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Abstract. In thek-Restricted-Focus-of-Attentioit{RFA) model, onlyk of then attributes of each example are
revealed to the learner, although the set of visible attributes in each example is determined by the learner. While
the k-RFA model is a natural extension of the PAC model, there are also significant differences. For example,
it was previously known that learnability in this model is not characterized by the VC-dimension and that many
PAC learning algorithms are not applicable in fh&®FA setting.

In this paper we further explore the relationship between the PAG:eRHEA models, with several interesting
results. First, we develop an information-theoretic characterizati@aRIFA learnability upon which we build a
general tool for proving hardness results. We then apply this and other new techniques for studying RFA learning
to two particularly expressive function classkegjecision-lists §-DL) andk-TOP, the class of thresholds of parity
functions in which each parity function takes at mogtputs. Among other results, we prove a hardness result for
k-RFA learnability ofk-DL, k < n — 2. In sharp contrast, afn — 1)-RFA algorithm for learningn — 1)-DL
is presented. Similarly, we prove that 1-DL is learnable if and only if at least half of the inputs are visible in
each instance. In addition, we show that there is a uniform-distrib&tBRFA learning algorithm for the class of
k-DL. For k-TOP we show weak learnability by/aRFA algorithm (with efficient time and sample complexity
for constantc) and strong uniform-distributioh-RFA learnability ofk-TOP with efficient sample complexity for
constantt. Finally, by combining some of oue-DL and k-TOP results, we show that, unlike the PAC model,
weak learning doesotimply strong learning in th&-RFA model.

Keywords: Restricted Focus of Attention, PAC-Learning, Learning Algorithms, Boolean Function Classes,
Decision Lists, Threshold of Parities, Fourier Transform

1. Introduction

Learning theory has been mainly concerned with the problem of generalizing from a sample
of fully-specified classified examples. For this problem classical statistical uniform con-
vergence theorems have been used to characterize scenarios in which a good generalization
can be found with high confidence (Vapnik and Chervonenkis, 1971), specific bounds on
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the sample size needed for such generalization have been proven (Blumer et al., 1989), and
efficient learning algorithms have been designed for specific cases (cf. (Valiant, 1984)).

Ithas also been noticed thatin many realistic scenarios, the samples from which the learner
has to generalize are not fully specified (Kearns and Schapire, 1990, Kearns et al., 1992).
The learning models which have been formulated for studying this type of problem usually
assume—sometimes implicitly (Blum and Chalasani, 1992)—that there is a fixed set of
relevant variables which are invisible to the learner. In such problems, the learner may only
attempt to find a good probabilistic prediction rule with respect to the visible attributes.
However, as observed by Ben-David and Dichterman (Ben-David and Dichterman, 1993),
there are many cases in which there are no attributes which are inherently invisible, but
rather there are other restrictions on the visibility of the attributes, such as the amount of
visible attributes in each single example. Since in such cases every attribute is potentially
visible, the learner may attempt to find more than just a probabilistic prediction rule; he may
try to formulate a full description of the concept with respect to all the relevant attributes.

Consider, for instance, medical research which aims at forming the exact pattern of some
disease. Typically, there is some a priori knowledge about the disease, such as the potentially
relevant attributes of the disease and the possible patterns of the disease with respect to these
attributes. Then, in the course of studying the disease, itis usually possible to sample people
from a given population and conduct several tests on each one of them. However, due to
practical considerationg (g, the cost of the tests), or inherent restrictiomg( the fact that
some blood tests may be destructive, or may not be usable for more than a limited number
of tests), the amount of data that is available for each single person is limited.

In such circumstances, researchers face the following problem: They can choose a set
of attributes which can be tested on a given sample, and they may choose to test different
attributes on different samples. However, they cannot have the full relevant medical record
of each sampled person. What type of information can be extracted from such partially-
specified samples? Certainly, if the samples are large enough, it is possible to estimate the
probability of developing the disease, for each set of attributes, and for every assignment to
these attributes (assuming that it is known whether each sampled person has developed the
disease or not). Although such estimates are useful in predicting whether a given subject
will develop the disease, forming an exact description of the disease with respect to all the
relevant attributes may be much more useful in understanding the disease and in finding
ways of treating it. This is the main theme of this paper—when and how a learner can use
a priori knowledgei(e., the class of possible concepts) and partially-specified samples to
find with high confidence a good approximation of the target concept. For instance, it is
implied by the results shown in this paper that, in general, if it is known that the disease
may be described as a binary-valued decision list, then in order to find with high confidence
a good approximation of the disease at least half of the attributes have to be tested for each
sampled person.

The problem of learning in such scenarios motivated the gemes#iicted-focus-of-
attentionlearning model (Ben-David and Dichterman, 1993), in which the learner has no
direct access to full examples, but rather may observe each example in one of a limited
number of ways. In this work we consider a special type of restriction c&HR&A, in
which the learner may observe any setdttributes of each example.
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An interesting and useful feature of the RFA restriction is its relation to efficient noise-
tolerant learning. It follows from a result in (Ben-David and Dichterman, 1994) that an
O(logn)-RFA oracle can be efficiently simulated by statistical queries, and hence by
Kearns' transformation (Kearns, 1993) an effici€tftog n)-RFA learner can tolerate clas-
sification noise (a simple and direct proof of the noise-robustness &f(&g n)-RFA
learner is shown in (Ben-David and Dichterman, 1997)). Furthermore, it is shown in
(Decatur and Gennaro, 1995) that if each statistical query uses only a restrictedevjetv (
depends on a logarithmic number of attributes), then the learner can tolerate attribute noise
as well. It follows that amD (log n)-RFA learner can tolerate efficiently and simultaneously
both attribute and classification noise. Hence, one may view the RFA restriction as a useful
conceptual tool in constructing efficient noise-tolerant learning algorithms: Just make sure
that the learning algorithm selects no more than a logarithmic number of attributes to be
seen in any given input example. As demonstrated in (Ben-David and Dichterman, 1994),
in many cases this is easily accomplished by a slight variation of the well-known learning
strategies.

While the k-RFA framework resembles the PAC model in many aspects, there are also
some interesting differences. For example, unlike the PAC madBFA learnability
of a class isnot characterized by its VC-dimension (Ben-David and Dichterman, 1993,
Ben-David and Dichterman, 1994). We show in this paper another surprising difference:
Weakk-RFA learnability of a class doestimply strongk-RFA learnability of that class.
Hence, it seems that better understanding-&FA learnability can substantially increase
our understanding of the extent to which results in other learning models depend on access
to complete examples.

A few initial results fork-RFA learning of Boolean functions are given in (Ben-David and
Dichterman, 1993). For instance, itis shown there that the class of Boolean functions which
are representable ByCNF or k-DNF formulas are efficiently:-RFA learnable (for fixed
k), and that the class @fdecision-lists is (inefficiently)-RFA learnable under the uniform
distribution. (We use the notion “efficient” learning when both the time and the sample
complexities of the learning algorithm are polynomials in all the learning parameters of the
problem).

This paper extends our understandingkeRFA learnability of Boolean functions in a
number of ways. First, we develop a characterizatiok-&FA learnability that forms
the basis for a general tool that we later use to prove learnability hardness results. Next,
we consider thé-RFA learnability of two specific function classes:DL, the class of
functions expressible as decision lists in which each teskisesm; andk-TOP, the class
of functions expressible as a threshold of parity functions, where each parity is defined over
at mostk inputs. We have chosen these classes for several reasons. For cénbiatht
of these classes are efficiently PAC learnable; in fact, they are among the most expressive
classes which are currently known to be efficiently and distribution-free PAC-learnable (both
containk-CNF U k-DNF, for example). On the other hand, their learnability in zhHRFA
model is not immediately clear. Also, our study of these classes, particulakipbaf has
shown that seemingly small variations in a question about the class can lead to substantial
variation in the resulting answers. This variability adds significantly to our interésRIRA
learnability questions. Finally, as discussed further below, a combination of some of our
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results for these two classes produces an interesting result about the relationship between
weak and strong learning in thieRFA model.

As an example of ouk-DL results, we show that, in the distribution-freeRFA model,

(n — 1)-DL is (inefficiently) learnable from afr. — 1)-RFA oracle. On the other hand, it

is information-theoretically impossible to leafn — 2)-DL from an (n — 2)-RFA oracle,

even if the decision list has at most two alternations of the labels! Another small change,
however, leads to quite a different result: with respect to any known distribétibh, is k-

RFA learnable (not necessarily efficiently) for al{for £ = 1 and the uniform distribution

there is an efficient learning algorithm; cf. (Decatur and Gennaro, 1995)). In yet another
contrast, we also prove a hardness result showing, among other things, that distribution-free
learnability of1-DL requires access to at least half of the bits in each example.

Our study ofk-TOP is motivated in part by the fact that it is known to have useful Fourier
properties (Jackson, 1994); furthermore, it has also been studied in the context of empirical
machine learning (Jackson, 1995). We exploit the Fourier propertiésT@P to show
first thatk-TOP is weaklyk-RFA learnable and that this learning is efficient for constant
Second, we show that with respect to the uniform distributieOP is stronglyk-RFA
learnable with polynomial (in the usual learning parameters, and assuming a cdnstant
sample complexity, but running time which is not necessarily polynomial.

As indicated earlier, we ultimately combine some of édbL and k-TOP results to
obtain the following: unlike the PAC model, weak and strong learninghatequivalent
in the k-RFA model (fork < n — 2). This says that the hypothesis boosting technique
introduced by Schapire (Schapire, 1990) for transforming weak learning algorithms into
strong learners depends in a fundamental way on having access to more of the attributes in
an example than the number needed for merely weak learning.

The paper closes with some directions for further research.

2. Definitions
2.1. The Learning Model

The model introduced in (Ben-David and Dichterman, 1993) suggests a general way of
extending any learning model by a new mechanism which generates observations (seen by
the learner) from examples (drawn by nature). In this work we use the RFA extension of
the well-known PAC model (Valiant, 1984), as defined below.

Let F be a class of0, 1}-valued functions (concepts) over an instance spacand let
D be some probability distribution ovéf. The distributionD is used both to generate the
random training examples for the learner and to define the proximity between a learner’s
hypothesis and the correct target concept. We use the notatio to denote that: is
drawn randomly from the distributioP® (over the instance spaceg).

In the RFA model another characterizing component is added to any learning problem.
This is a setlV of projections, where a projection is a mapping of classified examples
to some observation spac¢2 In the process of learning target functionf € F, the
learner can make an observation by selecting a projeatieniV’, and getting the value of
w(z, f(x)), wherex is a random instance drawn from. Choosing a projectiom € W
models the act of focusing the attention on a set of features.



ON RFA LEARNABILITY OF BOOLEAN FUNCTIONS 93

Let the instance space Bé = {0,1}™. A special interesting case of the RFA setting is
thek-RFA model,0 < k < n, in which the learner is restricted to choose projections from
the clasdV;, of k-RFA projections; &-RFA projectionw € W, is defined by a set of
indices{é1,...,it} C {1,...,n}. Whenx is drawn fromD and f is the target function,
then the learner observége;, , ..., z;, ), f(z)) (wherez; is the j-th bit of z). Hence, a
k-RFA learner may observe onlkybits of each instance (this is the restriction on the size
of the learner’s focus of attention), and he can also observe the classification bit.

Formally, this focusing mechanism is modelled by-d#FA focusing function® :

O* — Wy, which selects the next-RFA projection based on the sequence of obser-
vations seen so far. Given a sequencerofnstancest = (z1,...,2,) € X™, a
target functionf € F, and ak-RFA focusing function®, the observation sample gen-
erated by?, f and® is sample(Z, f, ®) = (w1 (z1, f(z1)), .., Wmn(Tm, f(zm))), where

w; = <I>(w1(rcl, f(le)), Ce ,’wifl(l'ifl, f(l’ifl))), forl1 <i<m (’U.)1 is the value of®

on the null sequence).

