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Abstract. We discuss Bayesian methods for model averaging and model selection among Bayesian-network
models with hidden variables. In particular, we examine large-sample approximations for the marginal likelihood
of naive-Bayes models in which the root node is hidden. Such models are useful for clustering or unsupervised
learning. We consider a Laplace approximation and the less accurate but more computationally efficient approxi-
mation known as the Bayesian Information Criterion (BIC), which is equivalent to Rissanen’s (1987) Minimum
Description Length (MDL). Also, we consider approximations that ignore some off-diagonal elements of the
observed information matrix and an approximation proposed by Cheeseman and Stutz (1995). We evaluate the
accuracy of these approximations using a Monte-Carlo gold standard. In experiments with artificial and real
examples, we find that (1) none of the approximations are accurate when used for model averaging, (2) all of
the approximations, with the exception of BIC/MDL, are accurate for model selection, (3) among the accurate
approximations, the Cheeseman–Stutz and Diagonal approximations are the most computationally efficient, (4)
all of the approximations, with the exception of BIC/MDL, can be sensitive to the prior distribution over model
parameters, and (5) the Cheeseman–Stutz approximation can be more accurate than the other approximations,
including the Laplace approximation, in situations where the parameters in the maximum a posteriori configuration
are near a boundary.
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1. Introduction

There is growing interest in methods for learning graphical models from data. In this
paper, we consider Bayesian methods such as those reviewed in Heckerman (1995) and
Buntine (1996). A key step in the Bayesian approach to learning graphical models is the
computation of themarginal likelihoodof a data set given a model. This quantity is the
ordinary likelihood (a function of the data and the model parameters) averaged over the
parameters with respect to their prior distribution. Given acompletedata set—that is, a
data set in which each sample contains observations for every variable in the model—
the marginal likelihood can be computed in closed form under certain assumptions (e.g.,
Cooper & Herskovits, 1992; Heckerman & Geiger, 1995). In contrast, when observations
are missing, including situations where some variables arehidden(i.e., never observed),
the exact determination of the marginal likelihood is typically intractable (e.g., Cooper
& Herskovits, 1992). Consequently, approximate techniques for computing the marginal
likelihood are used.
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One class of approximations that has received a great deal of attention in the statistics
community is based on Monte-Carlo techniques. In theory, these approximations are known
to converge to an accurate result. In practice, however, the amount of computer time needed
for convergence can be enormous. An alternative class of approximations is based on the
large-sample properties of probability distributions. This class also can be accurate under
certain assumptions, and are typically more efficient1 than Monte-Carlo techniques.

One large-sample approximation, known as aLaplace approximation, is widely used by
Bayesian statisticians (Haughton, 1988; Kass, Tierney, & Kadane, 1988; Kass & Raftery,
1995). Although this approximation is efficient relative to Monte-Carlo methods, it has a
computational complexity ofO(d2N) or greater, whered is the dimension of the model
andN is the sample size of the data. Consequently, the Laplace approximation can be a
computational burden for large models.

In this paper, we examine other large-sample approximations that are more efficient
than the Laplace approximation. These approximations include the Bayesian Informa-
tion Criterion (BIC) (Schwarz, 1978), which is equivalent to Rissanen’s (1987) Minimum-
Description-Length (MDL) measure, diagonal and block diagonal approximations for the
Hessian term in the Laplace approximation (Becker & LeCun, 1988; Buntine & Weigand,
1994), and an approximation suggested by Cheeseman and Stutz (1995).

Researchers have investigated the accuracy and efficiency of some of these approxima-
tions. For example, both theoretical and empirical studies have shown that the Laplace
approximation is more accurate than is the BIC/MDL approximation (e.g., Draper, 1993;
Raftery, 1994). Also, Becker and LeCun (1989) and MacKay (1992b) report successful
and unsuccessful applications of the diagonal approximation, respectively, in the context
of parameter learning for probabilistic neural-network models.

In this paper, we fill in some of the gaps that have been left by previous studies. We
examine empirically the accuracy and efficiency of all approximations, comparing them to a
Monte-Carlo gold standard. We do so using simple Bayesian networks for discrete variables
that contain a single hidden variable. To our knowledge, this empirical study is the first
that compares these approximations with a Monte-Carlo standard in the context of hidden-
variable Bayesian networks, and the first that examines the accuracy of the Cheeseman–Stutz
approximation.

Our study is motivated by a need for accurate and efficient methods for exploratory data
analysis. One exploration task isclustering. For example, suppose we have repeated ob-
servations for the discrete variablesX = (X1, . . . , Xn). One possible model for clustering
these observations is shown in Figure 1. In thisnaive-Bayesmodel, a discrete hidden vari-
ableC renders the observations conditionally independent, and the joint distribution over
X is given by a mixture of multinomial distributions

p(x) =
rc∑
j=1

p(C = cj)
n∏
i=1

p(xi|C = cj), (1)

whererc is the number of states of the hidden variableC. Each statecj of C corresponds
to an underlying cluster or class in the data. Such models for clustering have been used by
Cheeseman and Stutz (1995) in their system called AutoClass, and have been studied in
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Figure 1. A Bayesian-network structure for clustering. The possible states of the hidden variable correspond to
the underlying classes in the data.

depth by statisticians (e.g., Clogg, 1995). The approximations we examine can be used to
determine the number of classes that is optimal according to the data (and prior information).
Alternatively, we can use the approximations to provide weights for combining models with
different numbers of classes.

Another important area of exploratory data analysis is causal discovery (Spirtes, Glymour,
& Scheines, 1993), which can also be cast in terms of learning graphical models. Heckerman
(1995) describes how approximations for the marginal likelihood can be used for this task.

In this paper, we seek to find one or more marginal-likelihood approximations for ex-
ploratory data analysis that are accurate and yet scale to large problems. We examine these
approximations for the class of clustering models depicted in Figure 1. In Section 2, we
review the basic Bayesian approach for model averaging and model selection, emphasiz-
ing the importance of the marginal likelihood. In Section 3, we describe Monte-Carlo and
large-sample approximations for computing marginal likelihood when there is missing data.
In Section 4, we evaluate the accuracy and efficiency of the various approximations, using
a Monte-Carlo gold standard for comparison. We examine the approximations using both
synthetic and real-world data.

2. Bayesian methods for learning: The basics

Commonly used Bayesian approaches for learning model structure include model averaging
and model selection. These approaches date back to the work of Jeffreys (1939), and
refinements can be found in (e.g.) Good (1965), Berger (1985), Gull and Skilling (1991),
MacKay (1992a), Cooper and Herskovits (1992), Spiegelhalter, Dawid, Lauritzen, and
Cowell (1993), Buntine (1994), Kass and Raftery (1995), and Heckerman, Geiger, and
Chickering (1995). In this section, we review these methods and how they apply to learning
with Bayesian networks given complete data.

First, we need some notation. We denote a variable by an upper-case letter (e.g.,
X,Y,Xi,Θ), and the state or value of a corresponding variable by that same letter in
lower case (e.g.,x, y, xi, θ). We denote a set of variables by a bold-face capitalized letter
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or letters (e.g.,X,Y,Pai). We use a corresponding bold-face lower-case letter or letters
(e.g.,x,y,pai) to denote an assignment of state or value to each variable in a given set.
We say that variable setX is in configurationx. We usep(X = x|Y = y) (or p(x|y)
as a shorthand) to denote the probability or probability density thatX = x givenY = y.
We also usep(x|y) to denote the probability distribution (both mass functions and density
functions) forX givenY = y. Whetherp(x|y) refers to a probability, a probability density,
or a probability distribution should be clear from context.

Now, suppose our problem domain consists of variablesX = (X1, . . . , Xn). In addition,
suppose that we have some dataD = (x1, . . . ,xN ), which is a random sample from
some unknown probability distribution forX. In this section, we assume that each case
x in D consists of an observation of all the variables inX. We assume that the unknown
probability distribution can be encoded by some statistical model with structurem and
parametersθm. We are uncertain about the structure and parameters of the model, and—
using the Bayesian approach—we encode this uncertainty using probability. In particular,
we define a discrete variableM whose statesm correspond to the possible true models,
and encode our uncertainty aboutM with the probability distributionp(m). In addition,
for each model structurem, we define a continuous vector-valued variableΘm, whose
configurationsθm correspond to the possible true parameters. We encode our uncertainty
aboutΘm using the probability density functionp(θm|m).

