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Abstract. Coordination is an essential technique in cooperative, distributed multiagent systems. However, so-
phisticated coordination strategies are not always cost-effective in all problem-solving situations. This paper
presents a learning method to identify what information will improve coordination in specific problem-solving
situations. Learning is accomplished by recording and analyzing traces of inferences after problem solving.
The analysis identifies situations where inappropriate coordination strategies caused redundant activities, or the
lack of timely execution of important activities, thus degrading system performance. To remedy this problem,
situation-specific control rules are created which acquire additional nonlocal information about activities in the
agent networks and then select another plan or another scheduling strategy. Examples from a real distributed
problem-solving application involving diagnosis of a local area network are described.
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1. Introduction

Achieving globally coherent1 activity in a cooperative, distributed multiagent system is a
difficult problem for a number of reasons. One difficulty is that an agent’s control decisions,
based only on its local view of problem-solving task structures, may lead to inappropriate
decisions about which activity it should do next, what results it should transmit to other
agents and what results it should ask other agents to produce. If an agent has a view of
the activities (task structures) of other agents, it can make more informed choices (Decker
& Lesser, 1995; Durfee, Lesser, & Corkill, 1987; Durfee & Lesser, 1991; Lesser, 1991).
Another difficulty is that even with this type of metalevel information, there is still residual
uncertainty about the outcomes of tasks and which future tasks will be coming into the
system that may result in agents still exhibiting incoherent behavior. The difficulties with
achieving effective coordination are further exacerbated by the fact that an agent, in ac-
quiring and exploiting a nonlocal view of other agents’ activities, may expend significant
computational resources. This expense is in terms of communication delays, as well as the
computational cost of both providing this information in a suitable form to other agents
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and processing this information to make local decisions. Thus, for specific problem-solving
situations, due to the inherent uncertainty in agents’ activities and the cost of metalevel pro-
cessing, it may not be worthwhile to acquire a complete view of other agents’ activities, and
thus a coordination strategy that does not eliminate all incoherent activity may be optimal
(Lesser, 1991).

For example, coordination to avoid redundant activities may be unnecessary if process-
ing resources are not overloaded and if communication channels are neither expensive nor
overloaded. In this case, local problem solving is done more efficiently where there is no
additional overhead for coordination. If a coordination strategy can be developed whose
costs can be varied depending upon the amount and type of nonlocal information used to
make coordination decisions, then it seems that only a selected, possibly situation-specific,
view of other agents’ activities is necessary (Lesser, 1998). The obvious next question is
how to determine what the appropriate situation-specific view is and what type of coordi-
nation rules should be used in the situation. It is our hypothesis that for many multiagent
applications, especially those operating in complex, open and possibly evolving environ-
ments, it is very difficult or impossible for the designer of a system to a priori anticipate
all the problem-solving contexts and exactly what information and coordination strategy
will be most cost-effective for each context. Thus, in this paper, we propose integrating
into each agent a distributed learning component that agents can use to determine, through
experience, what information is necessary for effective coordination in a specific situation
and how to exploit this information locally to select and schedule its activities to achieve
the desired coordination.

Another way of understanding our approach to learning coordination rules is to relate
it to the GPGP/TÆMS coordination model (Decker & Lesser, 1993, 1995; Lesser et al.,
1998). From the perspective of this model, each of the agents makes scheduling decisions
based on a subjective view of its own and other agents’ activities and its view of available
resources. This subjective view is specified by relationships among these activities such
asenable-, facilitate-, overlap-andsupport-relations2 and resource usage patterns such
as theuse-relation. These relationships describe how an activity affects the duration and
importance rating of other activities, as well as the quality of the outcomes. All coordination
activities are based on the existence and quantitative characteristics of these relationships.
In certain situations this subjective view will lead to an agent taking ineffective or inappro-
priate actions because the relationships among certain nonlocal activities or the nonlocal
resources have not been specified as part of the subjective view, and thus have not been
appropriately considered in making coordination decisions. This lack of effective coordi-
nation can also occur because the subjective view was based on default assumptions or
out-of-date information. In our case, we start out with agents who, prior to learning, have
subjective views used for coordination that are based solely on their local activities. The use
of this totally local subjective view implicitly makes the assumption that there are sufficient
computational and other resources so that the details of the activities and the states of other
agents are not necessary for effective operation. Thus, the goal of the learning system can
be thought of as adding nonlocal control information (and associated control rules) to min-
imally augment the subjective view of an agent so that it has sufficient information about
other agents’ activities for it to make a more effective control decision in a specific situation.
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In the remainder of the paper, we develop this distributed learning component in detail,
based on explanation based learning (EBL) techniques (Dejong, 1981; Mitchell, Keller, &
Kedar-Cabelli, 1986) using a domain model and inductive techniques such as comparative
analysis (Hudlick´a & Lesser, 1987). We discuss the implementation of these ideas in a real
distributed problem-solving system, LODES (Sugawara, 1990; Sugawara & Murakami,
1992), which performs diagnosis of a computer communications network.

2. An example problem

The LODES network diagnosis system observes message traffic on the network in order to
detect and analyze situations that indicate a hardware or software problem in the network.
LODES is a multiagent system in which there is a diagnosis agent on each network segment.
Each agent is responsible for monitoring traffic on its segment and diagnosing any problems
that are recognized. An agent acquires, as a result of its normal monitoring functions,
the status of the resources on its network segment. However, it does not normally have
knowledge of nonlocal resources and only acquires this knowledge from other agents when
it explicitly needs this information as part of its diagnostic inferencing process. Agents start
out with the assumption that there is no need to explicitly coordinate with other agents on
different segments of the network. Interaction among agents involves an occasional request
for the execution of a diagnostic task3 on an agent’s local network segment, and the sharing
of information about the network configuration and the final results of diagnosis. The basic
assumption behind this lack of coordination is that there are sufficient communication and
computational resources available on the network to sustain a certain level of noncoherent
behavior, e.g., two agents diagnosing the same problem. This assumption is appropriate for
diagnostic activities in most network environments and was the basis for how the LODES
system was originally implemented. However, it is not always a valid assumption. For
example, in network environments where diagnostic activities generate substantial message
traffic, where there are multiple agents performing redundant diagnosis, and where the cost
of communication is significant this assumption does not hold.