Having a sufficiently large sample of observations, the learner has to choose a hypothesis
h: X — {0,1} from thehypothesis clas#(. The error of any: with respect tof and D
is measured byrrors p(h) = Pryeplh(z) # f(x)], and a hypothesit is callede-good
(with respect tof andD) if errory p(h) < e (his e-bad if it is note-good).

Following (Blumer et al., 1989), our basic definition of learnability in the RFA model,
is an information-theoretic one (no computational restrictions). That is, we model the
hypothesis selection bylearning functionZ : O* — H. Given a sufficiently large sample
of observations, a successful learning function should produce, with high confidence, a
good hypothesis. In general, the sample size should be finite, but can be super-polynomial
in the parameters of the leaning problem.

Definition 1.  [k-RFA Learnability] A function classF C 2 is k-RFA learnable using
the hypothesis clasy, if there is an integer-valued sampling functior-, -, -, -), there is
a k-RFA focusing functiond, and there is a learning functidn: O* — H, such that for
every target functiorf € F, for every distributionD on X, and for eveny) < ¢,§ <1

Przepm [errory, p(L(sample(Z, f,®)) > €] < ¢

wherem = m(e, d, n, size(f)), andsize(f) is the minimal representation length ff

Usually we seek a learning algorithm, so we want the sampling fungtighe focusing
function®, and the learning functioh, to be computable. In fact, we are mainly interested
in efficientlearning algorithms. We say that a learning algorithredmple-efficienif its
sampling functionn is polynomial in%, % n, andsize(f). Also, we say that the algorithm
is efficientif it is sample-efficient, and both its focusing function and its learning function

are computable in polynomial time (ih 1, n, andsize(f)).

When the hypothesis clags is omitted it is assumed that = {0, 1}**. However,
efficient learning in this case means that the learning algorithm outputs a hypothesis which
is computable in polynomial time. The teproper learnabilityis used for the case = F.

The above definition models the ‘distribution-free’ scenario in which the learning algo-
rithm can handle arbitrary generating distributidngand does not know in advance).

In many cases this requirement appears to be too restrictive. In such cases we shall also
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Figure 1. Example of a decision list.

consider a more permissive setting obtained by requiring successful learning only with
respect to a fixed distribution which is known to the learner.

Finally, a function class isveakly learnablgin either the PAC or RFA model) if it is
learnable given thatis restricted to be atleastp(n, size(f)) forp(-, -) afixed polynomial.

2.2. Classes of Boolean Functions

One of the classes whose RFA learnability is studied in this work is the class of decision
lists, introduced by Rivest in (Rivest, 1987). A decision list is an ordered list of pairs
((t1, b1),...,(tr, by)), Wwhere each; is a term (conjunction of literals, where each literal is
aBoolean variable or its negation), and eagis a Boolean value called label. Apé&ir, b;)

is satisfied by an assignment {0, 1}" if ¢;(a) = 1. A decision listL defines a Boolean
function as follows. The value df on the assignmentis determined by the label of the
firstitem in the listwhich is satisfied by To ensure that at least one item is always satisfied,
the last item of the list is of the forrl, b), wherel is the term which is always satisfied.
Consider, for instance, the decision §§t, 2, 0), (22T4xs5, 0), (£1T3T4, 1), (1,0)), which

is illustrated in Figure 1. The values of the list on inp(itsl, 1,0, 1) and(1, 1,0, 0,0) are

0 and1, respectively.

Intuitively, a decision list is a useful representation for a Boolean function whose value
is dominated by terms in some decreasing order of importamcea term determines the
value of the function on a given assignment only if it is true and all of its predecessors in
the list are false. In other words, the tail of the list has an influence on the value of the
function only for the assignments on which the value of the function has not been already
determined by the head of the list.

A Ek-decision-list is a decision list in which each tetmconsists of at most literals.

For example, the decision list given above i8-decision-list. Formally, the class &f
decision-lists is defined as follows.

Definition 2.  [k-DL] A k-decision-list is a list((¢;, b;))7_, of pairs, in which each;
is ak-term,b; € {0,1}, andt, is the constant. Thesizeof the k-decision-list isr. A
k-decision-listL defines a Boolean function as follows: for ever¥ {0,1}", L(z) = b,
wherej = min{i|t;(z) = 1}. We denote by-DL,, the class of alk-decision-lists over
n variables.

We also denote by-alt-k-DL,, the class of alk-decision-lists, in which the number of
alternations in each list is bounded pyan alternation occurs whén,; = 1 — b;).

We omit the subscript when it is clear from the context.



ON RFA LEARNABILITY OF BOOLEAN FUNCTIONS 95

It is shown in (Rivest, 1987) thdt-DL properly containg:-DNF U k-CNF, and is ef-
ficiently PAC learnable for constat It is shown in (Ben-David and Dichterman, 1993)
that the clas&-DL is (non-efficiently)k-RFA learnable under the uniform distribution. In
this work we further study the RFA learnability of this class, and show some new positive
and negativeif(e., non-learnability) results for this class.

Another class studied in this work is the class TOP, which is defined as follows.

Definition 3.  [TOP] We denote by TOP the class of Boolean functions expressible as
a depth-2 circuit with a majority gate at the root and parity gates at the leaves, and we
will require an odd number of parity gates in every TOP expression so that we need not be
concerned about the value of the majority gate in the case of half of the parity gates “voting”
each way. The inputs to the parity gates are litefas,variables in either an unnegated or

a negated sense. All gates in a TOP have unbounded fanin and fanout @AEOR is a

TOP in which each parity has fanin at méstwe call such a parity &-parity. Thesize of

a (k-)TOPr is the number of parity gates in

Note that a parity may appear multiple times in a TOP circuit. It is often convenient
to instead think of such a circuit as having each distinct parity appearing just once and
associating a positive integer weight with it. Furthermore, as discussed further below, we
will find it useful to view parity functions and TOPs as mappingtel, +1} rather than
the standard0, 1}. In particular, this allows us to view the majority gate at the root of a
TOP as a threshold function, which outputs 1 if the weighted sum of the parity functions
defining the TOP is positive and1 if the sum is negative. Put another way, the root node
simply takes the sign of the weighted sum of the inputs to the root.

Furthermore, notice that a parity gate defined over a set of variables in which an odd
number of the variables are negated is equivalent to the complement of that parity over the
same set of variables but with all variables appearing unnegated. For examgle,, =
1 @ x2. Also, given the assumption that parity functions produce valugs-in +1},
the effect of complementing a parity function can be achieved within a TOP expression
by simply negating the weight associated with that parity function. Thus we have that the
TOP expressionsign((z1 @ x3) + 2(T1 @ x2)) andsign((x1 @ x3) — 2(z1 ® z2)) are
equivalent. This view of TOPs as being defined by the sign of the integer-weighted sum
of uncomplemented—1, +1}-valued parity functions over unnegated variables will be
adopted in the remainder of the paper. The size of such a TOP is the sum of the magnitudes
of the weights.

We also denote by PAR the class which contains only two functions: the parity func-
tion overn variables (parity = =1 ® z2 ® ... ® x,) and its complementpgrity, =
xr1 @.232@...691‘,”).

2.3. The Fourier transform

While the Fourier transform has numerous uses in computer science.@e@ho et al.,
1974)), we will use a somewhat nonstandard multidimensional version of the transform
first applied to learning theory by Linial, Mansour, and Nisan (Linial et al., 1993). For
each vecton € {0,1}"™ we define the functiory, : {0,1}" — {—1,+1} asx.(z) =
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(—1)Zz‘ “%_ Thatis,x.(z) is the Boolean function that iswhen the parity of the bits in
x indexed bya is even and is-1 otherwise. These functions have the property that

Exxa(®) - xo(2)] = { (1) ic]:t;lme:rwbise

(Expectations and probabilities here and elsewhere are with respect to the uniform distribu-
tion over the instance space unless otherwise indicated). Thus these functions form a basis
for the space of all real-valued functions{iy 1}", and every functiorf : {0,1}™ — Rcan
be uniquely expressed as a linear combination oftfienctions: f = > f(a)xa, where
f(a) = E[f - xa]. The vector of coefficients is called the (discrete multi-dimensional)
Fourier transformof f (also known as the Walsh transform). We say that a Fourier co-
efficient f(a) hasorder k if |a| = k and hasbounded orderk if |a| < k, where|a|
represents the Hamming weighta@f Note thatyg is the constant-1 function; therefore,
f(0) = E[fxg] = E[f]. Also note that forf € {—1,+1}, f(a) = E[fx.] represents
the correlation off andy, with respect to the uniform distribution. For this and related
reasons, in the sections of this paper dealing with Fourier analysis and TOP functions we
will assume thaf € {—1,+1}.

By Parseval's theorem, for every functigh: {0,1}" — R, E[f?] = 3, f?(a). For
fe{-1,+1}itfollows that) ", f2(a) = 1. More generally, for any real-valued functions

fandg,E[f - g] = 32, f(a)j(a).
3. Hardness ofk-RFA Learnability

In this section we develop a characterization of the conditions under which a function class
is or is not learnable from &-RFA oracle. (In Appendix A we present an alternative,
Fourier-based characterization/eRFA learnability which, while potentially useful, does

not lead directly to any results in this paper.) Building on this characterization, we develop
a general tool for showing-RFA learnability hardness, which we then apply to obtain
hardness results for RFA learnability fDL.

3.1. Characterizinge-RFA Learnability

A general scheme for proving information-theoretic hardness in a given learning model is
the following one. Assume we can find a €&bf scenarios (a scenario here is a setting of
all the parameters which are unknown to the learner, typically the target function and the
target distribution), satisfying the following two conditions:

1. Any possible hypothesis made by the learner is bad for at least one of the scenarios in
Q.

2. Alearner in the given model cannot distinguish between the scenarig$iia., each
scenario inQ provides the learner with exactly the same information).

Being unable to distinguish between the different scenaria@3, ithe learner has to make
the same decision in each scenario. However, since any decision is bad for at least one



ON RFA LEARNABILITY OF BOOLEAN FUNCTIONS 97

scenario inQ, there must be a scenario in which the learner fails. The exact formulation of
this scheme depends on the given learning model.

Such a scheme has been first used by Kearns and Li (Kearns and Li, 1993) (and later
by others, cf. (Goldman and Sloan, 1995)), in proving the information-theoretic upper
bound on the rate of tolerable malicious noise. Specifically, they show that by maliciously
corrupting ant_ fraction of the learner’s sample, there are two different scenarios which
induce the same distribution over the corrupted sample space, yet any hypothesis made by
the leaner ig-bad for at least one of them.

We use a similar idea to formulate a general scheme for proving information-theoretic
hardness of learnability in tHe RFA model. It turns out that our formulation also provides
a full characterization of-RFA learnability.

Define ascenarioover the instance spacé = {0, 1} to be a pairf, D) of a Boolean
function f and a distributiorD over X. If f € F then(f, D) is called anF-scenario. To
formulate the notion of indistinguishability by/&RFA learner we define an equivalence
relation among scenarios as follows. Hoe {j1,...,j5x} C {1,...,n} andz € {0, 1},
let z|; = (zj,,...,2,.). Given a scenari® = (f, D) over {0, 1}", define forl =
{iseo gk} ©{1,...,n}, z € {0, 1}*, andb € {0, 1}, the probability

ps(I,Z,b) é PrmGD[f(x) = b7 wl] = Z]

That s, in the scenari§, the probability of observingz, b) when focusing on the index set
Tisps(I,z,b). Thesef{ps(I,z,b)}1 .5 is called the:-RFA probabilitieof the scenarid.
We say thatS; andS; arek-RFA equivalentf ps, = pg, (i.e. ps, (I, 2,b) = ps, (I, z,b)
for every I, z, andb). Obviously, this is an equivalence relation. Also, notice that for
any k-RFA projection defined by a set &findices{i,...,ix} C {1,...,n}, two k-RFA
equivalent scenarios induce identical distributions over the observation space, and thus
k-RFA equivalent scenarios are indistinguishable liyRFA learner.