Given random sampleD, we compute the posterior distributions for eachm andθm using
Bayes’ rule:

p(m|D) =
p(m) p(D|m)∑
m′ p(m′) p(D|m′)

(2)

p(θm|D,m) =
p(θm|m) p(D|θm,m)

p(D|m)
(3)

where

p(D|m) =
∫
p(D|θm,m) p(θm|m) dθm (4)

is themarginal likelihood. Given some hypothesis of interest,h, we determine the proba-
bility thath is true given dataD by averaging over all possible models and their parameters
according to the rules of probability:

p(h|D) =
∑
m

p(m|D) p(h|D,m) (5)

p(h|D,m) =
∫
p(h|θm,m) p(θm|D,m)dθm. (6)

For example,h may be the event that the next observation isxN+1. In this situation, we
obtain
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p(xN+1|D) =
∑
m

p(m|D)
∫
p(xN+1|θm,m) p(θm|D,m)dθm, (7)

wherep(xN+1|θm,m) is the likelihood for the model. This approach is often referred to
asBayesian model averaging. Note that no single model structure is learned. Instead, all
possible models are weighted by their posterior probability.

Model averaging is not always appropriate for an analysis. For example, only one or a few
models may be desired for domain understanding or for fast prediction. In these situations,
we select one or a few “good” model structures from among all possible models, and use
them as if they were exhaustive. This procedure is known asmodel selectionwhen one
model is chosen and asselective model averagingwhen more than one model is chosen. Of
course, model selection and selective model averaging are also useful when it is impractical
to average over all possible model structures.

Whether a model is “good” will depend on the particular application. For example, a
good model for understanding the causal relationships in a domain will not necessarily be a
good model for a classification or regression task. Also, if a model is to be used for decision
making, its quality will likely depend on the alternatives available and the preferences of
the decision maker. These issues are discussed in more detail by (e.g.) Spiegelhalter et
al. (1993) and Heckerman (1995). Nonetheless, the relative posterior probability of a
model structure,p(D,m) = p(m) p(D|m), is often used as a general-purpose criterion
for selective model averaging and model selection.2 Consequently, the marginal likelihood
is important for both model averaging and model selection.

Now let us assume that our statistical model is a Bayesian network. ABayesian network
for X consists of a directed-acylic-graph structurem and a set oflocal distribution functions
p(xi|pai,θm,m), wherePai is the set of variables that corresponds to the parents ofXi

in the graph. The structurem encodes the independence assumptions

p(x|θm,m) =
n∏
i=1

p(xi|pai,θm,m). (8)

Under certain assumptions, the computations needed for Bayesian model averaging, selec-
tive model averaging, or model selection can be done efficiently and in closed form. Many
researchers who have addressed Bayesian-network learning have adopted at least some of
these assumptions (e.g., Cooper & Herskovits, 1992; Spiegelhalter et al., 1993; Buntine,
1994; Heckerman et al., 1995). The assumptions include:

1. Every variable is discrete, having a finite number of states. We usexki andpaji to denote
thekth possible state ofXi and thejth possible configuration ofPai, respectively. Also,
we useri andqi to denote the number of possible states ofXi and the number of possible
configurations ofPai, respectively.

2. Each local distribution functionp(xi|pai,θm,m) consists of a set of multinomial
distributions, one multinomial distribution for eachi andj. That is,

p(xki |paji ,θm,m) = θijk,
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where theθijk are parameters satisfyingθijk > 0 for all i, j, andk, and
∑ri
k=1 θijk = 1

for all i and j. For convenience, we introduce the set of nonredundant parameters
θij = (θij2, . . . , θijri) for all i andj.

3. The parameter setsθij are mutually independent, so that

p(θm|m) =
n∏
i=1

qi∏
j=1

p(θij |m).

4. Each parameter setθij has a Dirichlet distribution, giving

p(θij |m) = Dir(θij |αij1, . . . , αijri) ∝
ri∏
k=1

θ
αijk−1
ijk ,

where hyperparametersαijk > 0 for everyi, j, andk.

5. The data setD is complete—that is, every variable is observed in every case ofD.

Under these assumptions, the parameters remain independent given a random sampleD
that contains no missing observations, so that

p(θm|D,m) =
n∏
i=1

qi∏
j=1

p(θij |D,m), (9)

and the posterior distribution of eachθij will have the Dirichlet distribution

p(θij |D,m) = Dir(θij |αij1 +Nij1, . . . , αijri +Nijri), (10)

whereNijk is the number of cases inD in whichXi = xki andPai = paji . Note that the
collection of countsNijk are sufficient statistics of the data for the modelm. In addition,
we obtain the marginal likelihood

p(D|m) =
n∏
i=1

qi∏
j=1

Γ(αij)
Γ(αij +Nij)

·
ri∏
k=1

Γ(αijk +Nijk)
Γ(αijk)

, (11)

whereαij =
∑ri
k=1 αijk andNij =

∑ri
k=1Nijk. (See Cooper and Herskovits (1992) for

a derivation.)
These assumptions are restrictive; and there has been a great deal of recent work building

on general results from Bayesian statistics to relax these assumptions. For example, Geiger
and Heckerman (1994) discuss the case where variables are continuous and each local
distribution function corresponds to ordinary linear regression; Buntine (1994) discusses
the more general case where local distribution functions come from the exponential family;
MacKay (1992a) and Gilks, Richardson, and Spiegelhalter (1996) relax the assumption
of parameter independence using hierarchical models; and Buntine (1994), Azevedo-Filho
and Shachter (1995), Heckerman (1995), and Gilks et al. (1996) have addressed the case
where data are missing.
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3. Methods for missing data

When observations for some variables are missing in the data, the parameters for a given
model become dependent, and known closed-form methods cannot be used to determine
marginal likelihood. Approximations for computing marginal likelihood include Monte-
Carlo approaches such as Gibbs sampling and importance sampling (Neal, 1993; Chib,
1995; Raftery, 1996) and large-sample approximations (Kass et al., 1988; Kass & Raftery,
1995). As mentioned in the introduction, Monte-Carlo methods are accurate but typically
inefficient, whereas large-sample methods are more efficient but known to be accurate only
for large data sets. In this paper, we examine the accuracy and efficiency of large-sample
methods using a Monte-Carlo approximation as a standard for comparison. In this section,
we describe the approximations that we use.

We note that, when treating missing data, an important consideration is whether or not
we can ignore the process by which observations are missed. For example, a missing
datum in a drug study cannot be ignored if there is the possibility that—as a result of taking
the drug—the patient became too ill to be observed. In contrast, if data are missing due
to clerical errors, it is often reasonable to ignore this fact. When the process by which
observations are missed are not ignorable, the model (or models) should be enhanced to
represent these processes. One simple approach for enhancing a model for(X1, . . . , Xn)
is to add variables(I1, . . . , In), whereIi is a binary variable that indicates whether or not
the observation of variableXi in the original model is missing. Rubin (1976) discusses the
concept of ignorability and methods for treating non-ignorable data collection processes.
The methods for handling missing data that we discuss here assume that the models under
consideration have appropriately represented the data collection process.

3.1. The Laplace approximation and related methods

In this subsection and the two that follow, we consider large-sample approximations. The
accuracy of some of these approximations depend on the coordinate system used to represent
the parameters. In the previous section, where we examined Bayesian networks for discrete
variables, we introduced the coordinate systemΘm corresponding to the parametersθm.
An alternative coordinate system, which we denote byΦm, corresponds to the parameters

φijk = log
θijk
θij1

for i = 1, . . . , n, j = 1, . . . , qi, k = 2, . . . , ri. This set of parameters (for fixedi and
j) is known as thenatural parameter setfor the multinomial distribution (e.g., Bernardo
& Smith, 1994, pp. 199–202). AlthoughΘm andΦm are equivalent in that there is a
one-to-one mapping between them, MacKay (1996) has shown that the use of the natural
parameters typically leads to a more accurate approximation of the kind that we consider.
Consequently, we use this coordinate system for our approximations. We also useΦm
for most of our discussions, although sometimes it will be more convenient to express our
procedures in terms ofΘm.
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The basic idea behind large-sample approximations is that, as the sample sizeN increases,
p(φm|D,m) ∝ p(D|φm,m) · p(φm|m) can be approximated as a multivariate-Gaussian
distribution. In particular, let

g(φm) ≡ log(p(D|φm,m) · p(φm|m)). (12)

Also, defineφ̃m to be the configuration ofφm that maximizesg(φm). This configuration
also maximizesp(φm|D,m), and is known as themaximum a posteriori(MAP) configu-
ration ofφm givenD. Using a second degree Taylor polynomial ofg(φm) aboutφ̃m to
approximateg(φm), we obtain

g(φm) ≈ g(φ̃m)− 1
2
(φm − φ̃m)A(φm − φ̃m)t, (13)

where(φm−φ̃m)t is the transpose of row vector(φm−φ̃m), andA is the negative Hessian
of g(φm) evaluated at̃φm. Raisingg(φm) to the power ofe and using Equation 12, we
obtain

p(D|φm,m) p(φm|m) (14)

≈ p(D|φ̃m,m) p(φ̃m|m) exp{−1
2
(φm − φ̃m)A(φm − φ̃m)t}.

