learning programs presented in this paper were implemented in part
(which requires real time operation) on the servo controller CPU’s, and the rest (which does
not need strict real time operation) on a workstation connected with the above system via
Ethernet.

Figure 2. ESCHeR: a 4DOF robot-head (left) with foveated vision. (right) ESCHeR’s nonlinear projection curve.

The most significant part of ESCHeR is its “foveated wide angle” lenses (Kuniyoshi, Kita,
Sugimoto, Nakamura, & Suehiro, 1995). They simulate human visual system’s compromise
between a wide but low resolution field of view for peripheral detection and a tiny high-
resolutionfovea1 for precise observation. Our lens seamlessly combines the above two
extreme characteristics in a single special optics which implements a nonlinear projection
curve (Figure 2(right)). It has120◦ field of view and the maximum magnification of 7.7 in
the fovea versus the periphery.

The projection curve is a combination of three parts: (1) the fovea (with incident angles
between0◦ and 2.5◦ from optical axis) adopts a standard projection, (2) the periphery
(from 20◦ to 60◦) adopts a spherical projection, and (3) the intermediate range (2.5◦ to
20◦) adopts a log-of-spherical projection. The log component can be combined with a
polar transformation, which has many useful characteristics (Sandini & Tagliaso, 1980).
It enhances the lock-on effect in stereo fixation, simplifies the analysis of optical flow
and introduces image invariance to rotation and scaling (a powerful characteristics for 2D
identification).

3. Learning Gaze Control

3.1. Justification

Control of active vision systems (see Rougeaux & Kuniyoshi (1997) for the state of the
art) typically relies on two main visuomotor processes: gaze fixation (also called tracking
or visual pursuit) and saccadic motion. In gaze fixation, the gaze platform is controlled so
as to keep a given environmental cue in the center of the field of view, independently of
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its possible motion. A saccade can be defined as a fast conjugate change of eye position
between fixations.

In terms of control theory, the visuomotor control on ESCHeR is relevant to the control of a
4DOF nonlinear redundant manipulator: it has a nonlinear image-to-joint Jacobian because
of the optics’ nonlinearities and it has redundancy in horizontal rotations of vergence and
pan.

Past approaches to tracking/saccading control fall into two categories: (1) preprogram-
ming (hard-coded solutions) such as (Murray, Bradshaw, McLauchlan, Reid and Sharkey,
1995; Nordlund & Uhlin, 1995; Brown, 1988; Rougeaux, Kita, Kuniyoshi, Sakane & Cha-
vand, 1994) and (2)tabula rasaapproach as in Smagt & Krose (1991). Both approaches
exhibit drawbacks. Explicit programming is difficult, lacks flexibility to deal with novel
behaviors and does not easily scale up (e.g., addition of new degrees of freedom). Interme-
diate approaches such as combining a limited amount ofa priori knowledge with learning
have not been extensively explored in robot learning, especially in the context of nonlinear
redundant systems.

3.2. Feedback-error-learning
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Figure 3. Feedback error learning: reproduced from (Kawato & Gomi, 1992).

The main obstacle to the implementation of a real-time adaptive approach is the determina-
tion of anerror-signal. Described in Figure 3, feedback-error-learning, first introduced by
Kawato, Furukawa & Suzuki (1987), provides us with an elegant solution.Innate knowl-
edgeabout the controlled object is introduced under the form of a conventional feedback
controller (CFC). Modeling a linear approximation of the inverse-model of the controlled-
object, its output is taken as the error signal and is propagated (dotted arrow on the figure)
onto a neural network inverse model (NNIM). The motor command estimated by NNIM is
summed to the output of CFC so that NNIM does not mimic CFC but rather acquires the
nonlinearities of the plant by minimizing the output of CFC. NNIM’s synaptic modification
follows the general Widrow-Hoff rule – approximation of a gradient descent –, assuming
that CFC’s motor output plays the role of error-signal.

The interest of such an approach stems from the following points:
• The desired plant output is used both for control and training, hence allowing an on-line
learning. Instead, in other approaches such asdirect inverse modeling(as described by



192 L. BERTHOUZE AND Y. KUNIYOSHI

(Jordan, 1992)), the controller has to be trained off-line because the input of the controller
is the actual plant output, and not the desired plant output.
•Although the training data that the system receives – pairs of actual plant inputs and desired
plant outputs – are not samples of the inverse dynamics of the plant, the system nonetheless
converges to an inverse model of the plant because of the error-correcting properties of
the feedback controller. Unlike a predictive controller, the feedback controller does not
require the implementation of an explicit plant model but rather a qualitative knowledge
of the plant. Besides, it is shown that the performance of an error-correcting controller is
generally rather insensitive to the exact value of the gain that is chosen (Jordan, 1992).
• Under assumptions that are fully detailed by (Gomi & Kawato, 1993), the global con-
vergence of the scheme can be proven, using German’s theorem and Lyapunov’s second
method. The two main conditions are: (1) a guaranteed asymptotic convergence of the
learning phase (role of the gain in the linear controller) and (2) a very small and positive-
definite learning rate.