Consider the network environment shown in figure 1. L1 to L7 are LODES agents, Net1
to Net7 are network segments, and Net5 and Net6 are connected with a narrow-bandwidth
line. Suppose a host, HA on Net1, sends a broadcast to all hosts on Net7, but most of the
hosts cannot understand that protocol. Upon receiving the broadcast, the hosts on Net7 that

Figure 1. Network environment for the example problem.
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cannot understand the protocol simultaneously send back error packets in order to inform
HA that they have discarded its broadcast packet. This use of an inappropriate broadcast
protocol by HA is called the primary problem. In this situation, agents L1, . . . ,L7 will
concurrently diagnose this problem since the return route of these error packets will traverse
network segments monitored by each of these agents. In diagnosing the cause of these error
packets, each agent may independently send diagnostic test packets through the network to
assess which one of a variety of causes is actually responsible for the error messages. This
redundant diagnostic message traffic may in turn lead to another problem if the network
environment has network segments which are implemented as narrow-bandwidth lines, or
if a tariff is associated with each message (e.g., in this case, the narrow band link between
Net5 and Net6 gets congested). This secondary problem involving the overloading of an
expensive or scarce resource, which is directly caused by LODES agents’ activities, can be
attributed to the lack of effective coordination among agents.

One of the interesting aspects of this example problem is that a LODES agent will detect
the secondary problem as a normal part of its monitoring of the network. In this case, agents
L5 and L6 will decide that the secondary problem is not tolerable because they know the
existence of the narrow-bandwidth line. The existence of this problem and the fact that it
was caused by the agents themselves will be the trigger for the learning component to be
invoked. Other mechanisms for invoking the learning component are discussed in (Sugawara
& Lesser, 1993).

3. The learning framework

3.1. Behaviors of planner and scheduler

Before presenting our learning framework, it is necessary to describe the control frame-
work in LODES diagnostic agents, especially the behaviors of its planner and scheduler
components. During problem solving, the planner of an agent selects a (diagnostic) goal
and a task is generated to achieve this goal. A task consists of a partially ordered set of
subtasks. A subtask may further be divided into smaller subtasks. A task that cannot be
divided into subtasks is called anoperationand is directly executable. The execution of
a task means that all the subtasks are executed in a manner consistent with the specified
partial order. There are usually a number of different high-level tasks that can be used to
achieve a goal. The planner generates a set of alternative tasks that can achieve a specific
diagnostic goal and then selects the most appropriate task among them. This selected task
will be referred to as a plan. The scheduler selects an operation that should be executed next
according to the partial order associated with this plan. An operation involves the execution
of a subroutine and sometimes will also result in a message being sent to another diagnostic
agent. When a message arrives at an agent, the executions of its scheduled operations are
interleaved so as to allow the incoming message to be analyzed to understand its impact on
the current diagnostic goals or to generate new diagnostic goals. Depending on the result of
this analysis, the execution of the current plan is resumed or another more important plan
is selected and its execution is initiated.
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3.2. What should be learned for coordination actions

Our approach to learning situation-specific coordination strategies is to modify and extend
the control rules used by the planning components of a diagnostic agent to select and pri-
oritize its diagnostic activities. The learned control rules cause the agent to acquire the
necessary and sufficient nonlocal information to make effective local control decisions so
that its activities will be appropriately coordinated with those of other agents. To achieve
coordinated actions, agents potentially need to know detailed information about the cur-
rent and planned activities of other agents, and information these agents have acquired
about the characteristics of the network and the partial results of their diagnoses. It is,
however, costly to receive and analyze all this nonlocal data; more importantly, usually
only a small subset of information is necessary to coordinate actions in a specific situation.
Thus, on one hand, a lack of nonlocal data may cause an agent to execute redundant or
unnecessary actions. While on the other hand, the transmission of unnecessary information
can: contribute to overloading communication channels; add significant computational
activities to agents in order to package the information for transmission and assimilate
the information into their local databases; and distract an agent, causing it to delay the
execution of important actions. Therefore, the process of identifying the appropriate in-
formation must be linked closely to the characteristics of the coordination situation and
what information is really essential to know in order to avoid the specific incoherence in
that situation which is problematic. Of course, performing redundant and unnecessary ac-
tions may cause no serious problems. In this case, no rules need to be learned. The result
of the learning process is the generation of new information gathering rules that cause
the planner to preferentially generate the operation sequence for acquiring needed infor-
mation before it makes a decision on how to best satisfy a specific diagnostic goal. An
alternative approach to situation-specific coordination that is motivated by the same con-
cerns of this work is being pursued by Nagendra Prasad et al. (Nagendra Prasad, Lesser, &
Lander, 1998; Nagendra Prasad & Lesser, 1996). The focus of their work is to develop
a metalevel characterization of the agent activities and then statistically learn, based on
this characterization, what the best agent coordination strategy is for a given metalevel
state.

The learned rules are stored as knowledge for planning and coordination (cf., figure 2)
and affect the planning activities in the situation-specific way as follows. First, when a plan
is built and selected for the given goal, the planner, according to the learned rules, collects
additional information that was not included before learning; this additional nonlocal in-
formation and associated control logic can lead the planner to no longer select a particular
task to achieve a given goal if a specific nonlocal situation exists and instead choose another
task. Second, the planner, as a result of new control rules, may alter the ratings of the
generated tasks for a given goal so that in the current situation the appropriate plan will
now be selected in a timely manner. Third, the planner may also introduce into the chosen
plan (again on a situation-specific basis) coordination activities (such as sending messages
and modifying the ratings of messages). Prior to learning, these messages were sent with
the inappropriate ratings or were just not sent. Thus, unnecessary tasks were selected or
needed tasks were not selected by the receiving agents.
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Figure 2. System architecture.

3.3. The learning framework

The knowledge used by our learning framework includes a collection of heuristic rules
and procedures for: recognizing situations where there is costly incoherent behavior,4

identifying control decisions that lead to this behavior, and modifying these control decisions
or replacing them with new decision processes that rectify the inappropriate control. When
an undesirable situation, called alearning analysis problem(LAP), is detected in an agent,
the learning component of that agent takes the following steps based on recorded traces of
activity stored in that agent and in other agents:

(1) Mainstream Task and Message Determinationidentifies the tasks and messages that
contributed to achieving the final result of the LODES diagnostic process (we call them
mainstream tasks and messages).

(2) LAP Detectionlocates, based on the results of Mainstream Tasks and Message Deter-
mination, control decisions in the trace that resulted in the execution of the subtask
operations which induced the observed undesirable situation.