Hence, the approximation forp(φm|D,m) ∝ p(D|φm,m) p(φm|m) is Gaussian. In-
tegrating both sides of Equation 14 overφm and taking the logarithm, we obtain the
approximation

log p(D|m) ≈ log p(D|φ̃m,m) + log p(φ̃m|m) +
d

2
log(2π)− 1

2
log |A|, (15)

whered is the dimension ofm—that is, the number of parameters inφm. For Bayesian
networks satisfying the assumptions described in the previous section,d =

∏n
i=1 qi(ri−1).

This approximation technique for integration is known asLaplace’s method, and we refer
to Equation 15 as theLaplace approximation. Kass et al. (1988) have shown that, under
certain conditions, the relative error of this approximation, given by

[p(D|m)]Laplace − [p(D|m)]correct
[p(D|m)]correct

,

isOp(1/N), whereN is the number of cases inD. Thus, the Laplace approximation can
be extremely accurate.

Several of the conditions used by Kass et al. to characterize the accuracy of the Laplace
approximation are worth noting, because they are violated in some of our experiments.
One condition is that the MAP configuratioñφm does not lie on the boundary ofφm. In
Section 4.5, we examine how violations of this condition affect the accuracy of the Laplace
(and other) approximations.

Another condition used by Kass et al. is that, givenD, there is a unique MAP configuration
φ̃m. When this condition holds, the parameters of the model are said to beidentified.
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There are two common situations in which the parameters of a Bayesian network with
hidden variables are not identified. In one case, known asaliasing, the state labels of a
hidden variable can be interchanged without affectingp(φm|D,m). In Section 3.5, we
discuss methods for recovering an accurate Laplace approximation when aliasing occurs.
In the other case, the likelihoodsp(x|φm,m) for all x can be encoded by a smaller set
of parameters thanφm. That is, the dimension of the model is less than the number of
parameters inφm (e.g., Geiger, Heckerman, & Meek, 1996). Consequently, the model
will have an (uncountably) infinite number of MAP configurations forφm. We know of
no formal construction of a Laplace approximation that is accurate in this circumstance.
Nonetheless, for our experiments, the issue of reduced dimensionality is likely to be mute.
In particular, Geiger et al. (1996) provide evidence that the models we examine in this
paper do not have redundant parameters.

To compute the Laplace approximation, we must determineφ̃m and the Hessian of
−g(φm) evaluated at̃φm. We discuss methods for finding̃φm in Section 3.2. Meng
and Rubin (1991) describe a numerical technique for computing the second derivatives in
the Hessian. Raftery (1995) shows how to approximate the Hessian using likelihood-ratio
tests that are available in many statistical packages. Thiesson (1997) demonstrates that, for
multinomial distributions, the second derivatives can be obtained using Bayesian-network
inference. We use Thiesson’s method in our experiments.

Although Laplace’s approximation is efficient relative to Monte-Carlo approaches, the
computation of|A| is nevertheless intensive for large-dimension models. One simplifica-
tion is to approximate the HessianA with a block-diagonal matrix, where the entries corre-
sponding to−∂2g(φm)/∂φijk∂φabc are set to zero, fori 6= a. A further simplification is
to approximateA using only its diagonal elements. TheseBlockandDiagonalapproxima-
tions have been considered by Buntine (1994) and Becker and LeCun (1989), respectively,
in feed-forward neural networks. Roughly speaking, in using these approximations, we are
forcing independence among parameters that may not in fact be independent.

We obtain another efficient (but less accurate) approximation by retaining only those
terms in Equation 15 that increase withN : log p(D|φ̃m,m), which increases linearly with
N , andlog |A|, which increases asd logN . Also, for largeN , φ̃m can be approximated
by φ̂m, the configuration ofφm that maximizesp(D|φm,m), known as the maximum
likelihood (ML) configuration ofφm. Thus, we obtain

log p(D|m) ≈ log p(D|φ̂m,m) − d

2
logN. (16)

This approximation is called theBayesian information criterion(BIC). Schwarz (1978)
has shown that the relative error of this approximation isOp(1) for a limited class of
models. Haughton (1988) has extended this result to curved exponential models. Kass and
Wasserman (1995) and Raftery (1995) have shown that, for particular priors, the BIC has a
relative error ofOp(N−1/2).

The BIC approximation is interesting in several respects. First, it depends neither on
the prior3 nor the coordinate system of the parameters. Second, the approximation is
quite intuitive. Namely, it contains a term measuring how well the parameterized model
predicts the data (log p(D|φ̂m,m)) and a term that penalizes the complexity of the model
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(d/2 logN ). Third, the BIC approximation is exactly minus the Minimum Description
Length (MDL) criterion described by Rissanen (1987).

3.2. Computation of MAP and ML configurations

To compute any of the approximations that we have described, we need to determine either
the maximum a posteriori or maximum likelihood configuration forφm.

One class of techniques for finding a MAP or ML configuration is gradient-based op-
timization. For example, we can use gradient ascent, where we follow the derivatives of
p(φm|D,m) or p(D|φm,m) to a local maximum. Russell, Binder, Koller, and Kanazawa
(1995) and Thiesson (1997) show how to compute the derivatives of the likelihood for
a Bayesian network with multinomial distributions. Buntine (1994) discusses the more
general case where the local distribution functions come from the exponential family.

Another technique for finding a local MAP or ML configuration is the expectation–
maximization (EM) algorithm (Dempster, Laird, & Rubin, 1977). To find a local MAP or
ML configuration, we begin by assigning a configuration toφm somehow (e.g., at random).
Next, we compute theexpectedsufficient statistics for a complete data set, where expectation
is taken with respect to the joint distribution forX conditioned on the assigned configuration
of φm and the known dataD. For Bayesian networks with discrete variables, we compute

Ep(x|D,φm,m)(Nijk) =
N∑
l=1

p(xki ,paji |xl,φm,m), (17)

wherexl is the possibly incompletelth case inD. WhenXi and all the variables inPai
are observed in casexl, the corresponding term for this case requires a trivial computation:
it is either zero or one. Otherwise, we can use any Bayesian-network inference algorithm
(e.g., Jensen, Lauritzen, & Olesen, 1990) to evaluate the term. This computation is called
theexpectation stepof the EM algorithm.

Next, we use the expected sufficient statistics as if they were actual sufficient statistics
from a complete random sampleDc. If we are doing an ML calculation, then we determine
the configuration ofφm that maximizesp(Dc|φm,m). This configuration is given by
φijk = log(θijk/θ1jk), where

θijk =
Ep(x|D,φm,m)(Nijk)∑ri
k=1 Ep(x|D,φm,m)(Nijk)

.

If we are doing a MAP calculation, then we determine the configuration ofφm that max-
imizes the posterior density of the parameters. When working with the coordinate system
Φm, this configuration is given byφijk = log(θijk/θ1jk), where

θijk =
αijk + Ep(x|D,φm,m)(Nijk)∑ri

k=1(αijk + Ep(x|D,φm,m)(Nijk))
.

This assignment is called themaximization stepof the EM algorithm. Dempster et al.
(1977) showed that iteration of the expectation and maximization steps will converge to a
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local maximum. The EM algorithm is typically applied when sufficient statistics exist (i.e.,
when local distribution functions are in the exponential family), although generalizations
of the EM algorithm have been used for more complicated local distributions (e.g., Saul,
Jaakkola, & Jordan, 1996).