3.3. Control of the Gaze Platform

With the architecture depicted in Figure 1,an image-to-joint transfer function is learned
within the closed-loop between the visual information provided by the cameras and the
motor information given by the encoders. In our experiments (such as described below),
two types of visuomotor information have been considered, with similar results:
• Control in position by respect to the visual displacement of an environmental cue in the
field of view. In such case, a given environmental cue (a pin-point light) is characterized
by the position of its center of mass. At each frame, its displacement is computed and fed
to each of the controllers described below. The output of the controllers is a command in
position2.
• Control in velocity by respect to the optical flow resulting from the combined motion of
both the environmental cue and ESCHeR’s gaze platform.

As in (Rougeaux & Kuniyoshi, 1997), we have a real-time optical flow computation based
on Lucas & Kanade (1981)’s method. The extraction of the target’s velocity is made through
the following steps: (1) The background is assumed static, therefore, any peripheral flow
can only be generated by ESCHeR’s motion. Its component is extracted and subtracted
from the general flow. (2) If a moving cue is in the field of view, the center of mass of the
corresponding peak is computed and its flow extracted. The components of this flow is fed
in the controllers which return a command in velocity.

Unlike most engineering-oriented approaches (Murray et al., 1995; Nordlund & Uhlin,
1995; Brown, 1988; Coombs, 1992; Rougeaux & Kuniyoshi, 1997) or VOR3, each of
ESCHeR’s four joints (pan, tilt, left and right vergence) isindependentlycontrolled by
a feedback-error-learning controller whose conventional feedback controller (CFC) is a
crude (low gain) linear controller. The tuning of these controllers (the value of their gain
ranging from1× 10−4 and3× 10−4rad/s in our implementation) results from a tradeoff
between (1) the convergence of each controller (the linear controller guides the learning of
the adaptive component of each controller) and (2) the overall stability of the architecture
(higher gain values result in higher sensitivity to delays).
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The adaptive component of each controller is a classical three-layer feed-forward artificial
neural network. Both input and output layers are linear and dedicated to normalization. The
hidden layer uses nonlinear activation functions (arctangent sigmoids). Synaptic modifica-
tion is achieved using a back-propagation with momentum (Rumelhart, Hinton & Williams,
1986). While any Newton-like method (such as in MLP (multi-layer perceptron), CMAC
(Cerebellar Model Articulator Controller) or RBF (Radial Basis Function)) would be ac-
ceptable, the use of back-propagation made a real-time implementation possible (reduced
computational load). The weight-decay technique (Chow & Teeter, 1994) is used to pre-
vent from a degenerescence of the synaptic weights, which usually follows a continuous
adaptation.

3.4. Active fixation and Saccadic motion

The visual stimulus is given to ESCHeR in the form of a manually moved pin-point light.
Throughout the experiment, one eye (the left one) is kept under the control of the conven-
tional feedback controller (CFC) of its controller. This eye is used as a base of reference for
the eye (right) which is under adaptive control. A new frame is acquired every33ms. After
about20s of continual visual stimulus, the neural component (NNFC) of each controller
becomes dominant. Figure 4 shows the variance of the visual error (the quadratic sum of
each coordinate) for each eye. It can be observed that the variance is significantly reduced
for the eye under adaptive control. When evaluated in term of angular error (the conversion
from pixels to angles being made using a spatial resolution curve derived from the projection
curve), the residual error never exceeds2◦. This residue is, in part, the result of processing
delays:50ms between the image acquisition and the realization of the corresponding motor
command. It could be partially compensated for by using predictive filtering.

In the following experiment, bright/moving objects are (spatially and temporally) ran-
domly presented to ESCHeR in the periphery of its field of view (with at least20◦ incidence
angle, or140 pixels from the center). Figure 5 shows the resulting visual error for each eye,
the left one being kept under linear control. For the eye under adaptive control (right eye),
the average acquisition time is5 times shorter than for the reference eye: a20◦ saccade
takes only3 frames or100ms, 60ms being the average time for a human over the same
saccade.

The results above confirm that ESCHeR has learned to trackandsaccade within a single
control framework. This result partially follows from ESCHeR’s optical design: while
the adaptive component of the controllers enable the generalization of the tracking skill to
objects appearing in the periphery, the generalization is facilitated by the foveated vision
through which objects presented in the peripheryappearto be closer than they would in a
conventional camera.