A hard set for &-RFA learner is a set of-RFA equivalent scenarios which has some
“discrepancy”. A set has artdiscrepancywith respect to a hypothesis claks if every
h € H is e-bad for at least one of the scenarios (recall thas ¢-bad for the scenario
(f, D) if errory p(h) > €). A setisk-RFA hardfor H if it has a non-zero discrepancy
with respect td, and all of its scenarios afeRFA equivalent. Notice that there might be
a hard set which does not include any hard pair. We prove that the existenéeRFA
hard set is sufficient to imply non-learnability in theRFA model. Furthermore, we also
prove that this condition is weak enough to be necessary (for non-learnability), providing a
full characterization of (information-theoretic) learnability in thdkFA model.

THEOREM 1 A classF of boolean functions i8-RFA learnable using the clags if and
only if there is no set af-scenarios which i&-RFA hard forH.

Proof: First we prove that the existence of a hard set of scenarios implies non-learnability.
Assume that there is a s@tof k-RFA equivalentF-scenarios, which has ardiscrepancy
(e > 0). Let Sy, be a scenario i@ for which h is e-bad. Since the instance space is finite,
the hypothesis class is also finite, hei@e= {5}, : h € H} is afinite class ofF-scenarios
which isk-RFA hard forH.

Let A be ak-RFA learning algorithm which uses a samplemobbservations in order to
learn the clasg usingH. Beingk-RFA equivalent, all the scenarios@ induce the same
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m-fold product distributionP™ over them-fold observation space. The hardness)f
implies that for each sequeneef m observations drawn fron?™, the hypothesisi(z)
chosen byA is e-bad for at least one scenario@¥.

Let s = Pr.epm[A(2) is e-bad forS]. As everyA(z) is e-bad for someS € Q’, we
haveZSEQ, as > 1, so there must be a scenafoc Q' for which g > @ Hence,
for S being the target scenario, the probability thatails to find ane-good hypothesis is
at Ieast‘g%| > 0.

Next we prove that if there is no set#fscenarios which is hard fét, thenF is k-RFA
learnable usin@{. Assume that there is no such hard set, and assume first that the learner
knows the exack-RFA probabilities{ps} of the target scenari§. Let A = {5’ : ps =
ps} (notice thatS € A). Since.A cannot be a hard set, it must have a zero discrepancy.
Hence, there must be a hypothésighich is good for all the scenarios.i, and in particular
for the target scenari§. This implies that an infinite sample size is sufficient for finding a
good hypothesis. However, we need to show tHatite sample size is uniformly sufficient
for all the possible target scenarios. Since the number of possible scenarios is infinite (as
is the number of possible distributions), it is not immediately obvious why a finite sample
size is sufficient.

Here is the main idea of the proof. First, we wish to show that, given the accuracy needed
from the learner, it is sufficient to consider a finite cover of the set of all scenarios. Then, by
using a finite sample, the learner can choose from this finite cover a set of scenarios which
has a small discrepancy, and which includes with high probability a good approximation of
the target. Once such a set is found, the learner can choose a hypothesis which is good for
all the scenarios in the set, and hence also for the target scenario. The crucial point here is to
ensure that one can use godedRFA estimates in order to find a set with small discrepancy.
Hence, we need to relate the accuracy ofitHeFA estimates to the discrepancy of a set of
scenarios. This is done as follows.

Define the discrepancy of a set of scenarib® be:

discrepancy(A) = min sup errorg(h)
heH scA
Notice that ifdiscrepancy(A) < e then there is a hypothesiswhich ise-good for all the
scenarios ind. Also, define thé:-RFA resolution of a setl to be:

resolution(A) = sup ||ps —psllec = sup max |pgs, (I, 2,b) —ps,(I,2,b)]
S,S'cA s,57eA Lzb
Obviously, ifresolution(A) = 0 then all the scenarios id arek-RFA equivalent. Other-
wise, it is possible to distinguish between at least two subsetshyf having close enough
estimates of thé-RFA probabilities.

We would like to have a lower bound on the necesgaRFA resolution of a setl which
guarantees a lower bound on the discrepancy of the set. Assuming that there isho set
for which discrepancy(Q) > 0 andresolution(Q) = 0, the following lemma establishes
such a relation.

LEmMA 1 If there is no set ofF-scenarios which i%-RFA hard forH, then for every
€ > Othereisy > 0, such thatliscrepancy(A) > e impliesresolution(A) > ~ for every
finite setA of F-scenarios.
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Proof: Assume that there is no set #f-scenarios which i&-RFA hard forH. If the
lemma does not hold then we can find an infinite sequendé-stenario setéA;) c s, in
which discrepancy(A;) > e for everyj, butresolution(.A;) converges td. The idea of
the proof is to show that in this case there is a sub-sequer(cé;ofwhich converges to a
hard set, contradicting the assumption that there is no such set.

First we show that there is a sequence of finite scenario-sets which satisfies the same
conditions. For each € H, let Sy, ; = (fn,;, Dn,;) € A; be anF-scenario for which
errors, ;(h) > ¢, and letB; = {Sy,; : h € H}. Notice thatdiscrepancy(B;) > e.
Also notice thatresolution(B;) < resolution(.A;) for everyj, and hence the sequence
resolution(B;) converges td). Furthermore, sincg and™ are finite, there is an infinite
J' C J, and a set of function§g;, : h € H} C F, such thatf;, ; = gy, for everyj € J’
and everyh € H.

Pick someh € H, and consider the infinite sequen@®y, ;) c;-. We claim that it has
a converging subsequence. [Rtbe the set of all distributions ovep, 1}™, and letd,
be thestatistical-distancemetric defined byl (D, D’) = er{o, 1} |D(z) — D' (x)|.

First notice that any distributio over{0, 1}" can be represented as a paint R%" by

letting a; = D(7), wherei is the binary vector-representationiofHence,(D, d,) can be
embedded as a subspace in the metric spage, d,), whered; is the L' metric. Being a
bounded and closed subspace, it is also compact, and hence any infinte sequence in it has
a converging subsequence.

By applying the same argument iteratively for everg H we obtain a scenario-set sub-
sequenceB;);c s, such that for every, € H, the distribution sub-sequen¢®y, ;) ;e
converges to some distributidpy,. Let Q be the set ofF-scenarios to which the sequence
(Bj)je» converges. ThatisQ = {(gn, Dy) : h € H}. We claim thatQ is k-RFA hard
for H. First notice that for every € J":

errorg, (h) > errorg, ;(h) — ds(Dp, Dy j) > € — ds(Dp, Dy, 5)

Sinced;(Dy,, Dy, ;) converges td, we get thakerrorg, (h) > € for everyh € H, hence
discrepancy(Q) > e. Also, for everyh, b’ € H and everyj € J":

Ips, = ps,lloc < sy ; = Ps,,llec +ds(Dhy Dhj) + ds(Dpry Dpy ) 1)
Since all the terms in the r.h.s. of Inequality 1 converge,twe get||Ps, — Ps, [« =0
for everyh, b/ € ‘H, and thereforeesolution(Q) = 0. [ |

By Lemma 1, there is a functiohi : R™ — R™, such that for every sed of scenarios
resolution(A) > T'(discrepancy(A)) > 0. Givene > 0, lety = min{I'(5), 5=}, and
recall thatD is the set of all distributions ovel0, 1}". Define:

D/

2n—k+2
{DeD : VeD(x)e{i/M:i=0,1,...,M}} ; M:’V -‘

v

1>

T 2 ((f.D): feF,DeD}

ForeveryD € DthereisD’ € Dsuchthatl,(D, D) < 2¥=24. HenceD' is a(2¢~2y)-
cover of D with respect to the statistical-distance mettic and for every two functiong
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andh,
errory p(h) < errory p/(h) +ds(D,D') < errors p/(h)+2""2y

Taking sufficiently large samples of the target scenrie (f, D), ak-RFA learner can
compute an estimafgs satisfying (with high confidencé)s — ps||- < 7. Let

B={S'€T: |lps —pslo < 3}

We claim that a hypothesis which minimizesdiscrepancy(B) is with high confidence
ane-good hypothesis. Consider the scenatio= (f, D’), whereD’(z) = | D(z)M ] ;.
Obviously, 5" € 7. Furthermore, sincéD(z) — D’'(z)| < 4 for everyz, it follows
that[|ps — psrlle < 2" Fdis = 7. Th_us, vv_ith high confidencd|ps — ps/|lcc <
[ps = pslleo + Ips = psilleo < T+ F = 3, implying thats’ € B.

Sinceresolution(B) < ~ implies discrepancy(B) < § (recall thaty < I'(5)), h
must be$-good for every scenario i3, including the scenari¢’. Sinced,(D,D") <
2”2n_++2 = 2F=2~ and sincey < sx—1 We conclude that

|

errory p(h) < errory p/(h) + 2872y < % +-=c¢€

3.2. Hardness of RFA Learnability DL

Being aninformation-theoreticharacterization of-RFA learnability, the main importance
of Theorem 1 is in providing a scheme for proving information-theoretic hardness results
in the k-RFA model. We now apply this scheme to obtain hardness RFA results for the
learnability of decision lists.

First notice that to disprove theRFA learnability of a function clas$, it is sufficient
to find apair of k-RFA hardF-scenarios. If thé&-RFA hardness of the pair is proved for
F itself, then propek-RFA learnability is disproved.

Now assumeg F,, },,>n, is a family of function classes, whefg, is defined over the in-
stance spacfd, 1}". Naturally, we are seeking hardness results which hold fer alln.
We now show few constructions which expand-&FA hard pair of scenarios over the
instance spacf0, 1}" into a(k + 1)-RFA hard pair of scenarios ov€o, 1}"*1. By induc-
tively applying this construction (within a family which is closed under the construction),
we will obtain a generalization of non-learnability results from a gizgrio all n > ny.

To enable compact descriptions of these constructions, we introduce few additional no-
tations. Forb € {0, 1} andc € R™, let (b, c) be theconstantscenario(f, D), where
f(z) =bandD(x) = cforall z € {0, 1}". For a scenari® = (f, D) andb € {0, 1},
we denote by(.S) theprojectedscenario(b, D’), where

D'(x)é { D(x) ,if f(z) =1,

0 , otherwise.

Note thatD’ is not necessarily a probability distribution o, 1}". Therefore, we denote
by (b(5)) the “normalized” scenario, whet®’(-) is normalized by) ",/ ;-1 D'(z).
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However, it will be convenient to abuse our notations by treating the non-normalized form
as a scenario.

Notice that for every scenari§, I C {1,...,n}, z € {0, 1}*, andb € {0, 1}, we have
ps(I,z,b) = pb(S)([, z,b), and therefore the following holds.

Cramv 1 Two scenariosS;, S, are k-RFA equivalent if and only if both pair®(S;)),
(0(S2)), and(1(.S1)), (1(S2)) are k-RFA equivalent.

Hence, in order to show equivalence of scenarios, it is sufficient to show the equivalence
of their projections.

For scenarios; = (£, D™ andS, = (£{", D{™) over{0,1}", letS; ® S, denote
the scenaridf("+1), D("+1)) over{0, 1}"+!, where

n A n _ n
f( +1)($1,...,l‘n+1) = .’L‘n+1f1( )(Jcl,...,xn) + xn+1f2( )(xl,...,xn),
D("+1)(x1,...,xn,1) 2 Dgn)(:vl,...,xn),
DY (g x,,0) 2 Dén)(xl,...,mn).