The models that we consider often have more than one local maximum. Consequently,
these techniques will not necessarily find the global MAP or ML configuration. One
often-used partial solution to this problem is to start from many (usually random) initial
configurations ofφm. We use a variant of this technique in our experiments.

3.3. The Cheeseman–Stutz approximation

Another approximation for the marginal likelihood is based on the fact thatp(D|m) can be
computed efficiently for complete data. Consider the equality

p(D|m) = p(D′|m)
∫
p(D,φm|m) dφm∫
p(D′,φm|m) dφm

, (18)

whereD′ is any completion of the data setD. BecauseD′ is a complete data set, we can
computep(D′|m) using Equation 11. Now, suppose we apply Laplace approximations to
the numerator and denominator of the second term. Roughly speaking, the resulting approx-
imation forp(D) will be best if the quantitiesp(D,φm|m) andp(D′,φm|m)—regarded
as functions ofφm—are similar in shape, so that errors in the two Laplace approximations
tend to cancel. The two functions cannot be similar in an absolute sense, becauseD′ con-
tains more information than doesD, and hencep(D′,φm|m) will be more peaked than
p(D,φm|m). Nonetheless, we can make the two functions more similar by completingD′

so that they peak for the same configuration ofφm. That is, we want̃φ
′
m, the MAP config-

uration ofφm givenD′, to be equal tõφm. One way to obtain this equality is to complete
D′ so that its sufficient statistics match the expected sufficient statistics givenD andm. In
the case of Bayesian networks with discrete variables and multinomial distributions, this
completion is given by

N ′ijk = Ep(x|D,φm,m)(Nijk) (19)

for all i, j, andk, where theN ′ijk are the sufficient statistics forD′. This choice forD′ is
also desirable from a computational standpoint, because—when using the EM algorithm to
find φ̃m—the sufficient statisticsN ′ijk are computed in the last expectation step.

Applying the Laplace approximation Equation 15 to the numerator and denominator of
Equation 18, and using the fact thatφ̃

′
m = φ̃m, we obtain

log p(D|m) ≈ log p(D′|m)− log p(D′|φ̃m,m) +
1

2
log |A′|+ log p(D|φ̃m,m)− 1

2
log |A|,

(20)

whereA′ is the negative Hessian oflog p(D′,φm|m) evaluated at̃φm. Because we derive
this approximation using two Laplace approximations, Equation 20 must have a relative
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error that is no worse thanOp(1/N). Nonetheless, a careful derivation may show that it is
more accurate.

A more efficient approximation is obtained by applying the BIC/MDL approximation to
the numerator and denominator of Equation 18. In this case, we have

log p(D|m) ≈ log p(D′|m)− log p(D′|φ̃m,m) +
d′

2
log N + log p(D|φ̃m,m)− d

2
log N (21)

where we have used the MAP rather than ML configuration forφm, and we have allowed
for the possibility thatd′, the dimension ofm for complete data, may be greater than the
dimension ofm for the actual data. Equation 21 (without the correction for dimension)
was introduced by Cheeseman and Stutz (1995) for use as a model-selection criterion in
AutoClass. We shall refer to Equation 21 as theCheeseman–Stutzapproximation. We note
that this approximation can be easily extended to any statistical model that has sufficient
statistics. For example, the Cheeseman–Stutz approximation can be applied to any Bayesian
network with local distribution functions from the exponential family. Our heuristic deriva-
tion of the Cheeseman–Stutz approximation does not tell us whether it is better to use the
MAP or ML configuration in the approximation. Thus, we examine both alternatives in our
experiments.

3.4. Monte-Carlo methods

We now discuss Monte-Carlo methods, concentrating on the method we use to evaluate the
accuracy of the large-sample approximations.

A common Monte-Carlo method, introduced by Geman and Geman (1984), is known as
Gibbs sampling. Given variablesX = (X1, . . . , Xn) with some joint distributionp(x),
we can use a Gibbs sampler to approximate the expectation of a functionf(x) with respect
to p(x) as follows. First, we choose an initial state for each of the variables inX, say at
random. Next, we unassign the current state ofX1 and compute its probability distribution
given the configuration of the othern − 1 variables. We repeat this procedure for each
variableX2, . . . , Xn, thus creating a new sample ofx. We then iterate the previous steps,
keeping track of the simple average off(x) over the samples we construct. After a (usually
small) number of iterations—known as the “burn-in” phase—the possible configurations of
x will be sampled with probabilityp(x).4 Consequently, the simple average off(x) over
these samples will converge toEp(x)(f(x)). Introductions to Gibbs sampling and other
Monte-Carlo methods—including discussions of convergence—are given by Neal (1993)
and by Madigan and York (1995).

The particular approach we use to compute the marginal likelihood is known as the
Candidate method(Chib, 1995; Raftery, 1996). The approach is based on Bayes’ theorem,
which says that

p(D|m) =
p(D|φ∗m,m) p(φ∗m|m)

p(φ∗m|D,m)

for any configurationφ∗m. To computep(D|m), we choose some configurationφ∗m, eval-
uate the numerator exactly, and approximate the denominator using a Gibbs sampler.
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To approximatep(φ∗m|D,m), we first initialize the states of the unobserved variables in
each case. As a result, we have a complete random sampleDc. Second, we choose some
variableXil (variableXi in casel) that is not observed in the original random sampleD,
and reassign its state according to the probability distribution

p(x′il|Dc \ xil,m) =
p(x′il, Dc \ xil|m)∑
x′′
il
p(x′′il, Dc \ xil|m)

,

whereDc \ xil denotes the data setDc with observationxil removed, and the sum in the
denominator runs over all states of variableXil. The terms in the numerator and denominator
are marginal likelihoods for complete data, and thus can be computed using Equation 11.
Third, we repeat this reassignment for all unobserved variables inD, producing a new
complete random sampleD′c. Fourth, we compute the posterior densityp(φ∗m|D′c,m)
using Equations 9 and 10 (adjusted for the coordinate systemΦm). Finally, we iterate the
previous three steps, and use the simple average ofp(φ∗m|D′c,m) as our approximation.

In principle, the Candidate method can be applied using any configurationφ∗m. Nonethe-
less, certain configurations lead to faster convergence of the Gibbs sampler. Chib (1995)
and Raftery (1996) suggest that̃φm be used. Nonetheless, in experiments with multinomial-
mixture models, we have found that the use of this configuration underestimatesp(φ∗m|D,m).
This error occurs because, wheñφm is used, there are configurations ofDc such that (1)
p(φ∗m|Dc,m) is extremely large, and (2) the configurationDc is extremely unlikely to be
visited. Consequently, when these configurations ofDc are not visited in a particular run,
the simple average ofp(φ∗m|Dc,m) is substantially less thanp(φ∗m|D,m).

We have experimented with an alternative method for choosingφ∗m. For a fixed number
of samples after the burn-in phase, we keep track of the configurations ofDc. After these
samples have been collected, we retain the configurationD∗c that occurred most frequently.
We break ties by choosing the configuration with the largest value ofp(Dc|m). Finally,
we setφ∗m to be the configuration that maximizesp(φm|D∗c ,m). In experiments with
multinomial-mixture models, such as those presented in Section 4.4, this choice ofφ∗m
yields low-noise estimates ofp(D|m).

3.5. Hidden-variable models and aliasing

Given a Bayesian networkm for X, supposeXi ∈ X is never observed in data setD.
BecauseXi is hidden, the likelihoodp(D|φm,m) will be invariant to arbitrary relabelings
of the states ofXi. Thus, if the priorp(φm|m) is invariant to such relabelings, so will be
the posteriorp(φm|D,m). It follows that if φ̃m is a MAP configuration ofφm, then there
will be additional MAP configurations corresponding to the relabelings of the states ofXi.
We shall refer to each such configuration and its neighborhood as analias. If each alias is
distinct (i.e., nondegenerate), then there will beri! of them.

When there are multiple distinct aliases, the parameters ofm are no longer identifiable.
Nonetheless, assuming the aliases are well separated, we can apply the Laplace approxi-
mation locally around each of them, summing the contributions of each peak. Assuming
one hidden variable and distinct aliases, this procedure amounts to multiplying the marginal
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likelihood corresponding to one alias byri!. This correction applies to the Block, Diagonal,
BIC/MDL, and Cheeseman–Stutz approximations as well.