(3) Task Structure Analysisbuilds the local view of the agent’s task structures and the
network models that the agent had locally when the tasks that contributed to the LAP
were selected. These views are fully exchanged among agents involved in the LAP so
as to generate a more comprehensive view about that situation. Agents then reproduce
their inference process based on all the information possible in the situation. Both of
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these traces are then analyzed in order to characterize the exact cause of the LAP (i.e.,
was there information present in the more comprehensive view that was absent from
the local view, which could be used to make an alternative control decision that would
lead to a resolution of the problem).

(4) Coordination Control Modificationadds context-sensitive rules to the local planner
based on the analysis in the previous step; these rules may require the gathering of
appropriate nonlocal information prior to their execution for use in selecting and pri-
oritizing tasks so as to avoid recurrence of the LAP in this situation.5

(5) Situation Identificationdetermines how to best characterize the context-sensitive sit-
uation in which the rules developed in the previous step should be applied. This step
uses previous instances as well as the currently analyzed instance.

This basic paradigm of monitoring, detection, analysis and adaptation is similar to the
approach laid out but never implemented for use in organizational self-design (Corkill
& Lesser, 1983); this basic paradigm was later partially implemented as an approach to
metalevel control for a single-agent interpretation system (Hudlick´a & Lesser, 1984, 1987),
and more recently completely implemented in (Lesser, Nawab, & Klassner, 1995).

This approach has strong similarities to the case-based approach developed by Hammond
(1989) for modifying cases in his casebase of recipes based on failures detected when the
recipe was used with substitute ingredients. Another case-based approach in multiagent
systems is PASUADER by Sycara (1989), where, in negotiation processes, a number of
compromising results are developed from similar cases handled in the past. In general, a
case-based approach is utilized in a domain that has the weak domain theory and where a
previous case that is similar provides strong information about how to handle the current
case. In our approach, prior instances are used to generate and improve learned rules,
which are used to identify what information and operations should be included in the local
model for coordinative actions in each situation. Moreover, our approach assumes relatively
strong domain theories. However, the inference based on prior instances is necessary in
multiagent domains, because some uncertainty is associated due to insufficient and out-of-
date information.

Our approach also has similarities to EBL (DeJong, 1981; Mitchell, Keller, & Kedar-
Cabelli, 1986) in the sense that the records of inference are analyzed based on dependency-
relations provided by the TÆMS framework and rich domain knowledge. In single-agent
systems, the major purpose of EBL is speed-up. The analysis in our learning, however,
identifies which nonlocal information is required for correct decisions (at least, the decisions
that do not cause the same LAP to reappear in the current situation) and which ratings of
local tasks and sent/received messages are not appropriate. Based on this analysis, rules
are added for gathering/requesting the necessary nonlocal information, or for adjusting the
ratings of tasks and messages.

4. Steps of the learning process

This section details the steps of the learning process using the example problem discussed in
Section 2. It should be noted that this process has been completely implemented in a complex
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multiagent system; furthermore, the learning is fully distributed and is agent-centered in
that an agent only learns rules for itself.

4.1. Inference traces

We assume that an agent is able to record traces of reasoning for analysis by the learning
component. This recorded trace is a sequence of action units (AUs) with associated data
which are generated by an agent during its diagnostic reasoning.

The action unit is one of:

• A decision: the selection of either a goal, hypothesis, or a plan, and the scheduling of a
plan.6

• An execution of an operation: an operation as described above is recognized as the
smallest program, command, etc., that cannot be stopped or interrupted by the scheduling
mechanism.
• An (external) event: message arrival or user’s interrupt.

The trace expresses the history of inference, thus this is called aninference trace. The
associated data are the reasons, the results and the messages: why the AU is selected or
executed, which data is referenced, what data is generated, and what messages are sent.7

We can assume that all internal information such as models of the domain, other agents,
and the local inference state are expressed by corresponding variables and are part of the
associated data. The examples of inference traces are described in figures 4 and 6.

Thus, an inference trace describes the following aspects of local problem solving:
(1) executed tasks and operations; (2) task relationships; (3) information communicated;
(4) resource usage; (5) domain data and knowledge used; and (6) control knowledge used.
An agent must, furthermore, be able to reproduce the same decisions and reasoning from
the recorded inference trace in order to do the task analysis step in the learning algorithm.8

4.2. Mainstream task and message determination

The first step in the learning process is to identify the mainstream tasks and messages. These
can be obtained by tracing backwards through task enablement relations (that is, enable-
and support-relations) provided by TÆMS from the final result in the problem-solving
trace as follows. The task that directly led to the final result is a mainstream task. A task
thatenables(required precondition of ) a mainstream task is a mainstream task. A task that
supportsa mainstream task (that is, raises its rating) is a mainstream task. A message that
produced a mainstream task is a mainstream message. A task that produced a mainstream
message is a mainstream task. A task that produced the content of a mainstream message is
a mainstream task. A task that produced a mainstream task as a subtask is a mainstream task.
This process of computing the mainstream extends beyond a single agent’s local problem
solving to incorporate activities of agents distributed throughout the network.9
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4.3. LAP detection

The second step of the learning process is to isolate situations in which any of the following
inappropriate actions occurred:

(D1) Blocking of mainstream tasks and messages: nonmainstream tasks that are unneces-
sary for achieving the goal of problem solving for the current episode and are selected
for execution before mainstream tasks that are executable.

(D2) Redundant mainstream task: for example, a variable is defined twice or its value is
redundantly sent from other agents.

(D3) Inappropriate scheduling: other agents wait for the result of a task that is executable
but its execution is delayed by the scheduler.

(D4) Inappropriate task allocation: some agents were allocated a number of tasks all of
which are time-consuming or which use resources beyond their capabilities.

(D5) Problematic external actions: tasks that cause, for example, resource overload prob-
lems in shared resources (see the example problem).

These problem-solving situations are LAPs that indicate situations where noncoherent
behavior has taken place.

Note that situations D1 to D3 can be specified in a domain-independent manner and
are detected using formal heuristic rules. However, the detection of situation D4 is more
domain- or system-dependent, because it requires knowledge about how long certain tasks
should normally be expected to take. This knowledge could be either provided by the
system designer (which was the approach we used) or learned as a result of the on-
going operation of the system (that is, estimating from the average value of prior du-
rations, or the average amount of resources used previously). Further, this knowledge
could also be context-sensitive based on characteristics of the current operating envi-
ronment. The detection of situation D5 also requires the resource monitoring module
(a LODES agent has this module) that can detect the state and the time of resource
overloads.