Again, 51 ® Sz forms not necessarily a scenario over a probability distribution and we
denote by(S; ® S2) the normalized scenario.

LEMMA 2 (Crossing Construction) If Sy,.S; is a k-RFA hard pair of scenarios over
{0, 1}, then(S; ® S5), (S> ® S1) is a (k + 1)-RFA hard pair over{0, 1},

As a simple example consider the following two scenarios ¢9et }: Both distributions
are uniform,f* (z,) = 21, andf{" (z,) = 1. Obviously, this pair of scenariosisRFA
hard. Now, if we apply the crossing construction, we get the following two scenarios: Both
distributions remain the uniform distributioﬁf) (z1,22) = 1 ® T, andf2(2) =11 Dxs.
Lemma 2 implies that this is BRFA hard pair of scenarios. By applying the same con-
struction iterativelyn — 1 times, we conclude that the class PARnot (n — 1)-RFA learn-
able (recall that PARconsists of two functions—the parity function ovevariables, and its
inverse). This result, which has already been shown in (Ben-David and Dichterman, 1993),
demonstrates the gap between PAC learnability{RFA learnability) andn — 1)-RFA
learnability (and similarly, betweefk + 1)-RFA learnability andk-RFA learnability
(Ben-David and Dichterman, 1997)). It also immediately implies that the class,DNF
(which contains PAR) is not (n — 1)-RFA learnable. We later apply this construction
to obtain hardness results for the RFA learnabilityddL, but first let us prove the lemma.

Proof of Lemma 2: Assume thas; = ("), D™, i € {1, 2}, is ak-RFA hard pair, and
let 5/ = (f" ™) D"y = (S, ® S5_;), i € {1,2}. We first prove thass} and.S} are

(k + 1)-RFA equivalent. Letl = {i1,... ip1} C {1,....,n+1}, z € {0, 1}**! and

b € {0, 1}. To verify thatps, (1, z,b) = ps, (1, z,b), consider the following two cases:

e n+1¢€l. Assume firstthaty,; = 2,11 = 0. Then

l(n+1)(m1, cey Ty, 0) = 2(")(x1, ey Ty)

D"z, 2y, 0) = DS (2, ... w0)/2.
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(Dividing Dé”)(-) by 2 guarantees thdf)i”“) is a probability distribution).
Henceps: (I, 2,b) = ps, (I, 2',b)/2, wherel’ = I\ {n + 1} and2’ = (z1, ..., z1).
Similarly, ps; (1, 2,b) = ps,(I',2',b)/2, and by the assumptiops, = ps, we get
ps;(I,z,b) = ps;(I,z,b). The casey 1 = z,41 = 1 is symmetric.

e n+1¢l Letl’=TU{n+1}, andletz* = (z1,...,2541,0a) for z € {0, 1}**!
anda € {0, 1}. Then

ps;(I,2,0) = pg(I',2%,b) + pg; (I', 2, D)
= pS;(I/7Z17b)+pSé(I/7207b) :pS;(I7Z7b)

The first and last equality follows directly from the definitions of the probabilities
ps; (1,2, b) andps; (I,z,b), whereas the second equality follows from the fact that for

everyz € {0, 1}"*!
f1(n+1)(«r17 A 7l'n/717n+1) = f2(n+1) (1‘1, ce "T"’En'i_l)’
D§"+1)(x1, ey T, Tpy) = Dé"“)(arl, co T, Tpg)-

We also have to show that the paff, S, has a non-zero discrepancy. ket 0 be such
thatevery: : {0, 1} — {0, 1} ise-bad for eithetS;, Sy, and leth’ : {0,1}"! — {0, 1}.
Lethy(z1,...,2n) = A/ (x1,...,24,a). Then

errorg; (h') = errors,(ho)/2 + errors,(hi)/2
errorg;(h') = errors,(ho)/2 + errors,(hi)/2

Since bothhy andh, aree-bad for eithers; or Sy, it follows thath’ is $-bad for eitherS]
or S5, [ |

Note that the crossing construction also applies to “non-normalized” scenarios, yielding
a hard pair of “non-normalized” scenarios. We will use this observation, for instance, in
the proof of Lemma 4.

While the pair of scenarios used in the crossing constructionkaREA hard for every
hypothesis class, the following construction yields a pair whichRFA hard for1-DL.
This will be used later to obtain a hardness result for proper-learnabilityDif.

LEMMA 3 (Linear Construction) If S1,.55 is a pair of 1-DL-scenarios ovef0, 1}"
which isk-RFA hard for1-DL, and1(S;) = 1(S3), then(S; ® (0, D)), (S; & (0, D{™Y)
is a pair of 1-DL-scenarios ovef0, 1}"*" which is(k + 1)-RFA hard for1-DL.

Proof: LetS; = (£, D™, i € {1,2} be ak-RFA equivalent pair of scenarios over
{0, 1}, and assume(S;) = 1(S,). Lets! = (f"*) D"y = (S, @ (0, D{M)).
First notice that iff ™ is a1-decision list, then so ig™ ™ (just add the itenfz,, 1, 0) in
front of the list fl.(")).

To prove (k + 1)-RFA equivalence ofS], S5, it is sufficient to prove it for the pair
(b(S!)) (by Claim 1). Forb = 1 the claim is obviously true, sincKS;) = 1(S2) implies
(1(S1)) = (1(S%)). Forb = 0, consider the scenarid§ = (S; ® S2), To = (S2 ® S1)
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(obtained by the crossing construction). Note thaand.S; share the same distribution.
By Lemma 2, the paiffy, 7% is (k + 1)-RFA equivalent, i.e.pr, (I, 2,b) = pp, (I, z,b),
forall I = {iy,...,igr1} C {1,...,n}, 2 € {0,1}**1, andb € {0, 1}. Hence,

pSi(Iaz70) +p5'1([,271) = pTl(IVZaO) +pT1(LZ, 1)
= pTz(I7Z,0)+pT2(I,Z,1)
psy (1, 2,0) + psy (1,2, 1),

and sinceps; (1,z,1) = ps;(1,z,1) (caseb = 1) we haveps: (1, 2,0) = ps;(,2,0).
Hence, the scenarid8(S7)) and(0(S%)) are(k + 1)-RFA equivalent.
Finally, we prove that paif], S} has a non-zero discrepancy with respect-oL. Let
e > 0 be such that every-decision list over{0, 1}" is e-bad for eitherS; or Sy. Leth
be al-DL over {0, 1}"“, and leth/(z1,...,z,) = h(z1,...,z,,0). Obviously,h’ is
al-decision list ove0, 1}", and hence is-bad for eitherS; or S,. Buterrorg:(h) >
errorg,(h')/2 for bothi = 1 andi = 2, and hencéh is §-bad for eitherS] or .
]

Using the linear construction, we prove the following theorem.

THEOREM 2 1-DL is not properly (n — 2)-RFA learnable.

Proof: By Lemma 3, it is sufficient to show the existence of)-&kFA hard pair of
scenarios ovef0, 1}2. Let f% = ((z2,1), (21,1),(1,0)), £ = (@2, 1), (@1, 1),
(1,0)), D = 1 for everyz # (0,0), and DS” (z) = & for everyz # (1,1) (see
Table B.1 in Appendix B). It is easy to verify that this forms a pair of scenarios over
{0, 1}* which is0-hard for1-DL. [ |

Notice that the linear construction always adds the itgép.1, 0) in front of the list, and
therefore the lists which are used to obtain the hardness of pfope?)-RFA learnability
have only two alternations of their labels. This implies that even the 2taftsl-DL is not
properly(n — 2)-RFA learnable.

Next we turn to non-proper learnability ®fDL. In the next section we present an algo-
rithm that learns this class, if the learner has access to at least half of the attributes (Theorem
6). We now show that this result is tight—no algorithm can IdabL in the k-RFA model
whenk < n/2. We use the following construction.

LeEMmMA 4 (Projecting Construction) If S;, i € {0, 1} is a pair of 1-DL-scenarios which
is k-RFA hard over{0, 1}", then the paitS] = (U; ® V;), whereU, = S; ® 0(S5_;) and

Vi = 1(S5_;) ® (1,27 ™) (see Table 1), is a pair df-DL-scenarios which i$k + 1)-RFA

hard over{0, 1}"*.

Before we start the proof let us mention the following simple claim.

CramM 2 Given twok-RFA equivalent scenarioS,;, Sy, an arbitrary scenariaS overn
variables, and a real number > 0, the scenarios] = (aS; ® S) and S}, = (@S ® S)
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Table 1.An illustration of the scenarios defined in Lemma 4.

Tn+1 Tn41
Tp42 1 0 Si Tp42 1 0 Sé
1 S1 0(S2) |Ux 1 Sa2 0(S1) |U2
0 1(S2) (1,27")| Wi 0 1(S1) (1,27")| Va
S1 Uy Vi Sa Uz Vo

are alsok-RFA equivalent, whereS; denotes the scenario obtained fréinby multiplying
all the probabilities by > 0.

Proof of Lemma 4: First note that that if; is al-DL-scenario, then so iS; (just add the
items(Z,42, 1), (Tn+1,0) in front of thel-decision list of the scenari§;).
The proof that the non-zero discrepancy of the §ajrS; is preserved by, S5 is similar

to the argument made in the proof of Lemma 2. Hence, it remains to show that the scenarios

(b(S})) are(k + 1)-RFA equivalent fob € {0, 1}. For the casé = 0 we get:

0U; ®V;) = 0((S; ®0(S3-:)) ® (1(F3-3) ® (1,27")))
= 0(8; ®0(53-i)) ® 0(1(S3-:) ® (1,277))
= O(Sq; ® Sg_i) ® <0,0>
Since the paifS,, S; is k-RFA equivalent, we obtain by Lemma 2 and Claim 1 that the
scenariog0(S; ® Ss3_;)), ¢ € {0, 1} are(k + 1)-RFA equivalent. Hence, by Claim 2, the
scenarioss; = (0(U; ® V;)) are(k + 1)-RFA equivalent.
For the casé = 1, consider the following pais’, i € {1, 2} of scenarios ovef0, 1}"+2:

SI2(U; V), where U;2S; ®1(S5_;), and V;20(S5_;) ® (1,27

(See Table 1). Similarly to the case- 0, we get that the scenari¢s(S})), i € {0, 1} are
(k + 1)-RFA equivalent, since
LU @ Vi) = 1((S © 1(95-4)) @ (0(S5-i) ® (1,27™)))
= 1(5; ® 1(S3-4)) ® 1(0(53-:) ® (1,27"))
Note thatS”g represent the same scenarios¥sup to permutation of the variables

Zn+1, Tnt2, and hence, the scenaridss;)), ¢ € {0, 1} are alsqk +1)-RFA equivalent.
[

The projecting construction is used to prove the following theorem.

THEOREM 3 1-DLisnot | %! |-RFA learnable.

Proof: It is sufficient to proof the theorem for odd (Forn even, the(§ — 1)-RFA
non-learnability ofl-DL,,_; implies (§ — 1)-RFA non-learnability ofi-DL,,). By the
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projecting construction of Lemma 4, it is sufficient to show a &P, D'y, (£{*, D)
of 1-DL—scenarios which i$-RFA hard. Let:

= (@, 1), (@, 0), (@, 0), (1, 1)
1Y = (@, 1), @, 0), (z1,0), (1, 1))

LetD\™ (z) = Lforz € {(0,1,0), (1,0, 1)}, otherwiseD'™ (z) = -, and letD§" () =

L forz € {(0,0,1), (1,1,0)}, otherwiseD\" (z) = 15 (see Table B.2 in Appendix B). It

is easy to verify thd-RFA hardness of this pair. ]

Thel-decision Iistq"i(") used in the above proof haue- 1 alternations. However, we can
define functiong)™ € 2-alt-1-DL such thatPr o [0 () # ™ (x)] = 0. Hence,
<g§”), Dg”)> is also a 25 |-RFA hard pair, implying that even the cladslt-1-DL is not

| 21 |-RFA learnable.  Assuming again thatis odd, g{™, g5 will be the following
2-alternatingl-decision lists

(T, 1), (T2, 1),..., (T3, 1), (Tn-1, 0), (Tn—3s, 0),...,(T2, 0), (1, 0), (1, 1)),
((ZTn, 1), (Tp—a, 1),...,(Ts, 1), (Tn-1, 0), (Tn—3, 0),...,(T2, 0), (z1, 0), (1, 1)).