With sufficient computation, the Candidate approximation forp(D|m) does not need to
be corrected for aliases, because the Gibbs sampler will visit all assignments to the hidden
variable(s). In our experiments, however, the Gibbs sampler tends to stay near one alias.
We can compensate for this failure to move among aliases by multiplying the approximation
for marginal likelihood byri!, as we do for the large-sample approximations. We obtain a
more accurate correction, however, by (in effect) runningri! Gibbs samplers in parallel. In
particular, for every completionDc that we actually visit, we computep(φ∗m|D′c,m) for
each equivalent assignmentD′c, and average the results. To computep(φ∗m|D,m), we then
average these averages.5 This procedure yields an accurate correction factor even when the
Gibbs sampler moves among aliases and when there are degenerate aliases. The procedure
is expensive for largeri, but was not prohibitive for our experiments.

3.6. Computational complexity

The accuracy of these approximations should be balanced against their computation costs.
These costs will depend on the topology of the Bayesian network under consideration. Here,
we consider costs for an arbitrary Bayesian network with discrete variables and a naive-
Bayes discrete-variable clustering model of the form shown in Figure 1 (a multinomial-
mixture model). In both cases, we assume that the EM algorithm is used to find a MAP or
ML configuration ofφm.

For an arbitrary Bayesian network, the evaluation of Cheeseman–Stutz, Diagonal, and
BIC/MDL is dominated by the determination of the MAP or ML configuration of the
parameters. The time complexity of this task isO(eiN + ed), wheree is the number of
EM iterations andi is the cost of inference in Equation 17.6

The evaluation of the Laplace approximation typically is dominated by the computation
of the Hessian determinant. The time complexity of this computation (using Thiesson’s
1997 method) isO(diN + d3). Becausei > d and (typically)N > d, the computation of
the Hessian determinant isO(diN). The Block approximation has the same complexity as
the Laplace approximation, because one block may contain most of the parameters.

For the naive-Bayes clustering model, the evaluation of the Cheeseman–Stutz, Diagonal,
and BIC/MDL measures are again dominated by the determination of the MAP or ML con-
figuration. In the expectation step, we compute—for each case—the posterior probability
of the hidden variable given the observed variables and the parameters. Thus, the cost of
MAP/ML determination isO(edN).

The Laplace approximation is again dominated by the computation of the Hessian de-
terminant, having a cost ofO(d2N). The computational cost of the Block approximation
has two components. The cost of the MAP/ML determination isO(edN). The Hessian
containsO(n) blocks each of sizeO(rc), whererc is the number of states of the hidden
variable; consequently, the evaluation of the Hessian costsO(r2cnN) = O(rcdN). Thus,
the overall cost of the Block computation isO(rcdN + enN).
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4. Experiments with multinomial-mixture models

Our primary goal is to evaluate the accuracy and efficiency of the Block, Diagonal, BIC/MDL,
and Cheeseman–Stutz approximations when used for model averaging and model selection
among hidden-variable Bayesian networks. We evaluate the Cheeseman–Stutz approxima-
tion using both the maximum a posteriori (CS MAP) and maximum likelihood (CS ML)
configurations ofφm. Similarly, we evaluate the BIC/MDL approximation using both
MAP and ML configurations. A secondary goal is to evaluate the accuracy of the Laplace
approximation when applied to hidden-variable Bayesian networks.

Our approach is straightforward. For a variety of models and data sets, we compare
values for the marginal likelihood given by the various approximations with that given by
a Monte-Carlo method that we believe to be accurate. In addition, we measure the time
required to compute each approximation.

The models we evaluate are the naive-Bayes clustering models of the form shown in
Figure 1. We consider synthetic models and data sets as well as models for real-world
data sets. For a particular data set, we compute approximate marginal likelihoods for
a series of naive-Bayestest models, where the only difference among test models is the
number of statesrc of the hidden variableC. We begin with a test model withrc = 1,
which corresponds to a model where the observed variables(X1, . . . , Xn) are mutually
independent. We then increaserc, typically observing a peak in the marginal likelihood,
until the marginal likelihood as determined by all approximations is clearly decreasing. To
evaluate the accuracy of an approximation for the purpose of model selection, we compare
the value ofrc that would be selected using that approximation with the value ofrc that would
be selected using the Monte-Carlo standard. To evaluate the accuracy of an approximation
for the purpose of model averaging, we examine how each approximation weighs the second
most likely model relative to the most likely model.

In our evaluations of data sets generated from synthetic models, the true number of states
of the hidden variable (rct) is available. Nonetheless, we do not use these values in our
evaluation of the approximations. In particular, we are interested in how well the various
methods approximate the marginal likelihood. A comparison between the best value forrc
selected by an approximation andrct would only serve to introduce confounding factors in
this evaluation. For example, although the true model may haverct = 4, the sample size
of the data may not be sufficiently large to support a mixture model with four components.
Nonetheless, an approximation that tends to select models that are too large may (by chance)
selectrc = 4. Consequently, if we were to userct = 4 for our comparison, we would
incorrectly deem this selection to be a success.

4.1. Experimental parameters

All experiments were run on a P6 200MHz machine under the WindowsNTTM operating
system. The various algorithms were implemented in C++.

We used the method of Thiesson (1997) to evaluate the Hessian of− log p(φm, D|m).
To compute the Cheeseman–Stutz scoring function, we assumed that dimensionsd′ andd
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were equal. Although we know of no proof that this assumption is correct, Geiger et al.
(1996) provide evidence that the relation holds.

We used the EM algorithm to determine the MAP and ML configurations needed by
the approximations. We determined MAP configurations in the coordinate systemΦm.
The EM algorithm ran until either the relative difference between successive values for
p(φm|D,m) (or p(D|φm,m)) was less than10−8 or 400 iterations were reached. In
preliminary experiments, substantial additional iterations led to relative differences in the
approximations of less than10−4. Such differences did not have a significant effect on
results.

In order to avoid local MAP and ML configurations, we used a variant of the multiple-
restart approach described in Section 3.2. First, we sampled 64 configurations of the
parametersφm from distributions that are uniform inΘm. Next we performed one ex-
pectation and maximization step, and retained the32 initial configurations that led to the
largest values ofp(φm|D,m). Then we performed two expectation and maximization
steps, retaining the16 best initial configurations. We continued this procedure, doubling
the number of expectation-maximization steps at each iteration, until only one configuration
remained.

The exact marginal likelihood for test models with a single mixture component (rc = 1)
can be computed in closed form (Equation 11). We used these exact values in lieu of
approximate values for all experiments. In Section 4.4, we discuss the parameters of the
Monte-Carlo standard.

In all experiments, we used a uniform prior distribution over model structures,p(m) =
constant. Consequently,p(m|D) ∝ p(D|m), and the valuerc selected by a particular
approximation method corresponded to the value ofrc for which that method’s marginal
likelihood was a maximum. We denote this value byrc∗. We used Dirichlet prior distri-
butions given byαijk = 1 (uniform inΘm) in all experiments except the one in which we
investigated sensitivity to parameter priors.

4.2. Preliminary experiment

The goal of our first experiment was to gain a rough understanding of the accuracy of the
approximations. We performed this study with synthetic models and data. In particular,
we generated naive-Bayes models for various values ofn and rct. For eachn and rct
considered, we created a model in which each observed variableXi had two states. For
each model, we set the parameters of the root node to be uniform (inΘm), and sampled
the remaining parameters from a uniform distribution (inΘm). We then generated data
with sample sizeN from the model using a forward sampling technique. That is, we
sampled a stateC = cj according top(C), and then sampled a state of eachXi according
to p(xi|C = cj). Finally, we discarded the samples ofC, retaining only the samples of
X1, . . . , Xn.