Examples of heuristics for recognizing these situations in an inference trace, in this
case D1, are shown in figure 3. For domain- or system-dependent LAPs such as D4
and D5, we assume that there are heuristic rules or functions for locating which opera-
tions cause these situations. For example, LODES has thefind-task function that lo-
cates the AU (operations) that cause the problematic situation detected by its monitoring
module.

In the example, the problem triggering diagnosis—which is the overloading of a nar-
row communication bandwidth line caused by the generation of a large number of test
packets—is reported by the network resource monitoring module. The LAP detection anal-
ysis identifies the task(s) in which the diagnostic test packets were sent by analyzing the
trace of the first diagnostic problem solving, e.g., an example of problematic external ac-
tion (a D5 situation). Figure 4 illustrates the mainstream tasks. Agents can identify that the
observed test packets were sent in the plan P3 named “Get-RTT-between-Both-Ends” in
this step.
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Figure 3. An example of detection heuristics. The first rule for D1 describes the situation where the execution of
a mainstream task (T3) is delayed (task T2 that does not contribute to the final result is executed before T3) because
an important message (M1) has a low rating. The second one describes the situation where that task T2 is ready
to be selected but instead a nonmainstream task T1 is selected for execution. In LODES, the system-dependent
predicatefind-tasks(T-list, <condition-provided-by-monitor>) is provided for situation D5 to locate
the task(s) that cause the problematic situation detected by the monitoring module.

4.4. Task structure analysis

The third step of the learning process involves agents building a comprehensive view to
describe the detected LAP. This step is performed as follows:

(A1) The agent identifies the reasons why the agent(s) decided to select the task causing the
LAP—that is, it finds the node in the inference trace corresponding to this decision
and the reasons (set of variables expressing enable- and support-relations).

(A2) The agent recreates, using the inference trace, the view of the task structures and the
domain model at the point when the detected decision was made. Other agents which
did not make this decision also create their subjective view of the situation at the
point when the LAP occurred.10 This is a subjective view because it is based on the
information an agent used in its deliberations—not what information was actually
available.

(A3) All involved agents exchange their subjective views of their state at the time when the
problematic decision was made so as to generate a more comprehensive view. This
extended view includes goals, scheduled tasks, inference states and resource usage
of all agents, as well as other observed domain data. This view is further extended
by adding the results of mainstream tasks that were executed in the inference or were
ready to execute when the detected decision was made.

(A4) The agent that executed the task causing the LAP reproduces the local planning and
scheduling decisions using the generated comprehensive view. The agent marks those
pieces of the comprehensive view that are needed to select the appropriate task. This
marking process is identical to the one used to identify mainstream tasks.



P1: SYD

Machine Learning KL653-02-SUGAWARA November 5, 1998 20:36

LEARNING TO IMPROVE COORDINATED ACTIONS 139

Figure 4. Plans and inference trace created during diagnosis of the example.

Based on this reproduction of the agent’s problem-solving process from both the perspec-
tive of a local view and of a more comprehensive view, there are three different problem-
atic situations that we recognize. The first problem, called alack-of-information problem,
occurs when an agent chooses the wrong alternative high-level task to solve the given di-
agnostic goal because of the lack of nonlocal information. By “wrong,” we do not mean
that the task would not have achieved the desired goal if there were appropriate time and
resources available but rather its execution was responsible for the observed LAP; we
are not detecting incorrect domain knowledge. The detected incoherent behavior can be
resolved by just choosing a different high-level task in this specific situation. What the
learning component does in this case is to add rules to an agent to acquire the appropri-
ate nonlocal information to identify this specific situation and to use this information to
choose the appropriate high-level task that eliminates the incoherent behavior in this specific
situation.

The second problem, called aninappropriate-rating problem, occurs when the correct
plan cannot be selected because of an inappropriate rating function, though all the re-
quired data is available in the agent. In this case, because of an inappropriate rating, a
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nonmainstream plan is selected initially. This situation can be recognized because the sys-
tem, after failing to solve the problem with the first plan, had tried alternative plans until
it succeeded in the diagnosis. Also, no additional nonlocal information that supports the
choice of the successful plan arrived between the time the first choice was made and the
time that the correct plan was chosen. Thus, we can conclude that the rating of the plan
is not appropriate in this specific situation. To solve this problem, it is necessary to add a
control rule keyed to this situation which will either directly select this appropriate plan or
change the plan’s rating function.

The final problem, called anunnecessary-incoming-message problem, occurs when the
appropriate plan is selected but its execution is interrupted because of the analysis of either
a redundant or nonmainstream message from another agent. This distracting message not
only affects the scheduler but it is possible that the result of its analysis may induce the
execution of an unnecessary plan. To solve this problem, more context-sensitive rules need
to be added to decide the importance of processing a received message of a certain type in
the current context. This type of problem is discussed in more detail in Section 5.

In the example problem, agents create a comprehensive view of the situation in which the
plan “Get-RTT-between-Both-Ends” was selected. Agents select this plan to estimate the
network load and bandwidth by gathering statistics on the round-trip time (RTT) of a num-
ber of test packets sent into the network. This plan, which is not the optimal way to gather
this statistic, produces only an approximate value for RTT. A better plan would have been
to use the Simple Network Management Protocol (SNMP), which is designed for acquiring
network management data (Case et al., 1990), but this was not possible in the example since
the adjacent network routers did not implement it. An agent, in order to understand what
tasks other agents are executing, must know that local routers do not use the SNMP, and
that all agents along the route from Net7 to Net1 will be performing the same diagnoses.
Agents can then understand that an identical task was selected in other agents. This view of
which tasks were to be executed in other agents was not present and thus responsible for the
LAP occurring; this is one of the important parts of the enhanced subjective view necessary
for achieving more coordinated activities (i.e.,lack-of-information problemas shown in
figure 5(a) and (b)). In figure 5(c) we show that the learned rule modifies the planner’s
choice so as to induce situation-specific coordination with other diagnostic agents. The
action part of the rule in this case gathers the information about the selected plans in other
agents; with this information in hand, a predefined coordination rule will be triggered that
invokes a coordination strategy in which one agent in the group of agents that are per-
forming identical diagnoses is chosen to perform the diagnosis, and then sends the results
of the diagnosis to the other agents. In this way, if the implicit coordination achievable
through situation-specific selection of a task and the setting priorities of tasks and messages
used by the simple priority scheduler is not sufficiently powerful to solve the coordina-
tion problem, then more explicit coordination among agent activities can be introduced
in a situation-specific manner. It should be noted that the use of the implicit coordination
approach, where appropriate, is advantageous because of the low overhead involved in
its application. Another important point is that an explicit coordination strategy does not
override the basic priority task scheduling process of the agent but rather uses an explicit
metalevel dialogue with other agents to decide on which tasks to select locally, and their
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Figure 5. Views for problem solving. (a) is the task structure created in L1 before learning. This view does
not include the resource type (which is included in the nonlocal domain model) and other agents’ intended tasks
(which are included in the nonlocal task structure). (b) is the task structure that will be created in L1,. . . , L7 after
learning in the example problem, and (c) is the learned context-sensitive rule that may create (b). The learned
coordination control takes place when the acquired view is identical to the view (b).