Assumeg!™(z) # f(xz). Note, that there exists no = (x1,...,z,) for which
g™ (z) = 0 and fi(z) = 1. Furthermoreg,;(z) = 1 and f;(z) = 0 implies =3 =
OVzs=0V ...V, =0. Observing that

FP@) =0ADM (@) >0 = ss=a5=... =, =1,

we getD;(z) = 0.

By combining the crossing and projecting constructions, we obtain yet another hardness
result. Assume we have a paly = (£, D!} of ¢/-RFA hard scenarios wheié” € a-
alt-¢”-DL... Now the crossing construction yields a psfr= (f{“*", D{*"") of (¢ + 1)-

RFA hard scenarios Wherﬁ‘i(cﬂ) € a-alt-(¢” + 1)-DL.41. We get by induction that
n — (¢ —”)-DLis not n — (¢ — ¢’)-RFA learnable for constamt ¢/, ¢’. By Theorem 3
we know thatl-DL; is not | k/2|-RFA;4, learnable. Setting =k + 1, ¢ = |k/2],
¢’ =1we get

THEOREM 4 (n — k)-DLisnot (n — 1 — [k/2])-RFA learnable.

Again, the lists used in the proof have at most two alternations, and thus even tieallass
(n—k)-DLisnot (n—1—[k/2])-RFAlearnable. Also note that for a fixédthe clasd-alt-
k-DL = k-DNF U k-CNF is efficientlyk-RFA learnable (Ben-David and Dichterman, 1993).

4. Distribution-free Learning of Decision Lists

Inthis section we contrast the hardness results, shownin (Ben-David and Dichterman, 1993)
and in Section 3 of this paper, with two positive results for RFA learnability of decision
lists. Both results are tight in terms of the amount of visible attributes used by the learning
algorithms. In the analysis of both learning algorithms we make use of the following lemma.
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LEMMA 5 LetA C {0, 1} be finite, and leD be a distribution onX. For everyA € A,
let p(A) = PrpeplA(z) = 1], and letp(A) be the empirical estimate @i A) based on
a sample of sizen. For everyr,6 € (0,1), and everys € (1,2], let M(r,3,6,t) =
[%’fﬁ) log @]. Then, for a sample of size > M(r, 3,4, |A]), the following holds
with confidencd — §: For everyA € A,

P <o) < spla)

p(A) < fr = p(4) < BT

p(A) > fr =

Proof: For a sample of sizen, and for everyA € A, the Chernoff bounds imply
(Angluin and Valiant, 1979):

Pr[p(A) > Bp(A)] < e mP(AE-1)7/3
Pr[p(4) < p(A)/5] < o~ mp(A)(B-1)%/(26%)

If we upper bound all inequalities (for evedy € A) by ﬁ, then all the estimates are
within (3 of their true values. Solving fon yieldsm = M (1, 3,4, | A|). [ ]

4.1. (n — 1)-RFA learnability of(n — 1)-DL

In the PAC model, every class of Boolean function is clearly (information-theoretic) learn-

able. As implied by the hardness results in (Ben-David and Dichterman, 1993) and in

Section 3 of this paper, this is not the case in }hRBFA model, whert < n. In fact,

any class which contains both the parity function and its inverse (@ovariables) is not

(n — 1)-RFA learnable. One may ask whether by excluding these two functions we gain

(n — 1)-RFA learnability. We answer this question affirmatively. (One may also add either

the parity function or its inverse, but not both, without affecting(the 1)-RFA learnability

of the class). Notice that this class is actually the c{ass1)-DL, and hence by Theorem 4,

is not(n — 2)-RFA learnable. Thus, the result is also tight in terms of the visibility size.
The time and sample complexities of the learning algorithnig(@32" /¢) (n+In(1/4))).

Notice that, sincd/Cdim((n — 1)-DL) = 2™ — 1, every algorithm which PAC learns

(n—1)-DL (letalone an RFA one) needs a sample size exponentig|(ihrenfeucht et al.,

1989)).

THEOREM 5 (n — 1)-DL is properly (n — 1)-RFA learnable with a sample and time
complexity of
39n
O(n2 <n+lnl)>.
€ 0

Proof: We start by showing information-theoretic learnability of this class, then elaborate
on the details needed to construct a learning algorithm. By Theorem 1, the class is properly
(n — 1)-RFA learnable if there is ngr — 1)-RFA hard set for the clags — 1)-DL. Recall

that all the scenarios in such a hard set shouldrbe 1)-RFA equivalent. However, we
show that no twg(n — 1)-DL scenarios can ben — 1)-RFA equivalent. Furthermore,
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we show how to construct the target decision list from(the- 1)-RFA probabilities; this
construction suggests the basic strategy for the algorithm presented later.

An (n — 1)-RFA observation is made by fixing an index get {1,...,n} \ {k}. For
a target scenarid, we have denoted the probability of observingb) via this index set
by ps(I,z,b), wherez € {0, 1}"~" andb € {0, 1} (see Section 3). Notice thatand z
identify a pair of instances which differ only in tiéh bit; we call such an unordered pair
ak-edge. For simplicity, we use the notatipg(e, b) rather tharps (7, z,b), wheree is the
edge determined by andz, andS is the target scenario (omitted in the sequel). We show
how to construct the target functighfrom the set of n — 1)-RFA probabilities{p(e, b)}.

First notice that if an edge jure, i.e., both of its instances have the same lahe¢hen
p(e, 1 —b) = 0. Hence, the label of a pure edgean be determined from the probabilities
p(e,0) andp(e, 1). Also notice that once the labels of an eddeave been determined, the
value of any adjacent edgécan be determined(is adjacent te if they share a common
point), as follows. Assume that= (z,y) is adjacent t&’ = (y, z), and that the label of
y has been determined to be Then, ifp(e/,1 — b) = 0 (¢’ is pure) then the label of
is b, otherwise ¢ is impure) it is1 — b. Finally, there is at least one pure edge for every
(n — 1)-decision list—the edge which is determined by the first item in the list. This edge
can be used aspavotaledge for determining the labels of all the other edges-inl stages
(in stagei determine the value of an edge whose distance from the pivotal edge is

The above argument proves that the exact 1)-RFA probabilities determine gm —1)-
decision list, and Theorem 1 guarantees that estimates based on a finite sample size are
sufficient to identify the target list. However, to construct a learning algorithm, we need to
refine the basic approach described above.

First we need to refine the notion of being a “pure” edge to allow for a small amount of
error. To see why, consider two impure adjacent edgesz, y) ande’ = (y, z), where the
probability of drawinge is low, and the probability of drawing is high. Assume further
that the label ofc andz is 0, while that ofy is 1. Having a small probability, the impure
edgee might look to the learner like a pure edge. Deciding first the value @f., of
bothz andy) to be0, and knowing that’ is impure, the above approach assigns the wrong
label toz, incurring a significant error. Hence, it is preferable in such a case to consider the
“almost pure” edge’ as being pure, labelling with 0.

Furthermore, we have to allow for the amount of impureness in a pure edge to increase
throughout the stages of the algorithm. This is due to the fact that this impureness is only
estimated. Consider again the previous example, and assume that, in deciding the label of
the edgee, we allow for an empirical impureness of size If our estimates are within a
factor 5 of the real probabilities, then the real impureness could be of®ize(A good
choice fors will be determined later.) Hence, in deciding the label of the edgie real
impureness that should be tolerate@is so the estimated one should B&r. Thus, ifr;
is the amount of empirical impureness allowed in stage, ; should satisfyr;, ; = 327;.
Sincer,,_1 = 3?27y, and since the error incurred by each impureness is boundéd by
choosingry = ﬁ guarantees that the overall error is bounded.by

The learning algorithm works as follows. For evang k < n it takes a sample of size
m’ via the index se{1,...,n} \ {k}, and, for everyk-edge, it estimates the probability
p(e,b); let (e, b) be this estimate. We will determine the valuenof later. An edge: is
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b-pure at stageif p(e,1 — b) < 7;. (Note thate can be botlb-pure and1 — b)-pure).e is
impure if it neither0-pure norl-pure.

Having the estimates, the algorithm first searches for a pivotal edge—a pure edge
(z,y) (pure at stag®), and setsi(x) = h(y) = b if e is b-pure. Then, at any stage
1 <i < n -1, the algorithm sets the value of any edde- (y, z) which is adjacent to an
edgee = (z,y) whose value has been set at stagel: if ¢’ is h(y)-pure at stage then
h(z) = h(y), otherwiseh(z) = 1 — h(y).

We now prove thak is e-good for the target functiofi and the target distributiob, if the
following conditions hold for all the estimatgée, b): if p(e, b) > B7o thenp(e, b) is within
a factor of 3 fromp(e, b) (in both directions), otherwisen(e, b) < 370) (e, b) < %70.

Since 37; < 5, at any stage, it is sufficient to prove that for every instaneg if
Dlx] > p7;, andh(z) has been set in stagethenh(z) = f(z). The proofis by induction
on:. Ifthe pivotal pointe = («, y) is b-pure at stage, then it satisfieg(e, 1 —b) < 79, and
p(e,1 —b) < B19, hence the claim is true far= 0. Assume that the label ef = (y, 2)
is set in stage + 1, using an edge = (x,y) whose second label has been set in stage
i. If D[z] > Bri11, thenp(e', f(2)) > 7,41, and therefore’ cannot bg(1 — f(z))-pure.
Hence,h(z) = 1 — f(z) only whene' is impure, andh(y) = 1 — h(z) = f(2) # f(y).
But then, by the induction hypothesB|y] < 3r;, implying p(¢’, f(y)) < 627 = Tiy1,
contradicting the impureness &f

It remains do determine appropriate values foandm’, and to show that the above
assumptions on parametgrandp are valid with probability at least — 6. For fixedk,
there ar@”~! k-edges, and therefol® probability parameters that have to be empirically
estimated fromn’ examples. Since we hawvesamples (one for eadh< k < n), we want
all estimates based on a sample of sizeio be accurate with confidenge- % Hence, by

3 9" =0 ("22” (n—HD%)), and

n’ €

Lemma 5, we need a sample of sizé = M (o, S,

thusm = nm’ = O ("32n (n +In %))

€

As for the time complexity of the learning algorithm, first notice that the number of edges
is 52" = t. Computing the estimates from a sample of sizean be done ii¥(m), and
finding the pivotal edge can be donedrt). Choosing a pivotal edge induces an order
on the visit of the other edges, considering each edge only once (at a sthgeh is its
distance from the pivotal edge). As= O(m), the overall time complexity i€ (m).

]

4.2. (n — k)-RFA Learnability ofl-DL usingk-DL

Theorem 3 shows thatDL is not L”T*J—RFA learnable (using any hypothesis class). We
now contrast this result by showing that for< n/2, this class i§n — k)-RFA learnable
using the hypothesis clagsDL. This shows that-DL is learnable if and only if at least
half of the attributes are visible in each example. The learning algorithm is efficient for
k = O(logn), and is proper fok = 1. Note that, by Theorem 2,-DL is not properly

(n — 2)-RFA learnable.
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THEOREM 6 For every evenyl < k < n/2, the classl-DL is (n — k)-RFA learnable

k3n2 221c

using k-DL, with sample complexity ab (T log %) and with time complexity of
0 (k4n222k log %)

Proof: As in the proof of Theorem 5, we start by showing information-theoretic learn-
ability of this class. That is, given a targetdecision list, we show how to construct a
k-decision list from the exadt. — k)-RFA probabilities. Then, we show how to settle for
good estimates of these probabilities in order to find a good approximation of the target list.