For values that we considered—n = 32, 64, 128, rct = 4, 6, 8, andN = 50, 100, 200,
400—we obtained plots oflog p(D|m) versusrc that were similar in form. A typical plot
for n = 64, rc = 4, andN = 400 is shown in Figure 2(a). Overall, the Candidate, Laplace,
Block, Diagonal, and Cheeseman–Stutz MAP approximations usually peaked at the same
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Figure 2. Plots oflog p(D|m) versusrc for synthetic data sets withn = 64, rct = 4, andN = 400. (a) The
baseline wherein each variablexi has two states and model parameters are sampled from independent distributions.
(b) A higher resolution view of (a). (c) Model parameters are dependent withη = 1.4. (d) Model parameters are
dependent withη = 0.7. The separation scores for each experimental condition are shown below its plot. “CS”
is an abbreviation for “Cheeseman–Stutz”.

value ofrc. The Laplace, Block, Diagonal, and Cheeseman–Stutz MAP approximations
usually agreed with the Monte-Carlo standard forrc ≤ rc∗, but fell below the standard for
rc > rc∗. The BIC/MDL approximation peaked for smaller values ofrc and decreased
more sharply to the right of the peak than did the other approximations. The Cheeseman–
Stutz approximation was more accurate when the MAP configuration was used, whereas
the BIC/MDL approximation was more accurate when the ML configuration was used.

These experiments were informative, but they did not help to discriminate the Laplace,
Block, Diagonal, and Cheeseman–Stutz approximations. After additional experiments, we
identified a likely cause: the clusters were well separated. In Section 4.3, we examine this
phenomenon and describe more challenging data sets for analysis.

Before we do so, consider the observation that the large-sample approximations yield
values that fall below those of the Monte-Carlo standard forrc > rc∗. One possible
explanation is that many local MAP configurations may exist whenrc > rc∗. If this
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Figure 3. Gaussian mixtures in which the two components are (a) well separated, (b) partially separated, and (c)
poorly separated.

condition occurs, then the marginal likelihood could be significantly underestimated by a
Laplace approximation around a single local maximum. To test this hypothesis, we used
random restarts in several of our experiments to visit hundreds of different local maxima,
summing the contributions to the marginal likelihood from each maximum. In no case,
however, did this approach improve performance significantly.

Another explanation is that, whenrc > rc∗, the test model will contain more classes than
are needed to fit the data. Thus, it is likely that some of the classes will beemptyin the sense
thatp(C = cj |φ̃m,m) will be close to zero for somecj , and the parameters corresponding
to the conditional probabilities of the empty classes will be superfluous. As a result, the
posterior distributionp(φm|D,m) will be a ridge rather than a peak, and the large-sample
approximations, which assume the posterior distribution is a peak, will underestimate the
marginal likelihood. In almost all of our experiments, we have found that some of the
classes are empty whenrc > rc∗.

4.3. Cluster separation

The concept of cluster separation is difficult to visualize for multinomial-mixture models.
To understand this concept, let us consider one-dimensional Gaussian-mixture models as
shown in Figure 3. Each model contains two Gaussian components. As we move from left
to right, the components become less separated. If the mixtures are well separated, as in
Figure 3(a), then for most values ofx, p(cj |x) = 1 for eitherj = 1 or j = 2. If the mixtures
are poorly separated, as in Figure 3(c), then for most values ofx, p(cj |x) = p(cj), j = 1, 2.
Generalizing these observations to mixtures of arbitrary distributions, we can think of cluster
separation as the degree to which we are certain about the state ofC a posteriori, averaged
over all possible observationsx.

When clusters are well separated in this sense, the learning task is straightforward. In
particular, each observation will belong to one class (i.e., one state ofC) with high prob-
ability. Thus, it is not surprising that the approximations do well. To evaluate the degree
of separation of our models, we define the separation score of a model(m,φm) to be the
negative expected entropy of the posterior distribution forC scaled to the range[0, 1]:
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Sep(m, φm) = 1− 1

log rc

∑
x

p(x|φm,m)

[
rc∑

k=1

−p(cj|x, φm,m) log p(cj|x, φm,m)

]
. (22)

Because the sum overx is intractable, we use the finite-sample version of Equation 22,
which depends on the random sampleD:

Sep(m,φm, D) = 1− 1
N log rc

∑
x∈D

rc∑
k=1

−p(cj |x,φm,m) log p(cj |x,φm,m).

(23)

Note that values forSep(m,φm, D) increase with increasing separation. The separation
score for the model in Figure 2(a) is 1.0000, confirming our observation that the clusters
are well separated.

To provide the approximations with more of a challenge, we should decrease model sepa-
ration. One approach for doing so is to decreasen, the number of observed variables. This
approach is not useful, however, because we want to evaluate the accuracy and efficiency
of the approximations for a wide range ofn. Another approach is to sample the parameters
from a distribution that is biased toward a uniform distribution (inΘm). We do not use this
approach either, because we do not believe such parameter distributions are common.

Another approach that produces more realistic models is to introduce dependencies among
the parameters such thatp(xi|cj ,φm,m) and p(xi|cl,φm,m) are more likely to have
similar values forl 6= j than if they were chosen independently. Consider a simple approach
for introducing such dependencies, in which we letθ(xki |cj) andφ(xki |cj) be the parameters
corresponding top(xki |cj) in the coordinate systemsΘm andΦm, respectively. First, we
sample the parametersθ(xki |c1) for all i from uniform distributions and transform these
parameters toΦm. Then, we set

φ(xki |cj) = φ(xki |c1) + Normal(0, η)

for i = 1, . . . , n, j = 2, . . . , rc, andk = 2, . . . , ri, where Normal(0, η) is a sample from a
normal distribution with mean zero and standard deviationη. As η decreases toward zero,
the cluster separation decreases.

As shown in Figure 2, when we decrease cluster separation, the valuerc∗ decreases. This
observation is not surprising. In the extreme caseη = 0, the clusters are superimposed, and
rc∗ should be one. Given this observation, we want to challenge the approximations with
clusters that partially overlap, but not by so much that (in effect) only one cluster remains.

4.4. Monte-Carlo standard

Before we consider additional experiments, let us examine our Monte-Carlo gold standard:
the Candidate method.

Recall that the Candidate method uses a Gibbs sampler to determinep(φ∗m|D,m) (Sec-
tion 3.4). This Gibbs sampler has four parameters:α, the number of samplesDc used to
burn in the Gibbs sampler;β, the number of samples used to selectφ∗m; γ, the number of
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samples that separate the phase whereφ∗m is selected and the phase wherep(φ∗m|D,m)
is computed; andδ, the number of samples used to computep(φ∗m|D,m). In preliminary
experiments with the Candidate method, we increased these parameters until we obtained
a low-noise approximation forlog p(D|m) across the spectrum of valuesn = 32, 64, 128,
rct = 4, 6, 8, andN = 50, 100, 200, 400. We evaluated the noise in the approximation for
a given value of the parameters by examining plots oflog p(D|m) versusrc.

We found that the burn-in andφ∗m selection phases could be combined without increasing
the noise in the approximation. This observation is not surprising, because typical (and
likely) configurations forDc usually do not occur until the Gibbs sampler has burned in.
Except whenN was small (N ≤ 50), no configuration ofDc was visited more than once.
Consequently, in most experiments, the configurationD∗c chosen to selectφ∗m was the most
likely Dc. Forrct ≤ 4, we found thatβ = 100, γ = 10, andδ = 100 produced a low-noise
approximation. Forrct ≥ 8, we found thatβ = 400, γ = 10, andδ = 400 was adequate.
Also, the noise in the approximation was slightly lower when we sampled an initialDc

from the MAP configuration ofφm rather than from a distribution that is uniform inΘm.
We used these algorithm parameters in our experiments (including those on real-world data
sets).

As we discussed in Section 4.2, the Candidate and Laplace approximations produced
similar values forp(D|m) for rc ≤ rc∗ (see Figure 2), and disagreements forrc > rc∗
could be explained. These observations, combined with the fact that the approximation
had low noise, suggested that the Candidate approximation was accurate. Nonetheless,
the Candidate approximation became noisy forn < 32, even when we increasedβ and
δ to 1600. Furthermore, low noise does not guarantee high accuracy. Consequently, we
wanted to further evaluate the accuracy of the Candidate method. To do so, we considered
data sets with small sample sizes, so that we could determinep(D|m) exactly by summing
p(Dc|m) over all possible configurations ofDc consistent withD. We used data generated
from synthetic models withn = 64, rct = 2, andN = 10. Results for various degrees of
overlap (η = 1.25, 3.5, 5.75) are shown in Figure 4.

In all plots, the Candidate approximation agreed closely with the exact value forp(D|m).
In addition, although large-sample approximations are unlikely to be valid for samples of
size 10, the relationships among the Candidate, Laplace, Block, and Diagonal approxima-
tions forN = 10 were similar to those for largeN . In particular, the Laplace, Block, and
Diagonal approximations agreed with the Candidate approximation forrc ≤ rc∗, but fell
below the Candidate approximation forrc > rc∗. These results provide additional evidence
that the Candidate approximation is accurate.