priorities. We will not discuss how this action part is chosen in this situation from a library
of preexisting explicit coordination strategies, because discussion on such a coordination
strategy library is beyond the scope of this paper (for more details see (Sugawara & Lesser,
1993).

There are two additional categories of problems that can be recognized as a result of
the comparison of agent problem solving with a comprehensive view and with only a local
view. We mention them only briefly because they cannot be solved by adding situation-
specific control rules to the planner. One, called alack-of-planning-time problem, occurs
when there is not enough time to generate all possible plans and/or to decide which one is
appropriate among them. This situation occurs when there is not sufficient time to complete
the diagnosis. In this case, if during the reproduction process an appropriate plan based on
only local information that was available to the agent is generated, then the LAP may be
avoided by just allowing more time in this situation for solving the diagnostic goal before
recognizing that there has been an error in diagnostic processing or by speeding up the
planning process. Though not implemented, we believe that some aspects of the lack-of-
planning-time problem can be solved using EBL or statistical learning techniques to generate
rules that directly connect obtained information to the appropriate plan without complex
analysis so as to speed up the plan generation and selection process. The second, called a
lack-of-domain-knowledge problem, occurs when an appropriate domain task for solving
the diagnostic goal is not generated. The cause of this type of problem is either a lack of
domain or planning-level knowledge, both of which should be provided a priori. Our focus
in this paper is on identifying required nonlocal information for effective coordination; thus,
the lack-of-domain-rules problem is beyond the scope of this paper since it is not solved
solely by making existing rules more context-sensitive with respect to the external agent
environment.
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4.5. Coordination control modification

The fourth step involves adding or modifying control rules for coordination based on the
analysis of the view developed in the previous step. This new control is the consequence
part of the learned coordination rules. The approach to modification depends on the types of
problems identified in the previous step. In the case of lack-of-information problems where
agents cannot generate or select the appropriate plan because of a lack of some nonlocal
information, two possible causes are also considered:

(1) The required data was generated in other agents but not transferred to the local agent
because other agents were not requested to send it, or they thought that the data was
not important.

(2) The required data was not generated in other agents because the tasks for generating
the data were not scheduled yet or had low priority.

In both cases, the problem can be solved by sending a request with higher priority to the
appropriate agent for the needed data.11 To accomplish this, a new situation-specific control
rule needs to be added to the planner at the point where it decides which plan to select. What
data is required from another agent is identified in step (A4). In the example problem, it is
necessary to gather information about the selected plans in other agents, so that the local
agent can recognize the details of resources and their near-term expected usage patterns
that will be used by the chosen plan (see figure 5(c)).

Inappropriate-rating problems can also be solved by adding the following new control
rules. In these problems, the required data was already in the local agent but was not fully
analyzed because the data arrived with low ratings or the local agent decided that the data
was not important. In other situations, the mainstream plan was in the candidate list for the
selection but was not selected because it has a relatively lower rating. Both situations can
be solved by lowering the rating of nonmainstream tasks and messages that blocked the
mainstream ones, and raising the ratings of the blocked mainstream tasks and messages.
Likewise, the unnecessary-incoming-message problem (which explains that the processing
of a distracting message caused the execution of the appropriate plan to be delayed) can be
similarly solved; in this case, control rules need to be added to cause the scheduler to either
ignore or postpone the analysis of the nonmainstream messages in this specific situation
(see Section 5.1 and figure 8 for more details).

4.6. Situation identification

Since the learned rules are situation-specific, agents have to identify the situation in which
the learned rule should be applied. The purpose of this step is to create the premise part of the
rule for identifying the situation. For the first problem, the situation must be identified based
on the analysis of the subjective view and the comprehensive view constructed in step (A4).
In the case of a lack-of-information or an unnecessary-incoming-message problem, all of
the subjective view in the local agent is the premise part of the rule, that is, the conjunction of
all variable-value pairs describing the view. In the case of an inappropriate-rating problem,
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all of the subjective view and the nonlocal information in the comprehensive view that
was marked in the reproduction process in step (A4) is the premise part of the rule. We
assume that the marked nonlocal information is requested by other agents for verifying the
premise part of the learned rule. However, such a complete version of the view is usually
over-specific; we think that only a part of this view is essential to characterize the situation
where the derived rule should be applied. The question we then face is what parts of the
subjective and comprehensive views are necessary to uniquely identify the problematic
situation.

A simple inductive method (that has so far been adequate for our needs) is introduced to
solve this identification problem. First, previously stored traces (and other agents’ traces,
if possible; see the example below) containing the same LAP as well as the last reasoning
trace are gathered,12 then these traces are divided into two types of instances—positive
and negative instances (Sugawara & Lesser, 1993). When a variable used in the different
types of instances has the same value, or when a variable used in the same type of instances
has different values, we can conclude that the variable is not necessary for distinguishing
the situation from others. This process of comparison is called comparative analysis (CA)
(Hudlická & Lesser, 1984). Note that only the network model and selected plans (in each
level and in each agent) are compared.13

In this example, agents can identify the situation by comparing their traces of reasoning
about the secondary problem with all the other agents diagnosing the same secondary prob-
lem. Although L1,. . . , L7 observe the secondary problem, only L5 and L6 concluded that
the problem was not tolerable, because they know the existence of a narrow-bandwidth line.
This difference is expressed by the variable Min-of-MaxThrput; other variables are elimi-
nated by the CA (cf. Table 1). The results finally obtained through learning are illustrated
in figure 5. Note that the variable Min-of-Max Thrput is, as a result of the learning pro-
cess, identified as the mainstream variable that was not included in the original subjective
view.