First notice that for every-decision list there is an equivalent one in which each variable
appears only once (cf. (Simon, 1995)). Hence, we may assume that in both the target and
the hypothesis list each variable appears only once.

We construct the hypothesisgradually. At any intermediate stage, there are instances
for which £ is not defined. For any such instanegewe denoteh(z) = 0. We also
denote by|h| the number of items irh. Given a partial decision lisk and a termt,
defineB(h, t) 2 {z € {0, 1}" : h(z) = 0, t(z) = 1}. Thatis,B(h,t) is the subset of
instances which are not defined by the partial lisand are satisfied by the terim We
call such a subsdilock For a target scenari6 = (f, D), and a blockB = B(h,t), let
ps(B,b) = Pryeplz € B, f(x) = b] (we henceforth omit the subscrif). Notice that if
p(B(h,t),1 —b) = 0 andh is consistent withy, then appending¢, b) to h preserves this
consistency. In such a case we say that the bk t) is b-pure

The construction of the decision list from the— & )-RFA probabilities can be done inthree
phases. The first two phases are based on the following observation (cf. (Rivest, 1987)):
If fis al-decision list, and: is a partiall-decision list,|h| < n, then there is a literdl
for which the blockB(h, 1) is pure (take the first literdlin f which does not appear ).
Hence, the construction is essentially based on searching for pure bloék@,if) is b-
pure, then we can add the itdinb) to h. However, notice that the probability B(h, 1), b)
is a(|h| + 1)-RFA probability, and recall that we can only uge— k)-RFA probabilities.
Hence, as long d&| < n — k, using the(n — k)-RFA probabilities to find pure blocks is
straightforward. This forms Phaseof the construction.

How can we find pure blocks wheh| > n — k? Phase of the construction is based on
the following observation. Let, be the list obtained from by deleting all the(1 — b)-
items, where a-item is an item of the forntl, ). We claim that if|2;| < n — & for both
b = 0 andb = 1, then there is a literd| and there i$ € {0, 1}, such thatB(h1_s,!) is a
b-pure block. To see why, recall that there is an itgnd) such thatB(h, 1) is b-pure. But
if h1_p(z) = 0 andh(z) # 0 then necessarilji(z) = b = f(z), and therefore the block
B(hi_s,1) is alsob-pure. Hence, we can continue the construction as loflg,asc n — k
for bothb = 0 andb = 1 (searching for a-pure blockB(h;_,1), for eitherb = 0 or
b = 1, and appending the itei, b) to » once such a pure block is found).

Finally, assume thdt,| = n — k (for eitherb = 0 orb = 1), but|h| < n (h is not yet
complete). If the next pure blocB(h,l) is (1 — b)-pure, this cannot be revealed using
the (n — k)-RFA probabilities. However, notice that the number of variables which are
not in iy, is bounded bys < n — k. Consider a blockB = B(#,t), where() is undefined
for everyz, andt is a k-term over the variables which are not/i. (Notice that the
probabilityp(B, b) is an(n — k)-RFA probability). SinceB(hy, t) is a singletor{z} (the
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assignment to every variables is determined by eithaw ¢), if B(0,¢) is impure, it must
be due tof (z) = 1 — b. Hence, in that casg, 1 — b) can be appended to the list. After
appending all thé1 — b)-singletons to the lisk (i.e., all the instances for which(z) = ()
andf(z) = 1-0), we can close the list with the itef, b), concluding with &-decision list
which is equivalent to the targétdecision list (each step of the constructiorhqireserves
consistency, and the finalis defined over the entire instance space).

When using estimatgg B, b) of the(n—k)-RFA probabilities (B, b), impure blocks may
look like pure blocks to the learner, and thus the constructet issbnly an approximation
of the target list. Hence, we have to refine our notion of pureness to allow for a small
amount of impureness which might increase throughout the stages of the algorithm. We
assume that each estimate is within a factof off the true probability whenever the true
probability is at leastr (the value ofr and the sample size needed for that to hold will be
determined later), and analyze the error incurred by the three phases of the construction.

At each stage of Phadd|h| < n— k) we search for empirically pure blod& (p(B,b) =
0). If the block is actually impure, then by LemmapbB,b) < 7, so the overall error
incurred in this phase is = (n — k)Q7.

Next consider Phas&(|h| < n—k, |ho| < n—E, |h1| < n—k). Recall that at each stage
of this phase we search forbapure blockB(h, 1), but can only estimate the probability
p(B(hi-s,1),b). Sinceh, is not necessarily consistent with(due to the error incurred
by previous stages), the blod(h;_,!) may include a small amount of impureness.
To recognize thatl, b) is a proper item to append at stageve allow for an empirical
impureness;, which includes all the errors incurred by previous stages in PHaased2.
Thatis,7; = Be; + Z;;ll Bri, implyingr; = (n—k)B?7(1+ 3?)"~1. Hence, the overall
error incurred by this phase is boundedeay= Zle Bri = (n—k)Br((1+ p2)F - 1).

Each impure blockB(0, t) found in Phas& determines the value of a specific instance
x € B(hp,t). Let B' = B(0,t) \ {z}. ThenB’ C {z : h(z) = b}. The impureness
of B(f),t) might be due to the errors iB’ incurred by previous stages. This error can be
bounded by; + 5. Hence, we can allow for an the empirical impureness(@f + ¢2)
for the blockB (0, t), and thus appending the iteff 1 — b) to the list incurs an error of at
most32 (e, +€2). Since at mos2* instances are determined in this phase, the overall error
incurred by Phasgis e = 283%(e1 + €2) = (n — k)337(1 + 8%)*.

The overall error is

erroryp(h) < e + e +es = (n—k)TB(1 + 472%) < (n — k)17 (1 + p*)F2F

Choosingr = (n—kw(ﬂm)ww guarantees thatrrory p(h) < e. Notice that for
B=(1+ 2)z we haver = O(5¢) and 525z = O(K?).

Now we can determine the sample size needed in each phase, so that any estimate of
a probability larger thargr is within a factor of 3 of that probability. As the overall
confidence in all the estimates shouldlbe §, we require a confidence of— 2 for all the

3
estimates used by each one of the three phases. Recall that by Lemma 5, a sample of size

M(r,3,0,t) = (%’ff@ log 7 is sufficient to ensure (with confidende- ), that for
a set oft estimates, each estimates is within a factof of the true probability, whenever
the probability is greater thafir.

Phase 1 consists of — k stages. At each stage, having the current hypotligsige

search for a literal, for which the blockB(h,!) is pure. LetS be the variables which
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appear inh. We can decompose the variables which are nok iimto fnf;L”"‘h‘} <
k + 1 sets, and for each such sBt focus our attention or$ U 7. Hence, we need
(n—k)(k+1) samplesinthis phase. For each such sample we need to estimate— |h|)
probabilities (estimating(B(h,1),b) for every new literal and everyb € {0, 1}). By

Lemma 5, a sample of sizel (r, 3, m, 4(n — k)) is sufficient, hence a sample of

size(n — k)(k + )M (7, 8, sy 4(n — k) = O(En22 1o 1) is sufficient for
Phasel.

At any stage of Phaskwe search for &1 — b)-pure blockB(hs, 1), where|hy| < n — k.
Let S, be the set of variables ih,. Then, for every variable not in i (at mostk), we
need to focus our attention of), U {v}, for eitherb = 0 or b = 1. Hence,2k samples
are sufficient at each stage, a2if samples are sufficient for the entire phase. For each
sample we need to estimate at mbgirobabilities, hence by Lemma 5, a sample of size
M(7, B, 2=, k) is sufficient for each stage, and>M (r, 3, 52z, k) = O(w log 2)
observations are sufficient for the entire Phase

In Phases we take one sample and estimate at n25gprobabilities. Hence a sample of
size M (7,3, 5,2%) = O(En2" 1og $) is sufficient for this phase, and the overall sample

complexity of the algorithm i©) (w log %).

The time complexity is essentially determined by the time needed for estimatiig the
RFA probabilities. In the first two phases this is obvious. To see this for the third phase
note that an itenft, b) is added only if the correspondirigy, ¢) is notb-pure. But this can
happen only if an example (labelé}lin this block is drawn. Hence for each such item at
least one example has to be drawn.

In Phasel each example drawn changes at mogmpirical probabilities, whereas in
Phaseg and3 each example drawn changes only one empirical probability. Hence, the
time complexity isO(km). [ |

4.3. Summary of Results about Distribution-free Learning of Decision Lists

Table 3 (Table 4, resp.) summarizes the results shown in this paper (or directly implied
by them), and known results from literature (Rivest, 1987) for proper (improper, resp.)
RFA-learning. A legend is given in Table 2.

Table 2.Legend for Tables 3 and 4.

Symbol  Meaning

+e efficiently learnable

—+ learnable (maybe efficiently)

+1 only inefficiently learnable

— not learnable (even not inefficiently)
? learnability unknown

-/? “—"if niseven,and?"if nis odd
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Table 3. Summary of results for propérRFA-learning of

a-DL.
a\b 0,....n—2 | n—1 n
+e +e +e
1 - +e “+e
2,...,k — ? +e
n—=Fk ..., n—2 - ? +i
n—1 - +1 +1
n — - +1

Table 4.Summary of results for impropérRFA-learning ofa-DL.

a\b 0,...,k||[n/2] = 1| [n/2]||n—O(ogn)||n—k|ln—4|n—3|n—2|n—1|n
0 +e +e +e +e +e +e +e +e +e |+e

1 - - + +e +e +e +e +e +e |te

2 — — —/? ? ? ? ? ? + |te

3 — — — ? ? ? ? ? + | te

4 - - = ? ? ? ? ? + | te
k—1 — — — ? ? ? ? ? + | +e
k — — — ? ? ? ? ? + |te
n—k — — — — — ? ? ? +i |+
n—k+1 — — — — — ? ? ? +i | 44
n—=6 - - - - — - ? ? +i | 44
n—>5 — — — — — — ? ? +i |+
n—4 — — — — — — — ? +i | 44
n—3 — — — — — — — ? +i |+
n—2 — — — - — — — — +i |+
n—1 — — — — — — — — +i |+
n — — — — — — - — — |+

5. Learning Decision Lists under Fixed Distributions

Let D be an arbitrary, but fixed, distribution ové&f = {0,1}™. Two functionsf, g in n
Boolean variables are called-equivalentif Pr,cp[f(z) # g(z)] = 0. We say that a
Boolean ternt separatesf, g if Procp[f(z) = 1|t(x) = 1] # Pryeplg(z) = 1|t(x) =
1]. For fixed distribution, the assertion of Theorem 1 can be reformulated as follows:

THEOREM 7 1. If F contains two functiong, g which are notD-equivalent and cannot
be separated by any-termt, then there exists no hypothesis clagsuch thatF is
k-RFA learnable using.

2. If every two functiong, g from F which are notD-equivalent can be separated by
somek-termt, thenF is properlyk-RFA learnable.

Proof:

1. We claim that(f, D), (g, D) form ak-RFA hard set of scenarios even for hypothesis
class2¥. Obviously, both scenarios akteRFA equivalent, since they cannot be sepa-
rated by anyk-term. Observe next that the symmetric difference af has a strictly
positive probabilityy becausef, g are notD-equivalent. Choose = ~/3. Certainly,
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no hypothesis can begood for bothf andg. Thus the claim follows. By Theorem 1,
F is notk-RFA learnable usin@* (and thus nok-RFA learnable using any hypothesis
class).