We note that the Cheeseman–Stutz MAP approximation agreed more closely with the
Candidate (and exact) values forp(D|m) than did the Laplace approximation. We suggest
an explanation for this observation in the following section.

4.5. Sensitivity analyses for synthetic data

We evaluated the approximations for a variety of synthetic models and data sets. First,
we examined the accuracy of the approximations as a function ofn (the number of input
variables),rct (the number of classes in the generative model), andN (the sample size
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Figure 4. Plots oflog p(D|m) versusrc for synthetic data sets withn = 64, rct = 2, N = 10, and various
degrees of cluster overlap.

of the data). For eachn andrct considered, we created a model in which each observed
variableXi had two states. For each model, we sampled the parameters for its hidden
node from a uniform distribution (inΘm) so as to generate clusters of various sizes. We
generated dependent parameters for the conditional distributions as described in Section 4.3
usingη = 1.75. For most experiments, this choice forη produced clusters that overlapped
partially but not completely. For each experiment—defined by a givenn, rc, andN—we
evaluated the approximations for five data sets generated with different random seeds.

Figures 5, 6, and 7 show plots oflog p(D|m) versusrc for one of the five data sets
in the experiments wheren, rc, andN were varied, respectively. The most surprising
aspect of the results was that the introduction of cluster overlap did not lead to significant
differences in the accuracy of the approximations. As in the case of no cluster overlap, the
Candidate, Laplace, Block, Diagonal, and Cheeseman–Stutz MAP approximations usually
peaked at the same value ofrc. The Laplace, Block, Diagonal, and Cheeseman–Stutz MAP
approximations usually agreed with the Monte-Carlo standard forrc ≤ rc∗, but fell below
the standard forrc > rc∗. The BIC/MDL approximation peaked for smaller values ofrc
and decreased more sharply to the right of the peak than did the other approximations.
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The Cheeseman–Stutz approximation was more accurate when the MAP configuration was
used, whereas the BIC/MDL approximation was more accurate when the ML configuration
was used.

To evaluate the accuracy of the approximations when used for model selection, we com-
puted the quantity∆rc∗—the difference betweenrc∗ for the Monte-Carlo standard andrc∗
for the approximation—and averaged this difference over the five data sets for each exper-
iment. Table 1 contains these averages. With the exception of the Cheeseman–Stutz ML
and BIC/MDL approximations, the approximations almost always select the same model.

To evaluate the accuracy of the approximations when used for model averaging, we
examined how each approximation penalized the second most likely model relative to
the most likely model. In particular, we used the Candidate method to identify the two
model structures with the largest (m1) and second largest (m2) marginal likelihoods. We
then computed the log Bayes factorlog p(D|m1)/p(D|m2) for each approximation. If
an approximation were useful for model averaging, then these scores would be similar to
that for the Monte-Carlo standard. The results for the Laplace approximation are shown in
Table 2. In 20 of the 40 unique entries, the log Bayes factor was less than3.6 = ln(37)
for the Monte-Carlo standard, but greater than14.4 = ln(1.8 million) for the Laplace
approximation. In these cases, if we had used the Laplace approximation, we would have
removedm2 from consideration. In contrast, if we had used the Monte-Carlo standard,m2

would have contributed to the average, perhaps significantly, depending on the hypothesis
of interest. Therefore, in (at least) these 20 cases, the Laplace approximation was not a
good substitute for the Monte-Carlo standard. The other approximations were at least as
inaccurate.

Next, we examined the sensitivity of the approximations to parameter priors. For the
experimental condition defined byn = 64, rct = 8,N = 400, andη = 1.75, we evaluated
the approximations using three Dirichlet priors:αijk = 1 (uniform inΘm); αijk = 1/riqi;
andαijk = 0.1/riqi. The second and third priors are a special case of the priors described
by Heckerman et al. (1995). The results are shown in Figure 8.

All approximations except the BIC/MDL ML were sensitive to the variation in priors.7

This result demonstrates that it can be important to choose a prior carefully. In addition,
it shows that the BIC/MDL approximation is inferior to the others in the sense that it is
unresponsive to the prior.8

Recall one of the conditions used to derive the Laplace approximation: the MAP config-
urationφ̃m should lie away from the boundary ofφm. We examined the sensitivity of the
approximations to violations of this condition. In particular, we generated a model with
n = 64 andrct = 2, assigning parameters according to the procedure in Section 4.3 with
η = 0. That is, we generated a model with two identical multinomial mixtures. Then,
with probability 0.1, we replaced each conditional probabilityp(xki |cj ,φm,m) with zero
(a boundary value), and then renormalized each conditional distribution. If both proba-
bilities p(x1

i |cj ,φm,m) andp(x2
i |cj ,φm,m) were set to zero, then we chose one of the

probabilities at random and set it to one. We then generated a data set withN = 400.
For comparison, we ran the experiment defined byn = 64, rct = 2, andN = 400,
with parameters generated usingη = 1.75. For both experimental conditions, the param-
eters for the hidden node were equal to 0.5. The interesting result, shown in Figure 9, is



EFFICIENT APPROXIMATIONS FOR THE MARGINAL LIKELIHOOD 203

(b)
(a)


(c)


Candidate


CS ML


BIC ML


BIC MAP


Others


-7200


-7000


-6800


-6600


-6400


1
 2
 3
 4
 5
 6
 7
 8


CS MAP


Candidate


CS ML


BIC ML


BIC MAP


Others


-28000


-27000


-26000


-25000


-24000


1
 2
 3
 4
 5
 6
 7
 8


Sep:  0.7432


Sep:  0.9946


n
 = 32


n
 = 128


-14400


-14000


-13600


-13200


-12800


-12400


1
 2
 3
 4
 5
 6
 7
 8


Candidate


CS ML


BIC ML


BIC MAP


Others


Sep:  0.9131
 n
 = 64


Figure 5. Sensitivity ton, the number of observed variables. Approximate log marginal likelihood versusrc for
models withrct = 4 andη = 1.75 and data sets withN = 400, when (a)n = 32, (b)n = 64, and (c)n = 128.

that the Cheeseman–Stutz MAP approximation yielded almost the same values as did the
Monte-Carlo standard, whereas the other approximations performed as usual. That is, the
Cheeseman–Stutz MAP approximation was more robust to violations of this assumption
than were the other approximations, including the Laplace approximation. The result was
reproducible for a variety of models.

This observation offers an explanation for the smallN results in Figure 4, in which
the Cheeseman–Stutz MAP approximation is more accurate than the other large-sample
approximations. In particular, for smallN , many observations forX that are possible are
not realized in the data set. Consequently, many of the parameters in the MAP configuration
for φm will be close to the boundary.

4.6. Computation times

As we have discussed, the accuracy of the approximations should be balanced against their
computational costs. Figure 10 shows the costs for the experiment defined byn = 64,
rct = 8, N = 400, andη = 1.75. The costs shown for the Candidate, Laplace, Block,
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Diagnonal, Cheeseman–Stutz, and BIC/MDL approximations exclude the computation of
the MAP or ML configuration using the EM algorithm. This plot is in agreement with
the computational complexities of the algorithms given in Section 3.6. Note that the EM
algorithm dominates the cost of the Block, Diagonal, Cheeseman–Stutz, and BIC/MDL
approximations. In contrast, the evaluation of the Hessian is more expensive than the cost
of finding the MAP configuration using EM. Also, note that the Monte-Carlo standard is
almost as efficient as the Laplace approximation for larger models.

4.7. Real-world data sets

To augment our experiments with synthetic data, we evaluated the various approximations
on real-world data sets. We checked several data repositories, but could not locate data sets
that involved discrete-variable clustering. Instead, we obtained classification data sets from
the UCI Machine Learning Repository (Merz & Murphy, 1996) and discarded the known
class information. We used the small soybean (Michalski & Chilausky, 1980), standard
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Figure 7. Sensitivity toN , sample size. Approximate log marginal likelihood versusrc for models withn = 64,
rct = 4, andη = 1.75, when (a)N = 50, (b)N = 100, (c)N = 200, and (d)N = 400.

audiology (Bareiss & Porter, 1987), and lung cancer (Hong & Yang, 1994) databases. For
the audiology data set, where both training and test data were available, we merged these
data sources.

