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Abstract. The results obtained by Pollack and Blair substantially underperform my 1992 TD Learning results.
This is shown by directly benchmarking the 1992 TD nets against Pubeval. A plausible hypothesis for this
underperformance is that, unlike TD learning, the hillclimbing algorithm fails to capture nonlinear structure
inherent in the problem, and despite the presence of hidden units, only obtains a linear approximation to the
optimal policy for backgammon. Two lines of evidence supporting this hypothesis are discussed, the first coming
from the structure of the Pubeval benchmark program, and the second coming from experiments replicating the
Pollack and Blair results.
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In “Co-evolution in the Successful Learning of Backgammon Strategy,” Pollack and Blair
(1998) present a novel and intriguing self-teaching approach to learning a policy for
backgammon. In constast to TD learning, which aims to learn a value function estimat-
ing expected outcome of a given board position, their approach directly optimizes policy
strength. The policy is represented in terms of a discriminant value function that is unrelated
to expected outcome and is only used to discriminate between competing legal moves. Ran-
dom mutations of the policy are generated and evaluated by running a short head-to-head
test against the base policy. If the mutant wins a sufficient number of games, the weights
are adjusted by a small amount in the direction of the mutation. That this approach works at
all can be viewed as a surprising result. One might reasonably have expected beforehand,
as Pollack and Blair point out, that as the strength of the net improves, the probability of a
random mutation of several thousand parameters improving the performance might quickly
become vanishingly small. Furthermore, this approach is able to work despite the absence
of a population of learners (there is only one “champion” at any given time), a “crossover”
operation to combine successful members of the population (there is only a mutation oper-
ation), or a low-dimensional “genome” specifying the network structure (mutation operates
directly on the “phenotype” of network weights). All of these factors indicate that this work
constitutes a clear contribution to the field of evolutionary neural networks, and is worthy
of further study in its own right.

However, the authors’ introduction and conclusions omit any mention of the work’s
intrinsic interest, and instead focus solely on implications for why TD-Gammon worked.
The hillclimbing networks typically obtain a benchmark performance of about 40% against
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Table 1. Fraction of wins in 10 K benchmark trials of the neural nets of (Tesauro, 1992) in various testing pro-
cedures. “Gam” benchmarks against Gammontool, letting Gammontool race for both sides. “Pub-1” benchmarks
against Pubeval, letting Pubeval race for both sides. “Pub-2” is a straight benchmark against Pubeval, i.e., the TD
net plays the entire game including the race. “Pub-2” is an exact match to the testing procedure of Pollack and
Blair.

Hidden
units Gam Pub-1 Pub-2

10 0.564 0.527 0.507

20 0.619 0.571 0.557

40 0.655 0.611 0.602

Pubeval, and on one singular occasion scored 45%. They claim that this represents “similar
levels of skills” to the results of (Tesauro, 1992), and therefore one can dismiss the expected
outcome value-function approach as being “not essential” to the success of TD-Gammon.
On this point the authors miss the mark. This is easily shown by re-benchmarking the 1992
TD nets against Pubeval; results are shown in Table 1.

For comparison with the Pollack and Blair results of 40–45% against Pubeval, the most
appropriate figure is the score of nearly 56% of the Pub-2 benchmark of the 20 hidden unit
net. (This net has an identical architecture to that of Pollack and Blair, except that it lacks a
race/contact input feature, and it recognizes both wins and gammons, and thus makes plays
that are suboptimal in a win-only benchmarking.) Readers familiar with backgammon will
recognize that the comparison is not close: the TD net is significantly better. To put these
figures in perspective, a 1% differential in the Pubeval benchmark would translate into about
35 rating points in the ratings system used in human tournaments and on FIBS, the internet
backgammon server. Thus, the difference between 56% and 40–45% should translate into
a difference of approximately 400–550 rating points, a very significant difference indeed,
given that the difference between an average human player (∼1500 rating) and a world-
class player (∼1900+ rating) is about the same magnitude.

My current working hypothesis is that the weakness of hillclimbing relative to the TD
results is due to hillclimbing’s failure to extract nonlinear structure inherent in the problem
domain, despite the presence of hidden units in its network architecture. One indication
of this comes from the nature of Pubeval itself. Pubeval consists of two evaluation func-
tions, each of which is a linear function of the raw board state. One of these evaluators is
general-purpose and is used for nearly all move decisions, and the other is specialized to
endgame “race” positions when the forces have broken contact. Hence it should be possible
in principle for a multilayer perceptron net, which can represent nonlinear functions of the
same raw board inputs, to beat Pubeval, provided that the learning algorithm can discover
the nonlinear solution. TD learning can clearly do this, as indicated in Table 1. However,
hillclimbing’s failure to even equal Pubeval strongly suggests that it fails to capture any
nonlinear structure.

A second supporting factor emerged in my own experiments replicating the Pollack
and Blair results. These experiments exactly duplicated their network architecture and all
of the implementation details in Section 2, except that uniform random noise was used
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instead of Gaussian random noise. My results were similar to theirs—the performance
saturated in similar training times, and the best score I was able to achieve was 41% against
Pubeval. Monitoring the average weight magnitude during training revealed that when the
performance saturated, the weight magnitudes were still at very small values. It is well-
known in this case that the MLP acts as a linear function approximator, since all of the
sigmoidal units are operating in the linear regime.

In summary, there is a massive performance discrepancy between the hill-climbing results
and the results of (Tesauro, 1992). Strong conclusions about why TD-Gammon worked
are therefore unwarranted. The tantalizing preliminary indications regarding hillclimbing
are worthy of further exploration, to determine if it really is incapable of learning nonlinear
functions, and if so, for what reason. The required training times to extract the nonlineari-
ties may be infeasible, or it may be that a network containing several thousand weights is
too large to evolve by random mutations, or there may be some deeper theoretical principle
at work.
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