2. Assume thatF is not properlyk-RFA learnable. We have to show thatcontains
two functionsf, g that are notD-equivalent and cannot be separated by asigrm
t. By Theorem 1, there existskaRFA hard set of scenarios fof. SinceD is fixed,
this hard set has the forg(f,, D), ..., (f-, D)}. If the functionsf; were pairwise
D-equivalent, hypothesif would bee-good (everd-good) for all potential targets.
This would contradict thé-RFA hardness of the set. Thus there exist two functjgs
in this set which are nab-equivalent. Sincéf, D) and(g, D) arek-RFA equivalent,
there cannot exist a separatibgermt. This concludes the proof. -

The essential message of Theorem 7 is fARFA hard sets (if there are any) can always
be formed by two hypotheses beihzinequivalent and nonseparable by d@nterm.

THEOREM 8 For any fixed distributiorD over{0, 1}", k-DL is properlyk-RFA learnable
forall 1 <k <n.

Proof: According to Theorem 7 it suffices to show that af)y € k-DL, which are not
D-equivalent, can be separated by sdivtermt. Let L be a decision list with item@;, b;)
for 1 <4 < r representingf, and L’ a decision list with itemg¢),b) for 1 < j < r
representing. Here, we assumed, for the sake of simplicity, that both lists have the same
lengthr (using redundant items for one list if necessary). Lgtand L] be the lists
starting both with the sublis§, = [(t1, 1), (t],0]), - -, (tg, by), (¢, b})] and ending with
the remaining items of, respectivelf, and L’. Let f,, g, be the functions represented
by these lists, respectively. Note that = L!. The maximal index; such thatf is D-
equivalent tof, andg is D-equivalent tog, is therefore smaller than Let P C {0,1}"
be the set of Boolean vectors of positive probability unélerA the subset of vectors
from P which satisfy one of the terms ifi;, B = P\ A, T = {z|t4+1(z) = 1}, and
T" = {z |ty (z) = 1}. SinceL, representy’ andL; representg up to D-equivalence,
it follows that:

Vee A: f(x) =g(z), VeeBNT: f(z)="0bgt1,
Ve e BNT :g(z) = b} .

The maximality ofg implies that:
Jz € BNT :g(x) #bgy10r3z € BNT : f(x) # b4y
It easily follows thatt,,, or ¢, ., separateg, g. [ |

The running time and the sample size of the learning algorithm, given implicitly in the
proof of Theorem 8, depend on the specific choicekaind D, and are certainly not
polynomial in general. However, it is known that with respect to the uniform distribution,
1-DL is efficiently 1-RFA learnable (Decatur and Gennaro, 1995).
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6. k-RFA Learnability of k-TOP

In this section we prove two positive results for the learnabilityc€fOP in thek-RFA
model. First, we prove that TOP is weaklyk-RFA learnable in a distribution-independent
sense. We also show thafTOP is sample-efficiently-RFA learnable with respect to the
uniform distribution. In the next section we combine the weak learning observation of this
section with one of our negative results for decision list learning to show that weak and
strong learnability araeot equivalent in the-RFA model.

It should be noted that, as is standard in Fourier analysis, we assume throughout this
section and the next that Boolean functions map-ta, +1} unless otherwise stated. This
includes decision lists, so we will assume a slightly different definition here in which the
b; defining a decision list are if—1, +1} rather than in{0, 1}.

6.1. Weak Learnability ot-TOP

Our first observation is that the classTOP of thresholds ok-parities is weakly learn-
able from ak-RFA oracle, and the learning is polynomial-time for constantThis is a
direct result of the following lemma, which is a slight modification of a similar result in
(Jackson, 1994).

LEMMA 6 Let f be anyk-TOP of sizes and D any distribution over the domain gf.
Then there exists a parity,, with |a| < k such that

1
Prycplf = xal — 3 > -
‘reD[f X} 2|_2S

We use the notatio@(-) in the following theorem and elsewhere to represent the standard
big-O notation with log factors suppressed.

THEOREM 9 k-TOP is weakly:-RFA learnable in timed (n*+1s2).

Proof Sketch: By standard Chernoff bound arguments (see, e.g., (Jackson, 1995)), given
an example oracle fof and a fixedy, we can produce an estimate Bf ,cp[f = xa]
that, with probability at least — ¢ over the random draws by the example oracle, is within
1/(8s) of the true value. Furthermore, the algorithm producing this estimate runs in time
O(ns?logé6~1), where the algorithm is assessed unit time for each call to the example
oracle. Notice also that &-RFA oracle suffices rather than a full example oracle if the
parity x, is ak-parity.

Thus if we know the size of the target then we can find a weak approximatde-fitOP
f by querying a-RFA oracle in order to estimate the correlation of each of¥e*) k-
parities withf and choosing as the weak hypothesis any parity having correlation of at least
3/(8s) (thed used in each estimate must of course be set sufficiently small to assure that the
overall confidence of the procedure is within that allowed to the weak learner). That such a
weak hypothesis exists is guaranteed by the lemma above. Becauge(efilyestimates
are performed and each estimate requires tifwes?), this procedure satisfies the claimed
time bound.
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If the sizes of the target functiory is not known, a standard guess-and-double technique
can be applied (see, e.g., (Jackson, 1995)). That is, we can stast with If no k-parity
has correlatior3 /8 with the target, we doubleand try again. Notice that this process will
converge to a weak approximatodug s stages, again with high probability for appropriate
choices ford. ]

6.2. Polynomial Sample Size for UnifodsaTOP Learning

Our most general positive result ifTOP is that for constarit, k-TOP is sample-efficiently
k-RFA learnable with respect to uniform. To obtain this result, we show that any two
noticeably different-TOP functions will differ noticeably in at least one Fourier coefficient

of orderk or less. This says that estimates of these low-order Fourier coefficients provide
the information necessary to closely approximate BOP function. Since for constakht
these low-order Fourier coefficients can be efficiently estimated from a uniform-distribution
k-RFA oracle k-TOP is sample-efficiently-RFA learnable with respect to uniform.

LEMMA 7 Letf:{0,1}" — {—1,41} be ak-TOP of sizes and letl}, = {a € {0,1}" :
la| < k}. Also, lete be any positive constant, and tet {0,1}™ — {—1,+1} be such that
forall a € Iy, | f(a) — g(a)| < €/s. ThenPr[f =g] > 1 —e.

Proof: Becausef is ak-TOP of sizes, there exists a functiod” = > _; w,x, ON
the domain off such thatf = sign(F), the weightsw, of F are all integer-valued,
andy_, ., |w.| < s. But by the definition of the Fourier transform we can also write
F =Y, F(a)x.. Thus we see thak'(a) = w, for all [a| < k and F'(a) = 0 for all

la] > k. Now applying the generalized Parseval’s identity we obtain the following:

E[F|=Elf-F]=)_ fa)F(a) =) f(a)F(a).

a€cly

By our assumption about the relation betwgeandg we then have that

EIF] < Y s(@F(@) + Y IF@] < Y g(a)F(a) +e.

a€ly a€ly a€ly

Now note that again applying Parseval we have

Y g@F(a) =2 §(a)F(a) =Elg- F].

a€ly,

ThusE[|F|] — E[g - F] < e. Furthermore, since is Boolean, every one of the terms
g(z)F(x) in E[g - F] has magnitudeF'(x)|. This means thaE[g - F] < EJ[|F|], with
equality achieved if and only if = g. Furthermore, sincg(x)| > 1 for all z (recall that
the F'(a) are integers and by definition of the sign functibu) # 0), eachz such that
f(z) # g(x) adds at least—" to the differenceE[|F'|| — E[g - F]. Thereforef andg can
differ on at most an fraction of thex's. ]
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THEOREM 10 Let s be the size of a target-TOP function ance and § the standard
PAC accuracy and confidence parameters, respectively. THEDP is learnable from a
uniform-distributionk-RFA oracle with sample complexi)(n*ks?log(n/8)/€?) and in
time at most singly exponential in) s, and.

Proof: By Chernoff, a sample of siz®(ks?log(n/§)/e?) from the k-RFA oracle is
sufficient to estimate, with probability at ledst- § /n*, each of the:-order or less Fourier
coefficients off to within ¢/2s. By the preceding lemma, we then know that any function
which has low-order Fourier coefficients withifi2s of those we have estimated will be an
e-approximator tof. And there is at least one sugRTOP—f itself—which satisfies this
requirement.

One algorithm for finding thig-TOP then is to systematically construct varigu$OP
expressions in such a way that all possit{€OP functions will eventually be represented.
This can be done by writing down lexicographically successive bit strings and checking
each to see if it represents a valid encoding (in, say, ASCIeT®P.O(n2"*) is a crude
upper bound on the number of strings we will write down before encountérifk@r each
k-TOP constructed this way we can compute its Fourier coefficients using the Fast Fourier
Transform in time singly exponential in. We then compare the Fourier coefficients of
each constructed function with those previously estimated fontil a match is found.

]

7. Weak and Strongk-RFA Learning

Inthe PAC model of learning, weak learnability implies strong learnability (Schapire, 1990).
Existing proofs for this fact are based on the notion of hypothesis boosting. Therefore, an
obvious approach to turning the weak learning result of the previous section into a strong
learning resultis to apply boosting. However, all currently known boosting algorithms work

by running the weak learner multiple times, each time on a distribution which is defined in
part by the performance of earlier weak hypotheses on instances. This presents a significant
problem in thek-RFA model: to determine the appropriate probability weight to assign to

an instance, we need to know how earlier hypotheses classify the instance, which requires
that each hypothesis have access to enough of the instance to perform the classification. But
to the same degree that attention is focused on portions of an instance in order to determine
the weight of the instance, attention is not available for performing the weak learning task
at hand. This raises an interesting question: does an alternative form of boosting exist that
avoids this difficulty? We answer this question negatively.

THEOREM 11 k-TOP is weaklyt-RFA learnable, but is not strongh+RFA learnable for
1 <k < n—2. The weak learning is polynomial-time for consténtwhile the strong
learning is information-theoretically impossible.

COROLLARY 1 Weakk-RFA learnability of a class does not imply stroheRFA learn-
ability of the class.

Proof of Theorem 11: By Theorem 9 we know that-TOP is weaklyk-RFA learnable,
and in polynomial time for constarit And we have also shown that it is information
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theoretically impossible to stronghyRFA learnk-DL for 1 < k& < n — 2. Allthat remains
to show is thak-DL is a subclass of-TOP.
To see this, consider a targétwith a k-DL representatiorft,, b1), ..., (¢, b,). Note
that this function can be written equivalently as the sign of the following sum of the terms
t;, which we view as functions with rand®, 1} (and recall that we are treating theas
{-1, +1}-valued in this section):

i 2t
=1

To see that the sign of this sum is equivalenftamotice that given an input, each term

t; that is not satisfied contributes nothing to the sum, sinte) = 0 for all sucht;. But
the first termt; which is satisfied byx will cause2™~'b; to be added to the sum. Since
270 > 3771 2777, the values 0b;, j > i, have no effect on the sum. Thus the value of
b; determines the value of the functionzatas desired.

Furthermore, it follows from the definition of the Fourier transform that each of these
k-termst; can be written as a sum éfparity functions, since the terms are functions of
at mostk variables each and evekyvariable Boolean function can be written as a linear
combination of-parities. Thug can be written as the sign of a weighted surk-garities,
that is, as &-TOP. ]

It should be noted that, while the proof above shows thBi_ is a subclass ok-TOP,
for a givenk-DL representation of sizethe construction above may lead té-d OP with
size exponential irk and inr. Thus ifr is, say, linearly related ta, then thek-TOP
representation constructed may be exponential-size @n the other hand, time-efficient
weak learning allows the learner to run in time polynomial in the size of the function within
the representation class being learned. Thus, while the scenarios which are hard to learn
strongly fork-TOP may not be weakly learnable efficiently with respecdt4oL, they are
weakly learnable efficiently with respect xeTOP.