Note that after this learning, an agent’s action may still cause the same or other problems.
For example, it is possible that the situation where the learned rules should be applied
cannot correctly be identified because of insufficient instances. Alternatively, the appropriate
inference strategy may need to change over time in a gradually evolving environment. In
both cases, agents can incrementally converge on the correct rules by applying this learning
iteratively.

4.7. Empirical results

All aspects of the learning component necessary for doing the examples described in the
paper have been implemented in the LODES system. The learned control plan for the exam-
ple problem (see figure 5) described in this paper represents the output of our implemented
learning component. The CPU time and the elapsed time of the learning process for this
example are approximately 5.12 s and 102.5 s in C and LISP (interpreter), respectively, on
Sun machines (SparcStation 1 (SS1), SS1+ and SS2).14 The difference between the CPU
time and the elapsed time is caused by communications and synchronization. The number
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Table 1. Comparative analysis with (a) positive instances (L5 and L6) and (b) negative and positive instances
(L4 and L5).

(a) Positive instances (L5 and L6)

Variables Values in L5 Values in L6

Adjacent networks Net4, Net6 Net5, Net7 Eliminated

Adjacent routers R4, R5 R6, R7 Eliminated

End-nodes (L1, L7) (L1, L7)

Src-MAC xx:xx:xx:f:2a:3b xx:xx:xx:0:12:8c Eliminated

Dst-MAC xx:xx:xx:f:2a:3a xx:xx:xx:0:2f:7e Eliminated

Type-of-Storm ICMP-Echoes ICMP-Echoes

MaxThrput1 10,000,000 64,000 Eliminated

MaxThrput2 64,000 10,000,000 Eliminated

Min-of-MaxThrput 64,000 64,000 64,000
(Quantitative measure) (max of L5 and L6’s values)

Observed-Number-of-Echoes 68 64 64
(Quantitative measure) (almost identical)

(min of L5 and L6’s values)

Current-Traffic low low

(b) Negative and positive instances (L4 and L5)

Variables Values in L4 Values in L5

End-nodes (L1, L7) (L1, L7) Eliminated

Type-of-Storm ICMP-Echoes ICMP-Echoes Eliminated

Min-of-MaxThrput 10,000,000 64,000 64,000
(Quantitative measure) (min of L4 and L5’s values)

Observed-Number-of-Echoes 68 61 Eliminated
(Quantitative measure) (almost identical)

Current-Traffic Low Low Eliminated

of messages during the learning process is 148. These messages include those for starting
the learning process and synchronizing each step of the learning, as well as those for infor-
mation exchange required in certain learning steps (e.g., mainstream task determination).
The modified agent control resulted in an increase of approximately 10% in the time for all
agents to arrive at a diagnosis of the first problem because of additional coordination acti-
vities that centralized some of the diagnostic activity. The inference traces are also longer.
However, the total number of communication packets sent among agents is approximately
half the amount prior to the learning. Thus, in this case, the learning resulted in a trade-off
between additional time to perform domain problem solving and use of a scarce resource.
Before learning, agents created their plans based on the very limited view of the network
and other agents as illustrated in figure 5(a). We want to emphasize that learning enables
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the agents to create their plans based on more accurate and appropriate views about other
agents and the status of network resources as illustrated in figure 5(b).

5. Another example—Identifying important messages

In order to indicate the generality of our approach, we next discuss an additional example
coordination problem. This problem arises when the priority for processing messages of
a certain type is incorrectly set in a particular situation, that is, an inappropriate-rating
problem.

5.1. Example description and learned rules

Suppose that, in the environment shown in figure 1, an HA’s user in Net1 tried to telnet to
HB in Net7 and there is no response from HB (this is the symptom of the problem). Let us
consider the following three possible causes for this problem:

(P1) HB does not have the routing information to send the packets to network Net1.
(P2) HB is off-line.
(P3) HB is running with no network services, but the network driver is active (e.g., the

processor is in single-user mode in order to back up the contents of a disk).

Any of these problem explanations can be used to explain the symptom, from the view-
point of HA. After the symptom is reported to L1 (diagnostic agent for Net1) by the user or
the network manager, L1 initially believes that this is not a local problem and thus invokes
L7 (diagnostic agent for Net7) for coordinated diagnosis. Note that any observational result
in L1 for these three problem causes is identical (i.e., there is no HB’s response to any test
and request packet) and thus L1 cannot distinguish among these problems. To identify the
cause, coordinated actions among the diagnostic agents is essential. The initial LODES
agents (that is, before learning) can diagnose the problem, but not efficiently, since redun-
dant and unnecessary tasks are performed. For example, the cause of the problem P1 cannot
be isolated solely by L7; L7 believes that the cause must be on L1’s side because L7’s
observations imply that all HB’s actions are correct. L7 can only change its mind when
it receives L1’s message indicating L1 has observed that the communication it expected
from HB has not occurred (e.g., the ICMP echo reply from HB cannot be observed by L1.
This result is stored into the variable “Echo-Reply-from-the-Remote-Host” in L1). L7 can,
however, diagnose the problem itself if it is P2, and no information from L1 is necessary
in this case. An unnecessary message from L1 may lead to unnecessary analysis of this
message and/or execution of redundant tasks. If the problem is P3, L7 can perform a diag-
nosis without the value of “Echo-Reply-from-the-Remote-Host” in L1, but this value can
eliminate the executions of some of its diagnostic tasks. However, since L1 initially cannot
distinguish among these problem causes, it cannot decide whether or not the local result
“Echo-Reply-from-the-Remote-Host” is really important. Initially, L7 also cannot deter-
mine the importance of processing received messages from L1, and this results in either
executing unnecessary tasks or delaying important tasks.
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Let us now look at how L1 and L7 in this diagnosis situation can learn a more effective
coordinated diagnosis strategy. Consider the problem P2. L7 can isolate the cause without
information from L1, but performs a number of unnecessary tasks, some of which are
induced by the message from L1 containing the variable value of “Echo-Reply-from-the-
Remote-Host.”15 As a result of identifying mainstream tasks and messages in the learning
process, L7 can recognize that L1’s message about the value of “Echo-Reply-from-the-
Remote-Host” is not part of the mainstream. (All messages from L1 are not mainstream
except the ones containing the data about the symptom reported by the user.) Therefore,
the activities for reading and analyzing this message and subsequent activities based on this
message are unnecessary. These unnecessary activities are detected as the problem D1; more
concretely, the nonmainstream message from L1 can be detected by the first rule described
in figure 3. If we assume that this problem is not a lack-of-information type,16 the goal of
the learning method is to generate, in L7, the rule that lowers the rating of the message about
the value of “Echo-Reply-from-the-Remote-Host” in the appropriate situation as shown in
figure 7.