3.5. Emergence of a coordination

Applying unconstrained motor learning techniques to nonlinear redundant manipulator is
generally avoided because the risk of getting trapped in stable but inconsistent minima
increases with the dimension of the learning space. In our experiments, the introduction of
each degree of freedom is delayed. This is justified by the biological notion of “freezing of
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Figure 4. Comparison between visual error in left and right cameras during a tracking experiment: the left eye is
kept under (fixed gain) linear control; the right eye has learned (neural component of its controller is dominant).

Figure 5. Bright objects that appear randomly in the field of view (at 0.5 and 2 seconds), attract ESCHeR’s
attention. The right eye (under adaptive control) achieves a faster acquisition of the novel objects than the eye
kept under linear control.
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degrees of freedom”. The visual stimulus is given in the form a swinging pendulum. At first,
vergences only are controlled, until a stable control is learned (qualitative estimation). The
control of the redundant joint (pan joint) is then introduced. As shown in Figure 6, a period
of instability, with high-frequency vibrations, follows after which, a stable coordination
(conjugate vergence and pan motion) emerges.

Figure 6. Learning the redundancies: concurrence of pan and vergence control introduces redundancies. High-
frequency vibrations are observed until a VOR-like control law is learned.

Four factors can be accounted for this result:
• the flexibility of a distributed adaptive architecture: instead of being rigidly and explicitly
coupled, controllers are implicitly coupled to each other, through the sensorimotor loop.
The adaptive component that enables them to learn the nonlinearities of their own senso-
rimotor loop also allow them to compensate for the interferences generated by the motor
commands of the other controllers.
• the feedback-error-learning approach: whereas the control space is generally randomly
sampled until an acceptable plant output is found, in feedback-error-learning, the conven-
tional feedback controller serves to guide the system to the correct region of the control
space,by making an essential use of the error between the desired plant output and the
actual plant output(Jordan & Rosenbaum, 1989).
• the delay of introduction of the redundant joint: it reduces the complexity of learning for
each joint and allow the stabilization of the adaptive parameters of each controller.
• the periodicity of the stimulus: it contributes to the stability of the learning by way of
reinforcement.

With the emerging coordination, ESCHeR can successfully track a moving target, as
described in Figure 7. Additionally, although no calibration, neither optical nor mechanical
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Figure 7. Standard deviation of the visual error during tracking experiments with various setups.

were performed, it is possible to extract the image-to-motor Jacobian from ESCHeR’s
behavior.

3.6. Conclusion

The experimental results reported in this section demonstrate that, given a set of base
behaviors and a crude control system amenable to feedback, ESCHeR has developed fine
oculo-motor control in interaction with its environment. It allowed it tolearnhow to track
moving objects with relatively good precision and engage in saccading at speed comparable
to humans. The continuous adaptation, however, leads to a short-term memory system.
Discontinuities of the visual stimulus lead to aresetof the synaptic weights and thus of the
whole system. In next section, we enable ESCHeR (1) to recognize behaviors that it already
knows and (2) to reproduce them. The precedence of this reproduction over an unnecessary
adaptation leads to the reinforcement of past actions and contribute to the long-term stability
of the learned sensorimotor coordination.

4. Sensorimotor Similarity and Long-term Memory

4.1. Introduction

The problem of the representation is a critical issue. A state-space determined based on
human intuitions is not necessarily appropriate for the robot. Instead, the state-space should
be self-constructed through a statistical analysis of one’s sensorimotor patterns. In our
experiments,self-organizing maps(SOM) are used to perform a unsupervised categorization
(identification) of ESCHeR’s sensorimotor patterns over its (active) interaction with the
environment. Self-organizing maps (SOM) were preferred to Learning Vector Quantization
(LVQ) so that the repertoire of possible visual behaviors would not be predefined.

A self-organization map represents the result of an algorithm of vector quantization
that places a number of reference vectors (or codebook vectors) (on which data sets will
eventually be approximated) into a high-dimensional data space in an ordered fashion.
When local-order relations are defined between the reference vectors, the relative values of
the latter are made to depend on each other as if their neighboring values would like along
an elastic surface. A mapping can be defined that projects this high-dimensional space
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Figure 8.Two-dimensional representation of inter-class distances after the self-organization process has converged.
This representation is generated using Kraaijveld, Mao & Jain (1992)’s technique. High intensities of grey indicate
the boundary between clusters (high inter-distance). Four emergent sensorimotor classes have been highlighted.

onto a two-dimensional lattice of points. Such lattice is very suitable to the analysis of
processes states (e.g., finding clusters within a set of sensorimotor patterns or identifying
an unknown data vector with a cluster) because it allows the visualization of metric ordering
relations between input samples (of high-dimensional order). In term of implementation,
the mapping is obtained as an asymptotic state in a learning process (Kohonen, Hynninen,
Kangas & Laaksonen, 1995).