The above theorem shows that boosting is not applicable in general withinRié\
model. However, boostinganbe employed to good use under certain conditions in RFA
models. For example, we now use hypothesis boosting to argue thatcmnstant k-

TOP functions can be-approximated efficiently from & -RFA oracle, wherd( depends
polynomially on the size of the target and logarithmicallyeor but does not depend on
This means that “small” (with respect g k-TOP functions are efficiently learnable from
an oracle which has focus of attention which, while larger thda at least smaller thamn

THEOREM 12 Lets be the size of a target-TOP function and the accuracy required
of a learning algorithm. Thek-TOP is K-RFA learnable forK = 2ks? ln%. Note that
K does not depend om. The learning algorithm runs in timé@(n**1) but is otherwise
polynomial in the usual PAC parameters.

Proof: As noted earlier, there is@(n*t!s?)-time weakk-RFA learning algorithm for
k-TOP. In fact, the weak hypothesis produced by this learner can be made a(Beaty)-
approximator to the targét TOP f. Now assume for the moment that we have access to
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a PAC example oracle rather tharkaRFA oracle. Then applying Freund’s boosting-by-
majority algorithm (Freund, 1990, Freund, 1993) to this weak learner will produee an
hypothesis foif consisting of a majority vote over approximatgh? In % weak hypotheses.
As each weak hypothesis is defined over ohliits of the input, the algorithm actually
only needs access to approximat2hs? In % bits of each instance. ]

8. Further Research

Being a refinement of the PAC learning model, the formulation of the RFA model stimulates
the need for new techniques and approaches in order to cope with new learning problems.
Some of the needed tools are developed in this paper, enabling the study of the RFA
learnability of interesting classes of Boolean functions, such as decision lists BOs.

We believe that these tools, particularly the indistinguishability argument of Section 3.1,
can be used further, both in the study of the learnability of other classes and also for other
RFA scenarios.

Perhaps the most interesting open problem concerning this work is the following prob-
lem, which significantly predates learning theory research but naturally leads to an RFA
problem. Consider the class of linearly-separable half-spaces{oye}f™ (perceptrons).

It is well-known that the first-order Fourier coefficients of a perceptron (also called the
Chow parameteref the perceptron) uniquely determine the perceptron (see (Chow, 1961),
or (Bruck, 1990) for a more general result). Is it possible to efficiently compute a good
weights-based approximation of the perceptron from good approximations of these coeffi-
cients?

This question leads naturally tolaRFA learning problem, as follows. It can be shown
that when learning from &-RFA oracle with respect to the uniform distribution, we can
obtain good estimates of the Chow parameters. Also, based on our Fourier characterization
of k-RFA learning (see Appendix A), we know that in fact these parameters cegiture
of the information available from the-RFA oracle. Thus, the above open question leads
to the following RFA question: is the class of perceptrons efficiently and propeRyA
learnable with respect to the uniform distribution?

Note that since perceptrons are efficiently (and properly) PAC learnable, it is enough
to have a good prediction rule which can be computed from approximations of the Chow
parameters, and succeeds for almost all the instances. Although it can be shown that one
of the Chow parameters is a weak approximator for the target function (see Theorem 11),
we currently do not know how to boost weak approximators initiFA model.

Another intersting question concerns weak and strong learnability ih-RREA model.
We have shown that—in a class that contains functions of size exponentially latge in
weak and strong learnability are not equivalent. Is there also a class of functions all of size
polynomial inn for which weak and strong-RFA learnability differ, or are these learning
models equivalent in all such classes?
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Appendix A
Fourier Characterization of k-RFA Learnability

We present here an alternative to the characterizatiok-RFA learnability developed
in Section 3. Specifically, we defineFourier equivalence of scenarios and show that
two scenarios aré-RFA equivalent precisely when they akeFourier equivalent. The
definition of k-RFA hardness can therefore be rephrased in terraskafurier equivalence
rather thark-RFA equivalence, and thus Theorem 1 can also be viewed in terkaBadrier
equivalence. While we do not use this characterization to obtain any learnability results in
this paper, the connection &fRFA learnability with Fourier analysis, which has proved
quite useful in learning theory, seems potentially very useful.

We will assume in this section thfite {—1, +1}; this also means that we assume similar
small changes in the definitions of the previous sections, such as that the pataiméter
definition ofpg (I, z,b) isin {—1,+1}.

Definition 4.  Two scenarios; = (f1, D1) andSs = (f2, D) arek-Fourier equivalent
if and only if for alla € {0,1}" such thata| < k,

Erep, [Xa(2)] = Ezep,[xa(r)] and
EmGDl [fl(z) : Xa(x)] = ExEDz [fQ(x) : Xa(x)].

THEOREM 13 Two scenarioss; = (f1, D1) and .Sy = (f2, D) are k-RFA equivalent if
and only if they are:-Fourier equivalent.

Proof: For a scenaricS = (f, D) define E(S, k) to be the vector of expectations
{Ezen[Xa(®)]; Ezen[f(2) - xa(x)] | |a] < k} and letP(S, k) be the vector of proba-
bilities {ps(I,z,b) | |I| = k}. We will show that the expectations (S, k) can be
computed given the probabilities iR(.S, k) and vice versa. Given this, it follows that
if for two scenarios,S; and Sy, ps, (I,x,b) = ps,(I,z,b) for all |[I| = k, =, b then
the vectors of expectatior5(S;, k) and E(Ss, k)—which are functions of thgg,’'s and
Ds,’S, respectively—must also be equal. ThatisRFA equivalence of; and.Ss implies
k-Fourier equivalence. Conversely, given ti41S, k) can be computed fro8(S, k) then
if E(S1,k) = E(S2,k) it follows that P(S, k) = P(Ss, k), or in other wordsk-Fourier
equivalence implieg-RFA equivalence. Thus we need only show the claimed functional
relationships between the probabilitiesftiS, k) and the expectations ifi(.S, k) to prove
the theorem.

LetS = (f, D) be a scenario. Consider the expectatior p[f(z)x.(z)] and assume
without loss of generality that begins with0 < j < k£ 1's and ends witlm — j 0's. Let
z € {0,1}/, and let the notatio}___  denote the sum over all€ {0, 1}" such that the
first j bits of z andx agree. Then !

Ecenlfxa = 3 £(2)xa(2)D(2)
3" 3 A(@)xal@)D(2)

T z=jT
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= Xal@) Y f(x)D(2)

zZ=;x

ZX“("T)(}?D[ )lAsz}zfe’ljg[f()l/\zjxD.

Note that the probabilities in the last line above can readily be computed from the proba-
bilities in P(S, k). Thus for allja| < k, Ep[fx.] is a function of thevs’s in P(S, k), and
a similar argument shows th&f, [x,] is as well.

Now we show that thes's in P(S, k) are functions of the expectations #(S, k); this
will also provide some insight into why we chose these expectations for our definition of
k-Fourier equivalence. We first want to rewrite (I, z,b) in another form. Letf’ be
the {0, 1}-valued equivalent off, specifically the function such thgt(z) = (1))
for all z. Defined’ similarly with respect tdh. Now define the{0, 1}-valued function
910, (2, ['(2)) to have valud if and only if f'(z) = ¥’ and for alli in I, z; = z;. Then
clearlyE.cplgr,zv (2, f/(2))] = ps(I, x,b) for everyI, x, andb.

Writing pg this way allows us to apply an observation of Blum et al. (Blum et al., 1994)
to our analysis. They showed that for afy, 1}-valued functionf’ with corresponding
f e {-1,+1} and any functiory(z, f'(2)),

EzED ZQ aO 2€D Xa + Z.g al ZED )Xa(z)]a

wherea € {0,1}"™. Now each of they; . is a deterministic function, and therefore the
Fourier coefficientgj for each of these functions are constants. Furthermore, gach
depends on only: of the bits inz if |[I| = k. A standard Fourier argument gives that
for suchg, g(a0) andg(al) will be zero for all|a| > k. Thus for all|I| = k, x, andb,
ps(I,z,b) = E.eplgr.ev (2, f'(2))] is afunction ofEp[x.] andEp[fx.] for |a| < k.

|

Finally, note thaEp[xa] = 3. Xxa(2)D(2) = 2"E.[D(2)xa(2)] = 2" D(a). Similarly,
Eplfxad = 2”1/)?(a) (hereD is being used to represent both a probability distribution and
the real-valued function that returns the weight this distribution assigns to each instance).
In other words, the expected values characteriZAgFA learnability are actually the
boundedk-order Fourier coefficients of the target distribution and of the product of the
target distribution and the target function. This suggests #HRFA learnability results
for a function class (possibly with respect to a restricted class of distributions) might be
obtained by applying Fourier analysis to the class.

Appendix B
Karnaugh diagrams with RFA hard scenario pairs

Tables B.1 and B.2 on the next page show Karnaugh diagrams with the RFA hard scenario
pairs we used for the proofs of Theorem 2 and 3, respectively.

The bold numbers are the function values on the inputinstances, addressed by the rows and
columns of the two dimensional tables. The smaller numbers in parentheses represent the



ON RFA LEARNABILITY OF BOOLEAN FUNCTIONS 121

probability distributions. For clarity, we avoid fractions. Hence, to get the real distribution
these numbers should be divided by the factor given in the titles of the diagrams.

Consider, for instance, in Table B.1 the diagram entif84(6-":”). The number® () in
the upper left corner mean thﬁf)(o, 0,0) = 0and thatDéS)(O, 0,0) = 1/6. The numbers
1 in the lower left corner mean that™® (0,0, 1) = 1 and thatD$ (0,0, 1) = 0.

Table B.1.Karnaugh-diagrams for the scenarios of Theorem 2.

£ 301

T1T2
00 01 11 10
oM 1M 10 1@

£(® (601

T1x2
@3] 00 01 11 10
0l0@® oM oM oM
1]1o® 1) 10 1)

fl(4) (12.0{*)

g2 (3-05)

T1T2
00 01 11 10
100 1) oM 1M

9 @)
xr1T2

T3 ‘ 00 01 11 10

olo@® @M O oM

1110 1) @) 1)

f2(4) (12-D{)

xr1x2 xr1T2

x3z4| 00 01 11 10 z3ze| 00 01 11 10
0 [0 o™ 0® oM 00 [0 oM oM oM
01 0@ o) @) o) 01 oM o ) )
11 o 1@ 10 1) 11 |10 11 o) 1)
10 |0® oW o) oM@ 10 |0 o1 O oM@

Table B.2.Karnaugh-diagrams for the scenarios of Theorem 3.

fl(s) (10-D{) f2(3) (10-D{¥)

r1x2 xr1T2
3| 00 01 11 10 x3| 00 01 11 10
01 1®& 1M 1@ 01 1M 1@ 1@
110 oM 1) o 1(0® 1) o) oM

fl(s) (28-D{%)) f2(5) (28-D{)

12 12
x3xaxs | 00 01 11 10 x3xaxs | 00 01 11 10
000 |1 1M 1M 1@ 000 1M 1M 1M 1@
010 |1 1M 1@ 1@ 010 |1 1@ 11 1@
110 [1(©® 1) 10 70 110 [1(©® 710 1) 710
100 (1M 1) 1@ 1) 100 [1(M 1) 1@ 1M
001 |00© @ @ 001 |00 @ o© o
011 1M 1@ 1) 1) 011 1M 11 1@ 1)
111 |o0® o) 1) ©@) 111 0@ 1) @) o)
101 (02 O @) oM 101 [0®M o) O o2
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