Next, suppose that the problem is P1. L7 can also isolate the cause through coordinated
actions with L1. In this case, the message containing L1’s result of “Echo-Reply-from-
the-Remote-Host” is mainstream. That is, L7 believes that the host HB has no problems,
but L1’s result indicates the conflict between L7’s domain model for HB and L1’s. This
conflicting information induces another important task and L7 can then reach the required
conclusion. In this case, L7 may perform an unnecessary task, because L7 cannot understand
that “Echo-Reply-from-the-Remote-Host” is important, so its analysis may be delayed as
shown in figure 6. In this situation, through learning, L7 will generate the rule for P1 that
raises the rating of the message about the value of “Echo-Reply-from-the-Remote-Host” in

Figure 6. Inference trace for P2.
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Figure 7. The rules generated to appropriately rate received messages.

the same situation as shown in figure 7. Note that both rules for P1 and P2 are overspecific
because the conjunction of all variables embedded into the premise part of the rules includes
L7’s subjective view at the point when the message arrived.

However, after diagnosing the P1 problem, L7 can recognize that the variable value of
“Echo-Reply-from-the-Remote-Host” plays an important role as a result of the situation
identification step. Based on a previous diagnosis for the problem P2, L7 decided that the
nonlocal data “Echo-Reply-from-the-Remote-Host=No” (meaning that no replies were
observed) in L1 is not part of the mainstream. The new inference trace for the problem
P1 is the negative instance of this, since its initial (reported) symptom is identical, but
the message containing the variable “Echo-Reply-from-the-Remote-Host” is part of the
mainstream.

Table 2 indicates the subset of variables that appear in both P1 and P2.17After this step,
“Echo-Reply-from-the-Local-Host=Yes in L7” is added in the premise part of the rule
for P1 and “Echo-Reply-from-the-Local-Host=No in L7” is also added to the premise
part of the rule for P2 in the L7 agent. Note that, with additional positive instances,
the HA and HB in these rules could be generalized. For example, if the problem P2 oc-
curs between another host in Net1 and another local host (from the viewpoint of L7),
then HA and HB will be replaced by the more general predicate “Host in Net1” and
“Local-Host,” respectively, as shown in figure 8. We must say that L1 cannot generate
the rule by itself because, after more instances, L1 generates conflicting rules: one in-
dicates that the message “Echo-Reply-from-the-Remote-Host” is important, but another
indicates it is not. In this case, the agent gives up on trying to generate a rule to improve
performance.

Table 2. Comparative analysis for the problems P1 and P2.

Variable comparison in L1 Problem P1 Problem P2

Echo-Reply-from-the-Local-Host in L1 Yes Yes Eliminated

Echo-Reply-from-the-Remote-Host in L1 No No Eliminated

Variable comparison in L7

Echo-Reply-from-the-Local-Host in L7 Yes No

Echo-Reply-from-the-Remote-Host in L7 Yes Yes Eliminated
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Figure 8. The generated rules in L7.

5.2. Experimental result

The experimental result is shown in Table 3. In both cases, a number of unnecessary tasks
are no longer executed after L7’s control has been modified by the learned rules. In the
case of the problem P1, for example, L7 requested L1 to perform the task of reconfirming
that no ICMP-echo-reply packets were observed (it is possible that L1 could not observe
the ICMP-echo-reply packets because one of the intermediate network segments was so
busy that the reply packet was delayed or discarded). After the rule for P1 is learned, this
task is not requested since the message containing the variable and value of “Echo-Reply-
from-the-Remote-Host” has a higher rating; thus, this analysis and the induced tasks are
executed before other tasks. One of the induced tasks is to request a task of L1. The requested
task is immediately done since it has the highest rating. Thus another unnecessary task is
also eliminated in L1. In the case of the problem P2, the analysis of the received message
“Echo-Reply-from-the-Remote-Host=No in L1” is delayed because L7 knows that it is
not important. The details are described in (Sugawara & Lesser, 1993). In both P1 and P2,
only one or two operations are eliminated, but the inference traces are much shorter. This
is because not only operations but also unnecessary decisions are eliminated. Note that,
for the problem P2, L7 also learns other rules which allow it to ignore any messages from
L1, except for the initial messages involved in starting coordinated diagnosis and reporting
the symptom, thus eliminating additional processing tasks in L7. The above experimental
result assumes that L7 has only the rules in figure 8.

Table 3. The number of tasks (operations) executed and the length of the recorded inference traces in agent L7.

In L7 In L7
(before learning) (after learning)

Number of operations executed for P1 8 (or 9) 7

Length of inference trace 33 (or 34) 27

Number of operations executed for P2 6 5

Length of inference trace 29 21
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6. Discussion and conclusion

Although coordination is an essential technique for cooperative distributed problem solv-
ing, a trade-off exists between the amount of effort to implement an effective coordina-
tion strategy and the savings accrued as a result of more effective coordination. Both too
much or too little coordination can degrade overall system performance. A balance can
be achieved if situation-specific models of the network state can be created and used to
arrive at an acceptable control decision. We feel it is an impossible task for the system
designers, at design time, to choose this appropriate balance in all situations, especially
for systems operating in open and evolving environments. This paper has discussed an
approach to learning situation-specific coordination control rules. The method enables the
system to avoid a previously recognized, noncoherent situation by modifying or extending
local control strategies to be more situation-specific so as to have a more enhanced view
of the relationships of activities in other agents, the status of other agents’ deliberations
and the environment. In this way, more overhead for coordination will be introduced only
in situations where the system observes that current coordination strategies are seriously
ineffective.

Our approach is fully distributed, agent-centered, and has been implemented in a real
multiagent system for network diagnosis. This contrasts with most research done on learning
coordination strategies in multiagent systems which have been done in artificial or synthetic
domains with agents having simple coordination patterns, limited computational state, and
whose inference processes involve, at most, a few steps (Grefenstette, 1992; Kinney &
Tsatsoulis, 1993; Sen, Sekaran, & Hale, 1994; Shoham & Tennenholtz, 1992; Sandholm &
Crites, 1995; Tan, 1993; Weiss, 1994).