4.2. Generation of reference vectors

The generation of reference vector is made as follows: ESCHeR is repetitively given visual
stimuli (circular motion, horizontal or vertical waving gesture for example), different in
amplitude and length. Each gesture is preceded by a blank period so that its starting and
ending points can be easily determined. Over one gesture, the sequences of both the motor
commands of each joint (pan, tilt, left and right vergences) and the components of the
corresponding optical flow are recorded at each frame4. Once the gesture is finished, each
sequence is normalized and discreetized in a fixed number (10) of samples (so as to remove
both the temporal and the spatial dimension). Finally, all the sequences over one period are
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butted against each other to create a fixed-length sensorimotor pattern which is fed into the
self-organizing process.

4.3. Recognition and reproduction

The self-organization process leads to a sensorimotor categorization such as shown in Figure
8. Four classes can be distinguished (the labels resulting from an off-line analysis). Three
of them identify motions in orthogonal directions of the 3D space (horizontal, vertical and
in-depth motions). The fourth class is uncertain at that stage. With the integration of
new sensorimotor patterns, it may be reinforced as part of the class identified as horizontal
motion or emerge as a new class, intermediate between motion in the horizontal plan and
motion in depth5.

In the online process however, such analysis is not carried out but the identification of
any new sensorimotor pattern extracted over ESCHeR’s environmental interaction with
the emerged categorization is made by computing itsquantization error. The probability
of class membership is determined using ak-nearest neighbors-type method. When the
probability of membership is sufficiently high (arbitrarily fixed level in our experiments), a
generic motor command is computed on the average of each sensorimotor patterns belonging
to that class. Once fed to the joint controllers, this motor command will result in a selective
and prototypical response to the given sensorimotor pattern.

Conceptually, this is a higher-order replication of thereflex vs adaptivityparadigm on
which each FEL controller is based. It guides and stabilizes the overall learning process
over time.

5. Conclusion

Presenting their view about Active and Exploratory Perception, Bajcsy & Campos (1992)
write: We have attempted to conceptualize the perceptual process of an organism that has
the top-level task of surviving in an unknown environment. During this conceptualization
process, four necessary ingredients have emerged for either artificial or biological organ-
isms. First, the sensory apparatus and processing of the organism must be active and
flexible. Second, the organism must have exploratory capabilities. Third, the organisms
must be selective in its data acquisition process. Fourth, the organism must be able to learn.

The above points ground the work presented in this paper. With ESCHeR, the robot is
endowed with an active sensory apparatus, whose optical characteristics make it flexible
enough to handle close fixation as well as peripheral detection. The multiple independent
feedback-error-learning based controllers guarantee explorative capabilities of the control,
both at the individual level (with the neural network component of each controller) as well
as at the collective level since the joint coordination is driven by a dynamic environmental
interaction and each controller’s plasticity. Through the self-organization by Kohonen
network of its sensorimotor patterns, ESCHeR’s progressively refines the categorization
of its self interacting with the environment and can ultimately become selective in its
data acquisition process through his newly acquired sensorimotor memory. With reflexes
supervising the learning (through feedback controllers embedded in each controller), a
stable sensorimotor coordination emerges (within a continuous environmental interaction)
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in which ESCHeR’s visual abilities (gaze fixation and saccadic motion) reach a good level
of performance.

This emergence of sensorimotor coordination leads us to suggest this approach as a first
milestone towardslearning by imitationin which an agent learns by observation of, and
active participation in, the environment.

Notes

1. The fovea is the rod-less part of the human retina. It covers about0.5◦ (in diameter) of the average160◦ of
entire field of view.

2. The frequency of the motor commands being higher than the frame rate achieved by ESCHeR, an intermediate
control in velocity is achieved so that the requested position is reached at the next frame acquisition.

3. The animalvestibulo-ocular-reflex(VOR) stabilizes the retinal images during a neck movement by compen-
satory eye movements. For a target at infinite distance, it is achieved by causing the motion of the eyes to be
equal and opposite to the motion of the head. It can be seen as a transformation from head velocity to eye
velocity (Jordan 1990). When the target is not at infinite distance, a real-time adaptation is achieved for which
Kawato & Gomi (1992) propose a computational model based on feedback-error-learning.

4. Such a high frequency was however not necessary. Consistent results were eventually achieved when recording
every 3 frames (100ms).

5. In that experiment precisely, this class was generated by horizontal circular motions.
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