The results, shown in Figure 11 and Table 3, are similar to those for synthetic data. In
particular, the BIC/MDL approximation tended to peak early and fell off more sharply
than did the other approximations. The large-sample approximations (except Cheeseman–
Stutz MAP) fell off more rapidly than did the Candidate approximation forrc ≥ rc∗.
The Cheeseman–Stutz approximation was more accurate when the MAP configuration was
used, whereas the BIC/MDL approximation was more accurate when the ML configuration
was used. For the audiology data set, most approximations selected only two classes, far
less than the specified number. Nonetheless, there were only two classes in the data set
with more than 20 instances.

There were three deviations from the studies with synthetic data that occurred in the
evaluation of all three data sets. First, there were some values ofrc for which the Laplace
and/or Block approximation could not be computed, because the determinant of the Hessian
(or block) was negative. Second, the Cheeseman–Stutz MAP approximation was more
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Table 1.Errors in model selection—mean (s.d.) over five data sets.

Conditions ∆rc∗
n rct N Laplace Block Diagonal CS MAP CS ML BIC MAP BIC ML

32 4 400 0 0 0 0 0 0 0
64 4 400 0 0 0 0 0 0 0
128 4 400 0.2(0.4) 0.2(0.4) 0.2(0.4) 0.2(0.4) 0.2(0.4) 1.0(0) 1.0(0)

64 4 400 0 0 0 0 0 0 0
64 6 400 0.4(0.5) 0.4(0.5) 0.4(0.5) 0.4(0.5) 0.4(0.5) 0.4(0.5) 0.4(0.5)
64 8 400 0.2(0.4) 0.2(0.4) 0.2(0.4) 0.6(0.5) 1.0(0.7) 1.0(0.7) 1.0(0.7)

64 4 50 0.2(0.4) 0.2(0.4) 0.2(0.4) 0 0.4(0.5) 0.6(0.5) 0.6(0.5)
64 4 100 0 0 0 0 0.2(0.4) 0.8(0.5) 0.6(0.5)
64 4 200 0 0 0 0 0 0 0
64 4 400 0 0 0 0 0 0 0
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Figure 8. Sensitivity to parameter priors. In each experiment,n = 64, rct = 8, N = 400, andη = 1.75. The
Dirichlet priors are given by (a)αijk = 1, (b)αijk = 1/riqi, and (c)αijk = 0.1/riqi.

accurate than the other large-sample approximations. Third, many of the parameters were
near the boundary in the MAP configurations forφm. This last observation explains the
first two. In particular, when parameters are near the boundary,log p(φm|D,m) need not
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Table 2.Errors in model averaging. Log Bayes factors given by the Candidate (C) and Laplace (L) methods are
shown.

Conditions log p(D|m1)/p(D|m2)
data set 1 data set 2 data set 3 data set 4 data set 5

n rct N C L C L C L C L C L

32 4 400 0.5 18.5 1.7 17.7 3.5 23.5 4.8 17.7 4.2 19.0
64 4 400 4.9 65.8 4.0 32.4 3.5 15.1 7.7 16.3 4.1 24.7
128 4 400 12.6 113 3.0 59.2 8.0 280 3.6 77.5 0.1 - 6.3

64 4 400 4.9 65.8 4.0 32.4 3.5 15.1 7.7 16.3 4.1 24.7
64 6 400 1.8 0.0 6.0 28.7 0 9.3 3.1 0.0 0.6 4.8
64 8 400 0.3 16.9 1.0 14.8 5.7 20.3 1.6 -4.6 10.3 74.4

64 4 50 3.2 14.5 1.8 -2.1 2.2 20.1 19.3 24.0 2.2 41.2
64 4 100 2.8 39.1 3.2 42.2 2.8 29.8 3.0 41.9 3.1 23.2
64 4 200 2.9 55.4 2.2 35.9 4.3 22.5 3.5 31.8 3.4 32.8
64 4 400 4.9 65.8 4.0 32.4 3.5 15.1 7.7 16.3 4.1 24.7
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Figure 9. Sensitivity to parameters at the boundary. In both experiments,n = 64, rct = 2, N = 400. (a)
Parameters are generated withη = 1.75. (b) 10% of the parametersp(xki |cj , φm,m) are set to zero.

be concave down around̃φm. Furthermore, as we saw in Section 4.5, the Cheeseman–Stutz
MAP is more robust to situations in which parameters in the MAP configuration are near
the boundary.

5. Discussion

We have evaluated the accuracy and efficiency of the Laplace, Block-Diagnonal, Diagonal,
Cheeseman–Stutz, and BIC/MDL approximations for the marginal likelihood of naive-
Bayes models with a hidden root node. In this evaluation, we used the Monte-Carlo Candi-
date method as a gold standard. From our experiments, we draw a number of conclusions:

• None of approximations are accurate when used for model averaging.
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Figure 10.Computation time in seconds versus model dimension for the experimental conditionn = 64, rct = 8,
N = 400, andη = 1.75.

• All of the approximations, with the exception of BIC/MDL, are accurate for model
selection.

• Among the accurate approximations, the Cheeseman–Stutz and Diagonal approxima-
tions are the most efficient.

• All of the approximations, with the exception of BIC/MDL, can be sensitive to the prior
distribution over model parameters.

• The Cheeseman–Stutz approximation is more accurate when evaluated using the max-
imum a posteriori (MAP) configuration of the parameters, whereas the BIC/MDL ap-
proximation is more accurate when evaluated using the maximum likelihood (ML)
configuration.

• The Cheeseman–Stutz approximation can be more accurate than the other approxima-
tions, including the Laplace approximation, in situations where the parameters in the
MAP configuration are near a boundary.

Our findings are valid only for naive-Bayes models with a hidden root node, but these results
are important, because they apply directly to probability-based clustering. Also, it seems
likely that our results will extend to models for discrete variables where each variable that
is unobserved has an observed Markov blanket. Under these conditions, each Bayesian
inference required by the scoring functions (e.g., Equation 17) reduces to a naive-Bayes
computation. Nonetheless, more extensive experiments are warranted to address models
with more general structure and non-discrete distributions.

Although we have examined the computation of marginal likelihood for model averaging
and model selection, we have not concentrated on how to handle the parameters once a
model or set of models have been selected. If computation time is not an issue and one
is concerned primarily with prediction, then a Monte-Carlo average over parameters is
probably best (Neal, 1991). Nonetheless, one sometimes needs a fast model for prediction
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Figure 11.Plots of approximate log marginal likelihoods versusrc for the (a) small soybean (b) standard audiology,
and (c) lung cancer data sets.

Table 3.Number of classes selected by the approximations.

rc∗
CS BIC

data set n rct N Candidate Laplace Block Diagonal MAP ML

Small soybean 35 4 47 4 3–4 3–4 4 4 3
Audiology 70 24 226 2 2 ? 2 2 2
Lung cancer 56 3 32 3 ? ? 1 2 1

or one may want point values for the parameters to facilitate an understanding of the domain.
What is best in these circumstances remains an open question.
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Notes

1. Throughout this paper, we use “efficiency” to refer to computational efficiency as opposed to statistical
efficiency.

2. An equivalent criterion that is often used is
log(p(m|D)/p(m0|D)) = log(p(m)/p(m0)) + log(p(D|m)/p(D|m0)).
The ratiop(D|m)/p(D|m0) is known as aBayes factor.

3. One of the technical assumptions used to derive this approximation is that the prior distribution is non-zero
aroundφ̂m.

4. For this observation to hold, the Gibbs sampler must beirreducible. That is, the probability distribution
p(x) must be such that we can eventually sample any possible configuration ofX given any possible initial
configuration ofX. For example, ifp(x) contains no zero probabilities, then the Gibbs sampler will be
irreducible.

5. This procedure was suggested by David MacKay (1996) in a personal communication.

6. Using Jensen et al.’s (1990) inference algorithm, only one inference is needed per expectation step.

7. Marginal likelihoods forrc = 1 were sensitive to priors because we computed these values exactly using
Equation 11.

8. In previous experiments (Chickering & Heckerman, 1996), we considered another large-sample approximation
for the marginal likelihood suggested by Draper (1995). His approximation suffers from the same lack of
sensitivity to the prior as does the BIC/MDL ML approximation.
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