As part of this discussion, it is appropriate to contrast some of our design decisions with
alternative options. We start out with agents having a simple local control architecture as
described in Section 3.1 and no explicit protocols for coordination of their activities with
other agents; agents only have the ability to send a request to another agent for a prioritized
task to be executed. The result of learning is to augment this framework by making certain
local control decisions based on nonlocal information, and where necessary, using an explicit
agent coordination protocol from a preexisting library. An alternative choice is to use an
agent that has a more complex local control architecture and a parameterized family of
coordination protocols such as GPGP (Decker & Lesser, 1995) that interact with the local
control architecture to achieve the desired coordination; each family member of a protocol
implies different overheads in terms of metalevel communication and computation. In the
GPGP case, learning involves choosing for specific situations which family member of the
protocol is most cost effective.

The use of an agent with a simple local control architecture is advantageous when often
there is no need for coordination, or coordination can be achieved by the exchange of a
few pieces of information; in this situation, the simplicity of the local control architecture
allows the overhead for supporting coordination to be kept to a minimum. The potential dis-
advantage of basing learning on a simple agent occurs where an agent is pursuing multiple
goals simultaneously, each goal possibly requiring different explicit coordination protocols.
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In this case, it may be difficult without a more sophisticated local agent control architec-
ture underlying these protocols for them not to adversely interfere with each other when
simultaneously active. Although we have chosen here to use a simple agent local control
architecture, we feel that the basic approach to learning situation-specific coordination we
have laid out is equally applicable to a more sophisticated agent architecture and coordina-
tion framework (see (Nagendra Prasad & Lesser, 1996) for an alternative way of learning
situation-specific coordination strategies for GPGP).

Another important aspect of this work is its emphasis on knowledge-intensive learning
based on a single coordination episode. The aspect of our learning that is most dependent
on domain knowledge is the situation identification process detailed in Section 4.6. The use
of domain knowledge in this process allows us to characterize the coordination situation
so that its description is not overly general nor overly specific. However, we feel a more
statistical learning approach which would require repeated occurrences of a similar LAP
could be substituted to avoid or limit the amount of domain-specific knowledge that is
required without changing our basic approach.

In summary, the most important contribution of this paper is that distributed learning of
situation-specific coordination strategies is feasible in real multiagent systems. We have not,
however, addressed here a number of important questions to understand the full potential of
our approach. For example: What is the entire range of coordination problems that can be
solved by this approach? What level of detail is needed to record agent activities to enable
postprocessing of this trace for use in diagnosis? How much domain-dependent knowledge
is needed to use this approach in other applications? How should nonhomogeneous agents
be handled? With respect to the last two points, one of the directions we hope to pursue is
making our approach to learning less domain-dependent. We are currently examining how
our approach could be applied to the GPGP domain-independent coordination framework
with its associated TÆMS (Decker & Lesser, 1993) representation that has been extended to
include resource relationships as depicted in figure 5(a) and (b). The idea is to use TÆMS
to represent agent activities and the operating environment and develop a version of the
learning component that could work from this representation. Our preliminary work in this
direction, reported in (Bazzan, Lesser, & Xuan, 1998), is encouraging.
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Notes

1. The behavior of cooperative agents is not coherent when agents transmit information that is not relevant or
not timely, derive information that had already been generated by another agent, or cause the overloading of
scarce or expensive shared resources.

2. Support-relation is a new relationship that was not in the original formulation discussed and relates to how a
task in one agent can affect the subjective view of its own and another agent’s task structure by changing the
importance rating of its tasks. This rating change can, in turn, cause the agent to choose one task over another
for execution.

3. When it sends a request to another agent to perform a diagnostic task, an agent also attaches an importance
rating derived from its local perspective. The receiving agent uses this rating as a factor in its decision about
when to execute the requested task.

4. This is done by the metalevel controller within an agent or by an external monitor for specific (shared) resources
(such as network resources or database). The kinds of events that are detected are described in (Sugawara &
Lesser, 1993). It is also assumed that an agent locally records an abstracted trace of its recent problem-solving
actions which can be reviewed on-line by the learning component.

5. In future work, we hope to add in an additional phase which takes past rules in conjunction with new rules
that we have just constructed, all of which have been based on single instance failure analysis, and develops
more general forms of these control rules when appropriate.

6. The problem-solving activities of a LODES agent could be represented at a finer level of detail. However,
we have not found that necessary in the types of analysis we need for recognizing the cause of incoherent
behavior.

7. Time information can be added for estimating task durations, if possible and required.
8. In LODES, the amount of data that each agent needs to record in order to faithfully reproduce the trace was not

significant. However, in other domains, where agents have large knowledge bases or require a large number of
actions to carry out problem-solving activities, the recording of all information pertinent to reproducing agent
decisions may not be feasible. In such domains, one approach is to only record selected aspects of agents’
decisions and then, based on this information, narrow down the cause of the problem and what additional
information would be necessary to resolve the problem. The agents would then be instructed to collect certain
additional information for post-analysis if they again incur the specific high-level situation that may have
caused the problem.

9. In TÆMS, some task relations may affect the duration and the quality of other tasks quantitatively (such as
facilitate-relation) rather than qualitatively (such as enable-relation). This mainstream determination step can
be extended to handle these quantitative relations (Bazzan, Lesser, & Xuan, 1998).

10. This view is identical to the distributed snapshots introduced by Chandy and Lamport (Chandy & Lamport,
1985).

11. Another way of solving this problem would be to add rules to the appropriate agent to automatically generate
and send the needed information in the specific situation. In our approach, the agent doing the learning makes
local changes to its control plan (i.e., agent-centered) that solve the problem rather than forcing other agents
to change their control plans.

12. This approach assumes that we have stored some amount of history in the agent about previous problem-
solving experiences in a way to facilitate such analysis, or that we will observe more carefully the next time
this problematic situation occurs (Mitchell, Keller, & Kedar-Cabelli, 1986).

13. CA is not general method for inductive learning but is sufficient for our current requirement. Of course, we
think that other more inductive methods can be used for more complicated situations such as a situation
described by OR conditions.

14. The CPU time can be improved by compiling and/or optimizing the LISP program.
15. Initially, L7 cannot ignore this message because of the possibilities of P1 and P3.
16. When it is a lack-of-information problem, L7 can select correct actions if appropriate nonlocal information is

provided. The rule is generated in the same way as in the previous example for gathering needed data.
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17. Of course, there are other bound variables. For example, the variable “ARP-reply,” indicating whether or not
there is an ARP reply from the local host (that is, HB), will be bounded in L7 for the problem P2. However,
we assume that they can be ignored in the current learning process because they are also eliminated in the
same way.
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